2019届高考数学二轮复习专题五解析几何规范答题示范学案理

合集下载

全国通用版2019高考数学二轮复习专题五解析几何第2讲圆锥曲线学案理

全国通用版2019高考数学二轮复习专题五解析几何第2讲圆锥曲线学案理

第2讲 圆锥曲线[考情考向分析] 1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)(2018·银川模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,左、右顶点为M ,N ,过F 2的直线l 交C 于A ,B 两点(异于M ,N ),△AF 1B 的周长为43,且直线AM 与AN 的斜率之积为-23,则C 的方程为( )A.x 212+y 28=1 B.x 212+y 24=1C.x 23+y 22=1 D.x 23+y 2=1 答案 C解析 由△AF 1B 的周长为43,可知|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43, 解得a =3,则M ()-3,0,N (3,0). 设点A (x 0,y 0)(x 0≠±3), 由直线AM 与AN 的斜率之积为-23,可得y 0x 0+3·y 0x 0-3=-23,即y 20=-23(x 20-3),①又x 203+y 20b 2=1,所以y 20=b 2⎝ ⎛⎭⎪⎫1-x 203,②由①②解得b 2=2. 所以C 的方程为x 23+y 22=1.(2)(2018·龙岩质检)已知以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上任意一点,BM 与直线y =-2垂直,垂足为M ,则|BM |-|AB |的最大值为( ) A .1 B .2 C .-1 D .8 答案 A解析 因为圆C :(x -1)2+y 2=4的圆心为C (1,0), 所以可得以C (1,0)为焦点的抛物线方程为y 2=4x ,由⎩⎪⎨⎪⎧y 2=4x ,(x -1)2+y 2=4,解得A (1,2).抛物线C 2:x 2=8y 的焦点为F (0,2), 准线方程为y =-2,即有|BM |-|AB |=|BF |-|AB |≤|AF |=1,当且仅当A ,B ,F (A 在B ,F 之间)三点共线时,可得最大值1.思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练 1 (1)(2018·石嘴山模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,以F 1,F 2为直径的圆与双曲线渐近线的一个交点为()3,4,则双曲线的方程为( )A.x 216-y 29=1 B.x 23-y 24=1 C.x 24-y 23=1 D.x 29-y 216=1 答案 D解析 ∵点(3,4)在以|F 1F 2|为直径的圆上, ∴c =5,可得a 2+b 2=25.①又∵点(3,4)在双曲线的渐近线y =b ax 上,∴b a =43.② ①②联立,解得a =3且b =4, 可得双曲线的方程为x 29-y 216=1.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x答案 C解析 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设准线交x 轴于点G .设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°, 在Rt△ACE 中,∵||AE =|AF |=3,||AC =3+3a ,|AC |=2|AE |, ∴3+3a =6,从而得a =1,||FC =3a =3. ∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C. 热点二 圆锥曲线的几何性质1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca=1-⎝ ⎛⎭⎪⎫b a 2.(2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2 (1)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E于A ,B 两点,若△AF 1F 2的面积是△BF 1F 2面积的三倍,cos∠AF 2B =35,则椭圆E 的离心率为( )A.12B.23C.32D.22 答案 D解析 设|F 1B |=k ()k >0, 依题意可得|AF 1|=3k ,|AB |=4k , ∴|AF 2|=2a -3k ,|BF 2|=2a -k . ∵cos∠AF 2B =35,在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos∠AF 2B , ∴(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ),化简可得(a +k )(a -3k )=0, 而a +k >0,故a -3k =0,a =3k , ∴|AF 2|=|AF 1|=3k ,|BF 2|=5k , ∴|BF 2|2=|AF 2|2+|AB |2,∴AF 1⊥AF 2,∴△AF 1F 2是等腰直角三角形. ∴c =22a ,椭圆的离心率e =c a =22. (2)已知双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,||F 1F 2=2c .若双曲线M的右支上存在点P ,使a sin∠PF 1F 2=3csin∠PF 2F 1,则双曲线M 的离心率的取值范围为( )A.⎝⎛⎭⎪⎫1,2+73B.⎝⎛⎦⎥⎤1,2+73C .(1,2) D.(]1,2答案 A解析 根据正弦定理可知sin∠PF 1F 2sin∠PF 2F 1=|PF 2||PF 1|,所以|PF 2||PF 1|=a 3c ,即|PF 2|=a 3c|PF 1|,||PF 1||-PF 2=2a ,所以⎝ ⎛⎭⎪⎫1-a 3c ||PF 1=2a ,解得||PF 1=6ac 3c -a ,而||PF 1>a +c ,即6ac3c -a >a +c ,整理得3e 2-4e -1<0,解得2-73<e <2+73. 又因为离心率e >1,所以1<e <2+73,故选A.思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2 (1)(2018·全国Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12 C.13 D.14 答案 D解析 如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°, 可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2, tan∠PAB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14.故选D.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,直线l 过点⎝ ⎛⎭⎪⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M ,N 两点,若|MN |=423c ,则双曲线C 的渐近线方程为( )A .y =±2xB .y =±3xC .y =±2xD .y =±4x答案 B解析 方法一 由题意可设渐近线方程为y =b ax , 则直线l 的斜率k l =-a b,直线l 的方程为y =-a b ⎝ ⎛⎭⎪⎫x -23a ,整理可得ax +by -23a 2=0.焦点(c,0)到直线l 的距离d =⎪⎪⎪⎪⎪⎪ac -23a 2a 2+b2=⎪⎪⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝ ⎛⎭⎪⎫ac -23a 22c 2=423c ,整理可得c 4-9a 2c 2+12a 3c -4a 4=0, 即e 4-9e 2+12e -4=0,分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =c a=2,所以b a =c 2-a 2a 2= ⎝ ⎛⎭⎪⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 方法二 圆心到直线l 的距离为c 2-⎝⎛⎭⎪⎫223c 2=c3, ∴⎪⎪⎪⎪⎪⎪ac -23a 2c=c3,∴c 2-3ac +2a 2=0, ∴c =2a ,b =3a , ∴渐近线方程为y =±3x . 热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标. (2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 (2018·衡水金卷调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,|AB |=12a ,求椭圆的离心率;(2)若直线AB 的斜率为1,|AB |=2a3a 2+b 2,求椭圆的短轴与长轴的比值.解 (1)由题意可知,直线AB 的方程为x =-c , ∴|AB |=2b 2a =12a ,即a 2=4b 2,故e =c a =a 2-b 2a 2=1-b 2a 2=32. (2)设F 1(-c,0),则直线AB 的方程为y =x +c ,联立⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1,消去y ,得(a 2+b 2)x 2+2a 2cx +a 2c 2-a 2b 2=0, Δ=4a 4c 2-4a 2(a 2+b 2)(c 2-b 2)=8a 2b 4. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2,∴|AB |=1+1|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=2·8a 2b4a 2+b2=4ab 2a 2+b 2=2a 3a 2+b 2, ∴a 2=2b 2,∴b 2a 2=12,∴2b 2a =22,即椭圆的短轴与长轴之比为22. 思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 如图,过抛物线M :y =x 2上一点A (点A 不与原点O 重合)作抛物线M 的切线AB 交y 轴于点B ,点C 是抛物线M 上异于点A 的点,设G 为△ABC 的重心(三条中线的交点),直线CG 交y 轴于点D .设点A (x 0,x 20)(x 0≠0).(1)求直线AB 的方程; (2)求|OB ||OD |的值.解 (1)因为y ′=2x ,所以直线AB 的斜率k =y ′=2x 0. 所以直线AB 的方程y -x 20=2x 0(x -x 0), 即y =2x 0x -x 20,即直线AB 的方程为2x 0x -y -x 20=0. (2)由题意得,点B 的纵坐标y B =-x 20,所以AB 的中点坐标为⎝ ⎛⎭⎪⎫x 02,0. 设C (x 1,y 1),G (x 2,y 2), 直线CG 的方程为x =my +12x 0.由⎩⎪⎨⎪⎧x =my +12x 0,y =x 2,联立得m 2y 2+(mx 0-1)y +14x 20=0.Δ=(mx 0-1)2-4×m 2×x 204=1-2mx 0>0,即mx 0<12.因为G 为△ABC 的重心,所以y 1=3y 2. 由根与系数的关系,得y 1+y 2=4y 2=1-mx 0m2,y 1y 2=3y 22=x 204m2.所以(1-mx 0)216m 4=x 212m2, 解得mx 0=-3±23,满足Δ>0.所以点D 的纵坐标y D =-x 02m =x 206±43,故|OB ||OD |=|y B ||y D |=43±6.真题体验1.(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知,a =1,b 2=m ,c =1+m ,故双曲线的离心率e =c a=1+m =3, ∴1+m =3,解得m =2.2.(2017·全国Ⅱ改编)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2解析 设双曲线的一条渐近线方程为y =b ax , 圆的圆心为(2,0),半径为2,由弦长为2,得圆心到渐近线的距离为22-12= 3.由点到直线的距离公式,得|2b |a 2+b 2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca =c 2a 2=1+b 2a2=2. 3.(2017·全国Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式,可得直线MF 的方程为y =3(x -1).联立方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4. ∴△MNF 是边长为4的等边三角形.∴点M 到直线NF 的距离为2 3.4.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,消去x ,得a 2y 2-2pb 2y +a 2b 2=0, ∴y 1+y 2=2pb 2a2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x . 押题预测1.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62 B.52C. 3 D .2 押题依据 圆锥曲线的几何性质是圆锥曲线的灵魂,其中离心率、渐近线是高考命题的热点. 答案 A解析 由F 2(c,0)到渐近线y =bax 的距离为d =bc a 2+b2=b ,即|AF 2→|=b ,则|BF 2→|=3b . 在△AF 2O 中,|OA →|=a , |OF 2→|=c ,tan∠F 2OA =b a ,tan∠AOB =4b a =2×b a 1-⎝ ⎛⎭⎪⎫b a 2,化简可得a 2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝ ⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的弦长、中点等知识应给予充分关注.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+9434a 2=1,解得a 2=4,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y23=1,消去x ,得(4+3t 2)y 2-6ty -9=0,显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t2, 所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627, 化简得18t 4-t 2-17=0, 即(18t 2+17)(t 2-1)=0,解得t 21=1,t 22=-1718(舍去).又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2, 所以r =22,故圆O 的方程为x 2+y 2=12.A 组 专题通关1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.2.(2018·全国Ⅰ)设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →等于( )A .5B .6C .7D .8 答案 D解析 由题意知直线MN 的方程为y =23(x +2),联立直线与抛物线的方程,得⎩⎪⎨⎪⎧y =23(x +2),y 2=4x ,解得⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =4,y =4.不妨设点M 的坐标为(1,2),点N 的坐标为(4,4). 又∵抛物线的焦点为F (1,0),∴FM →=(0,2),FN →=(3,4). ∴FM →·FN →=0×3+2×4=8. 故选D.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B .3 C .2 3 D .4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13 x .设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°. 所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt△ONF 中,|OF |=2,则|ON |= 3.则在Rt△OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3. 故选B.4.(2018·华大新高考联盟质检)设椭圆x 2a 2+y 2b2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为( )A.45B.23C.12D.25 答案 B解析 椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-c,0),F 2(c,0),P 为椭圆上一点,且∠F 1PF 2=π3,|F 1F 2|=2c ,根据正弦定理|F 1F 2|sin∠F 1PF 2=2c sinπ3=2R ,∴R =233c ,∵R =4r ,∴r =36c , 由余弦定理,()2c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos∠F 1PF 2,由|PF 1|+|PF 2|=2a ,∠F 1PF 2=π3,可得|PF 1||PF 2|=43()a 2-c 2,则由三角形面积公式12()|PF 1|+|PF 2|+|F 1F 2|·r =12|PF 1||PF 2|sin∠F 1PF 2,可得()2a +2c ·36c =43()a 2-c 2·32, ∴e =c a =23.5.(2017·全国Ⅱ)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________. 答案 6解析 如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0), |FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF , ∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3, 故|FN |=2|MF |=6.6.(2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________. 答案3-1 2解析 方法一 双曲线N 的渐近线方程为y =±nm x ,则n m=tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b2.如图,设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a2-⎝ ⎛⎭⎪⎫b 2a 22=0,解得b2a2=23-3.∴椭圆M 的离心率e 2满足e 22=1-b 2a2=4-2 3.∴e 2=3-1.方法二 双曲线N 的渐近线方程为y =±n mx , 则n m=tan 60°= 3.又c 1=m 2+n 2=2m ,∴双曲线N 的离心率为c 1m=2. 如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点, 设正六边形的边长为1,则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点,则|EF |+|EC |=2a ,即1+3=2a , ∴a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.7.(2018·衡阳模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,且直线l 与圆x 2-px +y 2-34p 2=0交于C ,D 两点,若|AB |=3|CD |,则直线l 的斜率为________.答案 ±22解析 由题意得F ⎝ ⎛⎭⎪⎫p 2,0,由x 2-px +y 2-34p 2=0,配方得⎝ ⎛⎭⎪⎫x -p 22+y 2=p 2,所以直线l 过圆心⎝ ⎛⎭⎪⎫p2,0,可得|CD |=2p ,若直线l 的斜率不存在,则l :x =p2,|AB |=2p ,|CD |=2p ,不符合题意,∴直线l 的斜率存在.∴可设直线l 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,化为x 2-⎝ ⎛⎭⎪⎫p +2p k 2x +p24=0,所以x 1+x 2=p +2pk2,所以|AB |=x 1+x 2+p =2p +2pk 2,由|AB |=3|CD |,所以2p +2pk2=6p ,可得k 2=12,所以k =±22.8.(2018·百校联盟联考)已知A ,B 是椭圆C 上关于原点对称的两点,若椭圆C 上存在点P ,使得直线PA ,PB 斜率的绝对值之和为1,则椭圆C 的离心率的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫32,1 解析 不妨设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),P (x ,y ),A (x 1,y 1),则B ()-x 1,-y 1,所以x 2a 2+y 2b 2=1,x 21a 2+y 21b 2=1,两式相减得x 2-x 21a 2=-y 2-y 21b 2,所以y 2-y 21x 2-x 21=-b 2a2,所以直线PA ,PB 斜率的绝对值之和为⎪⎪⎪⎪⎪⎪y -y 1x -x 1+⎪⎪⎪⎪⎪⎪y +y 1x +x 1≥2⎪⎪⎪⎪⎪⎪y 2-y 21x 2-x 21=2b a, 由题意得2ba≤1,所以a 2≥4b 2=4a 2-4c 2,即3a 2≤4c 2, 所以e 2≥34,又因为0<e <1,所以32≤e <1. 9.(2018·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1) =4k 2+4k2.由题意知4k 2+4k2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16,解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2018·天津)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的离心率为53,点A 的坐标为(b,0),且|FB |·|AB |=6 2. (1)求椭圆的方程;(2)设直线l :y =kx (k >0)与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若|AQ ||PQ |=524sin∠AOQ (O 为原点),求k 的值.解 (1)设椭圆的焦距为2c ,由已知有 c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b . 由已知可得|FB |=a ,|AB |=2b ,由|FB |·|AB |=62,可得ab =6,从而a =3,b =2. 所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2). 由已知有y 1>y 2>0,故|PQ |sin∠AOQ =y 1-y 2.又因为|AQ |=y 2si n∠OAB ,而∠OAB =π4,所以|AQ |=2y 2. 由|AQ ||PQ |=524sin∠AOQ ,可得5y 1=9y 2. 由方程组⎩⎪⎨⎪⎧y =kx ,x 29+y24=1,消去x ,可得y 1=6k9k 2+4. 由题意求得直线AB 的方程为x +y -2=0,由方程组⎩⎪⎨⎪⎧y =kx ,x +y -2=0,消去x ,可得y 2=2kk +1. 由5y 1=9y 2,可得5(k +1)=39k 2+4,两边平方, 整理得56k 2-50k +11=0,解得k =12或k =1128.所以k 的值为12或1128.B 组 能力提高11.(2018·长沙模拟)2000多年前,古希腊大数学家阿波罗尼奥斯(Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为PH ,AB 为地面直径,顶角为2θ,那么不过顶点P 的平面与PH 夹角π2>a >θ时,截口曲线为椭圆;与PH 夹角a =θ时,截口曲线为抛物线;与PH 夹角θ>a >0时,截口曲线为双曲线.如图,底面内的直线AM ⊥AB ,过AM 的平面截圆锥得到的曲线为椭圆,其中与PB 的交点为C ,可知AC 为长轴.那么当C 在线段PB 上运动时,截口曲线的短轴端点的轨迹为( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分答案 D解析 如图,因为对于给定的椭圆来说,短轴的端点Q 到焦点F 的距离等于长半轴a ,但短轴的端点Q 到直线AM 的距离也是a ,即说明短轴的端点Q 到定点F 的距离等于到定直线AM 的距离,且点F 不在定直线AM 上,所以由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,故选D.12.(2018·河南省名校联考)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,D 为虚轴的一个端点,且△ABD 为钝角三角形,则此双曲线离心率的取值范围为______________________. 答案 (1,2)∪(2+2,+∞)解析 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1(-c,0),令x =-c ,可得y =±bc 2a 2-1=±b 2a, 设A ⎝ ⎛⎭⎪⎫-c ,b 2a ,B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,D (0,b ),可得AD →=⎝ ⎛⎭⎪⎫c ,b -b 2a ,AB →=⎝ ⎛⎭⎪⎫0,-2b 2a ,DB →=⎝ ⎛⎭⎪⎫-c ,-b -b 2a , 若∠DAB 为钝角,则AD →·AB →<0, 即0-2b 2a·⎝ ⎛⎭⎪⎫b -b 2a <0,化为a >b ,即有a 2>b 2=c 2-a 2, 可得c 2<2a 2,即e =c a<2, 又e >1,可得1<e <2; 若∠ADB 为钝角,则DA →·DB →<0,即c 2-⎝ ⎛⎭⎪⎫b 2a +b ⎝ ⎛⎭⎪⎫b 2a -b <0, 化为c 4-4a 2c 2+2a 4>0, 由e =c a,可得e 4-4e 2+2>0, 又e >1,可得e >2+2; 又AB →·DB →=2b 2a ⎝ ⎛⎭⎪⎫b +b 2a >0,∴∠DBA 不可能为钝角.综上可得,e 的取值范围为(1,2)∪(2+2,+∞).13.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点,直线PQ 过原点O 与MN 平行,且与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 方法一 特殊化,设MN ⊥x 轴,则|MN |=2b 2a =22=2,|PQ |2=4,|PQ |2|MN |=42=2 2.方法二 由题意知F (-1,0),当直线MN 的斜率不存在时,|MN |=2b2a=2,|PQ |=2b =2,则|PQ |2|MN |=22; 当直线MN 的斜率存在时,设直线MN 的斜率为k , 则MN 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1,整理得(2k 2+1)x 2+4k 2x +2k 2-2=0, Δ=8k 2+8>0. 由根与系数的关系,得x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1,则|MN |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 2+1)2k 2+1. 直线PQ 的方程为y =kx ,P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧y =kx ,x 22+y 2=1,解得x 2=21+2k 2,y 2=2k 21+2k2,则|OP |2=x 23+y 23=2(1+k 2)1+2k2,又|PQ |=2|OP |,所以|PQ |2=4|OP |2=8(1+k 2)1+2k2,所以|PQ |2|MN |=2 2.综上,|PQ |2|MN |=2 2.14.(2017·天津)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EFA 的面积为b 22.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . ①求直线FP 的斜率;②求椭圆的方程.解 (1)设椭圆的离心率为e . 由已知可得12(c +a )c =b22.又由b 2=a 2-c 2,可得2c 2+ac -a 2=0, 即2e 2+e -1=0,解得e =-1或e =12.又因为0<e <1,所以e =12.所以椭圆的离心率为12.(2)①依题意,设直线FP 的方程为x =my -c (m >0), 则直线FP 的斜率为1m.由(1)知a =2c ,可得直线AE 的方程为x 2c +yc =1,即x +2y -2c =0,与直线FP 的方程联立, 可得x =(2m -2)c m +2,y =3cm +2,即点Q 的坐标为⎝⎛⎭⎪⎫(2m -2)c m +2,3c m +2.由已知|FQ |=3c2,有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝ ⎛⎭⎪⎫3c 22,整理得3m 2-4m =0,所以m =43(m =0舍去),即直线FP 的斜率为34.②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c2=1.由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c .因此可得点P ⎝ ⎛⎭⎪⎫c ,3c 2,进而可得|FP |=(c +c )2+⎝ ⎛⎭⎪⎫3c 22=5c 2,所以|PQ |=|FP |-|FQ |=5c 2-3c2=c .由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan∠QFN =3c 2×34=9c 8,所以△FQN 的面积为12|FQ ||QN |=27c232.同理△FPM 的面积等于75c232.由四边形PQNM 的面积为3c ,得75c 232-27c232=3c ,整理得c 2=2c .又由c >0,得c =2. 所以椭圆的方程为x 216+y 212=1.。

2019高考数学高分突破二轮复习练习:专题五规范答题示范Word版含解析

2019高考数学高分突破二轮复习练习:专题五规范答题示范Word版含解析
规范答题示范 —— 解析几何解答题
【典例 】 (12 分)(2017 ·全国 Ⅱ卷 )设 O 为坐标原点,动点
M 在椭圆
C:
x2 2+
y2
= 1 上,过 M 作 x 轴的垂线,垂足为 N,点 P 满足 N→P= 2N→M.
(1)求点 P 的轨迹方程;
(2)设点 Q 在直线 x=- 3 上,且 O→P·P→Q=1.证明:过点 P 且垂直于 OQ 的直线 l
所以 O→Q·P→F=0,即 O→Q⊥ P→F,
……………………………………………………………………………… 11 分 又过点 P 存在唯一直线垂直于 OQ,所以过点 P 且垂直于 OQ 的直线 l 过 C 的左
焦点 F. ………………………………………………………………………………
12 分
[ 高考状元满分心得 ]
第五步:由 O→Q·P→F=0,证明 OQ⊥PF;
第六步:利用过定点作垂线的唯一性得出结论 . 【巩固提升】 (2018 ·郑州质检 )已知椭圆 C: x42+y2=1,点 O 是坐标原点,点 P
是椭圆 C 上任意一点,且点 M 满足 O→M=λO→P(λ>1,λ是常数 ). 当点 P 在椭圆 C
上运动时,点 M 形成的曲线为 Cλ. (1)求曲线 Cλ的轨迹方程; (2)直线 l 是椭圆 C 在点 P 处的切线, 与曲线 Cλ的交点为 A,B 两点,探究△ OAB
过 C 的左焦点 F.
[ 信息提取 ]
看到求点 P 的轨迹方程,想到先设出点的坐标,然后利用已知条件,采用代 入法求轨迹方程;
看到过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F,想到证明 O→Q⊥P→F.
[ 规范解答 ]
(1)解 设 P(x,y), M(x0,y0),则 N(x0,0),N→P= (x-x0,y), N→M=(0,y0),

(全国通用版)2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综合问题学案 文

(全国通用版)2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综合问题学案 文

第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2018·百校联盟联考)已知N 为圆C 1:(x +2)2+y 2=24上一动点,圆心C 1关于y 轴的对称点为C 2,点M ,P 分别是线段C 1N ,C 2N 上的点,且MP →·C 2N —→=0,C 2N —→=2C 2P —→.(1)求点M 的轨迹方程;(2)直线l 与曲线Γ交于A ,B 两点,AB 的中点在直线y =12上,求△OAB (O 为坐标原点)面积的取值范围.解 连接MC 2,因为C 2N —→=2C 2P —→,所以P 为C 2N 的中点,因为MP →·C 2N —→=0, 所以MP →⊥C 2N —→,所以点M 在C 2N 的垂直平分线上, 所以|MN |=|MC 2|,因为|MN |+|MC 1|=|MC 2|+|MC 1|=26>4, 所以点M 在以C 1,C 2为焦点的椭圆上, 因为a =6,c =2,所以b 2=2, 所以点M 的轨迹方程为x 26+y 22=1.(2)由题意知直线l 的斜率存在, 设A (x 1,y 1),B (x 2,y 2),l :y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 26+y22=1,得()3k 2+1x 2+6kmx +3m 2-6=0,x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-63k 2+1,Δ=()6km 2-4()3k 2+1()3m 2-6=12()6k 2+2-m 2>0,设AB 的中点为C ()x 0,y 0,则x 0=-3km 3k 2+1,y 0=kx 0+m =-3k 2m 3k 2+1+m =m3k 2+1,由题意知m 3k 2+1=12,所以2m =3k 2+1,由Δ>0,得0<m <4,因为|AB |=1+k 2×12()6k 2+2-m 23k 2+1=1+k 2×23×6k 2+2-m23k 2+1, 原点O 到直线AB 的距离d =|m |1+k2,所以S △OAB =12×|m |1+k2×1+k 2×23×6k 2+2-m 23k 2+1 =m ×3×4m -m 22m =32×4m -m 2()0<m <4,即0<S △OAB ≤3,所以当m =2时,S △OAB 取最大值 3. 故△OAB 面积的取值范围为(]0,3. 思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝ ⎛⎭⎪⎫-74,14共线,求k .解 (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,Δ=36m 2-16(3m 2-3)=-12m 2+48>0, 即-2<m <2.所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |=(x 2-x 1)2+(y 2-y 1)2 =2(x 2-x 1)2=2[(x 1+x 2)2-4x 1x 2] =12-3m 22. 所以当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2(x +2),x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21(x 1+2)2+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2).因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1. 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·合肥模拟)记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆E :x 216+y 212=1,以椭圆E 的焦点为顶点作相似椭圆M.(1)求椭圆M 的方程;(2)设直线l 与椭圆E 交于A ,B 两点,且与椭圆M 仅有一个公共点,试判断△ABO 的面积是否为定值(O 为坐标原点)?若是,求出该定值;若不是,请说明理由.解 (1)由条件知,椭圆M 的离心率e =12,且长轴的顶点坐标为(-2,0),(2,0),∴椭圆M 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设直线l :y =kx +b .由⎩⎪⎨⎪⎧y =kx +b ,x 24+y23=1,得()3+4k 2x 2+8kbx +4b 2-12=0.令Δ=64k 2b 2-4(3+4k 2)(4b 2-12)=0,得b 2=3+4k 2.由⎩⎪⎨⎪⎧y =kx +b ,x 216+y 212=1,化简得()3+4k 2x 2+8kbx +4b 2-48=0.Δ>0显然成立.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=-8kb 3+4k 2=-8k b ,x 1·x 2=4b 2-483+4k 2=4b 2-48b2.∴|AB |=1+k 2|x 1-x 2|=121+k 2|b |,而原点O 到直线l 的距离d =|b |1+k2,∴S △ABO =12|AB |·d =6.当直线l 的斜率不存在时,l :x =2或x =-2, 则|AB |=6,原点O 到直线l 的距离d =2, ∴S △ABO =6.综上所述,△ABO 的面积为定值6.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.(2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.跟踪演练2 (2018·凯里市第一中学模拟)已知抛物线C :y 2=2px (p >0)的焦点与曲线Γ:12x 2-4y 2=3的一个焦点相同,O 为坐标原点,点M 为抛物线C 上任意一点,过点M 作x 轴的平行线交抛物线的准线于点P ,直线OP 交抛物线于点N . (1)求抛物线C 的方程;(2)求证:直线MN 过定点G ,并求出此定点的坐标.解 (1)由曲线Γ:12x 2-4y 2=3, 化为标准方程可得x 214-y 234=1,所以曲线Γ:x 214-y 234=1是焦点在x 轴上的双曲线,其中a 2=14,b 2=34,故c 2=a 2+b 2=1,Γ的焦点坐标分别为F 1(-1,0),F 2(1,0),因为抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0(p >0),由题意知p2=1,所以p =2,即抛物线的方程为y 2=4x .(2)由(1)知,抛物线y 2=4x 的准线方程为x =-1, 设P ()-1,m ,显然m ≠0.故M ⎝ ⎛⎭⎪⎫m 24,m ,从而直线OP 的方程为y =-mx , 联立直线OP 与抛物线方程得⎩⎪⎨⎪⎧y 2=4x ,y =-mx ,解得N ⎝ ⎛⎭⎪⎫4m 2,-4m .①当4m 2=m 24,即m =±2时,直线MN 的方程为x =1;②当4m 2≠m 24,即m ≠±2时,直线MN 的方程为y -m =4m m 2-4⎝⎛⎭⎪⎫x -m 24,整理得MN 的方程为y =4mm 2-4(x -1), 此时直线恒过定点G (1,0),因为(1,0)也在直线MN 的方程x =1上, 故直线MN 恒过定点G (1,0). 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.2.反证法与验证法也是求解存在性问题常用的方法.例3 已知圆C 的圆心为原点,其半径与椭圆D :x 24+y 23=1的左焦点和上顶点的连线线段长度相等.(1)求圆C 的标准方程;(2)过椭圆右焦点的动直线l 2(其斜率不为0)交圆C 于A ,B 两点,试探究在x 轴正半轴上是否存在定点E ,使得直线AE 与BE 的斜率之和为0?若存在,求出点E 的坐标,若不存在,请说明理由. 解 (1)由题意知,椭圆D :x 24+y 23=1的左焦点的坐标为(-1,0),上顶点的坐标为()0,3,故圆的半径r =()-1-02+()0-32=2,所以圆C 的标准方程为x 2+y 2=4. (2)假设存在符合条件的点E . 设E ()t ,0,A (x 1,y 1),B (x 2,y 2), 当直线l 2的斜率存在时, 设直线l 2的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得()k 2+1x 2-2k 2x +k 2-4=0,Δ>0显然成立. 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.由k AE +k BE =0,得k AE =-k BE , 所以y 1x 1-t +y 2x 2-t=0,即k ()x 1-1x 1-t +k ()x 2-1x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0, 即2()k 2-4k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4.即E (4,0).当直线l 2的斜率不存在时,直线l 2的方程为x =1,与圆C 的交点坐标分别为(1,3),()1,-3,由E (4,0)知满足k AE +k BE =0.所以当点E 的坐标为(4,0)时,k AE +k BE =0. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2018·山东、湖北部分重点中学模拟)已知长轴长为4的椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,点F 是椭圆的右焦点.(1)求椭圆方程;(2)在x 轴上是否存在定点D ,使得过D 的直线l 交椭圆于A ,B 两点.设点E 为点B 关于x 轴的对称点,且A ,F ,E 三点共线?若存在,求D 点坐标;若不存在,说明理由.解 (1)∵ 2a =4,∴ a =2,将点P ⎝ ⎛⎭⎪⎫1,32代入x 2a 2+y 2b 2=1,得b 2=3.∴椭圆方程为x 24+y 23=1. (2)存在定点D 满足条件.设D (t,0),直线l 方程为x =my +t (m ≠0),联立⎩⎪⎨⎪⎧x =my +t ,x 24+y23=1,消去x ,得(3m 2+4)y 2+6mt ·y +3t 2-12=0, 设A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2), ⎩⎪⎨⎪⎧y 1+y 2=-6mt 3m 2+4,y 1y 2=3t 2-123m 2+4且Δ>0.由A ,F ,E 三点共线,可得(x 2-1)y 1+(x 1-1)y 2=0, 即2my 1y 2+(t -1)(y 1+y 2)=0, ∴ 2m ·3t 2-123m 2+4+(t -1)·-6mt 3m 2+4=0,解得t =4, 此时由Δ>0得m 2>4.∴存在定点D (4,0)满足条件,且m 满足m 2>4.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________. 答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4 =4(1+k 2)k2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l 的斜率.解 (1)由题意知,e =c a =22,2c =2,所以c =1, 所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =k 1x -32,消去y ,得(4k 21+2)x 2-43k 1x -1=0. 由题意知,Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=2·1+k 21·1+8k 211+2k 21. 由题意可知,圆M 的半径r 为 r =23|AB |=223·1+k 21 1+8k 212k 21+1. 由题设知k 1k 2=24,所以k 2=24k 1, 因此直线OC 的方程为y =24k 1x .联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =24k 1x ,得x 2=8k 211+4k 21,y 2=11+4k 21,因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r.而|OC |r =1+8k 211+4k 21223·1+k 21 1+8k 211+2k 21=324·1+2k 211+4k 21 1+k 21, 令t =1+2k 21,则t >1,1t∈(0,1),因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝ ⎛⎭⎪⎫1t -122+94≥1,当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合,所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意, ∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2, 则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62. 故存在斜率为k =±62的直线l ,使得|PN ||MQ |=2.A 组 专题通关1.(2018·安徽省“皖南八校”联考)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,椭圆C 上一点M 到左、右两个焦点F 1,F 2的距离之和是4. (1)求椭圆的方程;(2)已知过F 2的直线与椭圆C 交于A ,B 两点,且两点与左、右顶点不重合,若F 1M —→=F 1A —→+F 1B —→,求四边形AMBF 1面积的最大值.解 (1)依题意知,2a =4,a =2, 因为e =12,所以c =1,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),AB :x =my +1,则由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1,可得3(my +1)2+4y 2=12,即(3m 2+4)y 2+6my -9=0,Δ=36m 2+36(3m 2+4)=144(m 2+1)>0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 又因为F 1M —→=F 1A —→+F 1B —→, 所以四边形AMBF 1是平行四边形, 设平行四边形AMBF 1的面积为S ,则S =12ABF S =2×12×|F 1F 2|×|y 1-y 2|=24×m 2+13m 2+4.设t =m 2+1,则m 2=t 2-1(t ≥1),所以S =24×t 3t 2+1=24×13t +1t,因为t ≥1,所以3t +1t≥4(当t =1时取等号),所以S ∈(0,6],所以四边形AMBF 1面积的最大值为6.2.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为2 2. (1)求椭圆C 的方程;(2)已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.解 (1)由已知得⎩⎪⎨⎪⎧c a =13,12×2c ×b =22,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1, ∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E ()x 0,y 0,点G ()m ,0,使得|GM |=|GN |, 则GE ⊥MN .由⎩⎪⎨⎪⎧y =kx +2,x 29+y28=1,得()8+9k 2x 2+36kx -36=0,由Δ>0,得k ∈R 且k ≠0. ∴x 1+x 2=-36k 9k 2+8,∴x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8. ∵GE ⊥MN ,∴k GE =-1k,即169k 2+8-0-18k 9k 2+8-m =-1k, ∴m =-2k 9k 2+8=-29k +8k.当k >0时,9k +8k≥29×8=12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =223时,取等号,∴-212≤m <0;当k <0时,9k +8k≤-12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =-223时,取等号,∴0<m ≤212, ∴点G 的横坐标的取值范围为⎣⎢⎡⎭⎪⎫-212,0∪⎝ ⎛⎦⎥⎤0,212. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 证明 (1)设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.① 由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=(x 1-1)2+y 21 =(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12. 同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|.线l 与椭圆交于A ,B 两点,且OA →·OB →=0(O 为坐标原点). (1)求椭圆C 的方程;(2)试判断1|OA |2+1|OB |2是否为定值?若是,求出这个值;若不是,请说明理由.解 (1)∵椭圆C 的离心率e =c a =32, 又c 2=a 2-b 2,∴34a 2=a 2-b 2,∴a 2=4b 2. 又点P ⎝ ⎛⎭⎪⎫1,-32在椭圆上, ∴1a 2+34b 2=1, 即14b 2+34b2=1,∴b 2=1,则a 2=4, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线OA 的斜率存在且不为0时, 设其方程为y =kx ,∵A ,B 分别为椭圆上的两点,且OA →·OB →=0, 即OA ⊥OB ,∴直线OB 的方程为y =-1kx .设A (x 1,y 1),B (x 2,y 2), 把y =kx 代入椭圆C :x 24+y 2=1,得x 21=41+4k 2,∴y 21=4k 21+4k2,同理x 22=4k 24+k 2,∴y 22=44+k2,∴1|OA |2+1|OB |2=1x 21+y 21+1x 22+y 22=141+4k 2+4k 21+4k 2+14k 24+k 2+44+k2=54. 当直线OA ,OB 中的一条直线的斜率不存在时, 则另一条直线的斜率为0,此时1|OA |2+1|OB |2=1a 2+1b 2=14+1=54.综上所述,1|OA |2+1|OB |2为定值54. B 组 能力提高5.已知点M ()x 0,y 0在圆O :x 2+y 2=4上运动,且存在一定点N ()6,0,点P (x ,y )为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过A (0,1)且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点E ,F ,是否存在实数k ,使得OE →·OF →=12?若存在,求出k 的值,若不存在,说明理由. 解 (1)设P (x ,y ),由中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+62,y =y2,即x 0=2x -6,y 0=2y .∵点M ()x 0,y 0在圆x 2+y 2=4上运动,∴x 20+y 20=4,即()2x -62+()2y 2=4,整理,得()x -32+y 2=1.∴点P 的轨迹C 的方程为()x -32+y 2=1.(2)设E (x 1,y 1),F (x 2,y 2),直线l 的方程是y =kx +1, 代入圆()x -32+y 2=1.可得()1+k 2x 2-2()3-k x +9=0,由Δ=-32k 2-24k >0,得-34<k <0,且x 1+x 2=2()3-k 1+k 2,x 1x 2=91+k 2,∴y 1y 2=()kx 1+1()kx 2+1 =k 2x 1x 2+k (x 1+x 2)+1=9k 21+k 2+2k ()3-k 1+k 2+1=8k 2+6k +11+k2. ∴OE →·OF →=x 1x 2+y 1y 2=8k 2+6k +101+k 2=12. 解得k =12或1,都不满足Δ>0.∴不存在实数k ,使得OE →·OF →=12.6.(2018·河北省武邑中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A ⎝ ⎛⎭⎪⎫12,354,且两个焦点F 1,F 2的坐标依次为(-1,0)和(1,0).(1)求椭圆C 的标准方程;(2)设E ,F 是椭圆C 上的两个动点,O 为坐标原点,直线OE 的斜率为k 1,直线OF 的斜率为k 2,若k 1·k 2=-1,证明:直线EF 与以原点为圆心的定圆相切,并写出此定圆的标准方程. 解 (1)由椭圆定义得2a =⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫354-02+⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫354-02=4,即a =2,又c =1,所以b 2=3,得椭圆C 的标准方程为x 24+y 23=1.(2)当直线EF 的斜率存在时,设直线EF 的方程为y =kx +b ,E (x 1,y 1),F (x 2,y 2),直线EF 的方程与椭圆方程联立,消去y 得()3+4k 2x 2+8kbx +4b 2-12=0,当判别式Δ=3+4k 2-b 2>0时, 得x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2.由已知k 1·k 2=-1,即y 1y 2x 1x 2=-1, 因为点E ,F 在直线y =kx +b 上, 所以()kx 1+b ()kx 2+b =-x 1x 2, 整理得()k 2+1x 1x 2+bk (x 1+x 2)+b 2=0,即()k 2+1×4b 2-123+4k 2+bk ⎝ ⎛⎭⎪⎫-8kb 3+4k 2+b 2=0,化简得b 2=12k 2+127.原点O 到直线EF 的距离d =|b |1+k2,d 2=b 21+k 2=12k 2+127k 2+7=127, 所以直线与一个定圆相切,定圆的标准方程为x 2+y 2=127.当直线EF 的斜率不存在时,此时,直线EF 的方程为x =±847,满足与定圆x 2+y 2=127相切. 故直线EF 与以原点为圆心的定圆相切,定圆的标准方程为x 2+y 2=127.。

(全国通用版)2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综合问题学案 文

(全国通用版)2019高考数学二轮复习 专题五 解析几何 第3讲 圆锥曲线的综合问题学案 文

第3讲 圆锥曲线的综合问题[考情考向分析] 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大.热点一 范围、最值问题圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解.例1 (2018·百校联盟联考)已知N 为圆C 1:(x +2)2+y 2=24上一动点,圆心C 1关于y 轴的对称点为C 2,点M ,P 分别是线段C 1N ,C 2N 上的点,且MP →·C 2N —→=0,C 2N —→=2C 2P —→. (1)求点M 的轨迹方程;(2)直线l 与曲线Γ交于A ,B 两点,AB 的中点在直线y =12上,求△OAB (O 为坐标原点)面积的取值范围.解 连接MC 2,因为C 2N —→=2C 2P —→,所以P 为C 2N 的中点,因为MP →·C 2N —→=0, 所以MP →⊥C 2N —→,所以点M 在C 2N 的垂直平分线上, 所以|MN |=|MC 2|,因为|MN |+|MC 1|=|MC 2|+|MC 1|=26>4, 所以点M 在以C 1,C 2为焦点的椭圆上, 因为a =6,c =2,所以b 2=2, 所以点M 的轨迹方程为x 26+y 22=1.(2)由题意知直线l 的斜率存在,设A (x 1,y 1),B (x 2,y 2),l :y =kx +m ,由⎩⎪⎨⎪⎧y =kx +m ,x 26+y22=1,得()3k 2+1x 2+6kmx +3m 2-6=0,x 1+x 2=-6km 3k 2+1,x 1x 2=3m 2-63k 2+1,Δ=()6km 2-4()3k 2+1()3m 2-6=12()6k 2+2-m 2>0,设AB 的中点为C ()x 0,y 0,则x 0=-3km 3k 2+1,y 0=kx 0+m =-3k 2m 3k 2+1+m =m3k 2+1,由题意知m 3k 2+1=12,所以2m =3k 2+1,由Δ>0,得0<m <4,因为|AB |=1+k 2×12()6k 2+2-m 23k 2+1=1+k 2×23×6k 2+2-m23k 2+1, 原点O 到直线AB 的距离d =|m |1+k2,所以S △OAB =12×|m |1+k2×1+k 2×23×6k 2+2-m 23k 2+1 =m ×3×4m -m 22m =32×4m -m 2()0<m <4,即0<S △OAB ≤3,所以当m =2时,S △OAB 取最大值 3. 故△OAB 面积的取值范围为(]0,3. 思维升华 解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解. (2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解. (3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.跟踪演练1 (2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝ ⎛⎭⎪⎫-74,14共线,求k . 解 (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1.(2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,Δ=36m 2-16(3m 2-3)=-12m 2+48>0, 即-2<m <2.所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |=(x 2-x 1)2+(y 2-y 1)2 =2(x 2-x 1)2=2[(x 1+x 2)2-4x 1x 2] =12-3m 22. 所以当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2(x +2),x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21(x 1+2)2+3y 21=4x 21-124x 1+7.所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2).因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1. 热点二 定点、定值问题1.由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).2.解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等与题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值.例2 (2018·合肥模拟)记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆E :x 216+y 212=1,以椭圆E 的焦点为顶点作相似椭圆M.(1)求椭圆M 的方程;(2)设直线l 与椭圆E 交于A ,B 两点,且与椭圆M 仅有一个公共点,试判断△ABO 的面积是否为定值(O 为坐标原点)?若是,求出该定值;若不是,请说明理由.解 (1)由条件知,椭圆M 的离心率e =12,且长轴的顶点坐标为(-2,0),(2,0),∴椭圆M 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设直线l :y =kx +b .由⎩⎪⎨⎪⎧y =kx +b ,x 24+y23=1,得()3+4k 2x 2+8kbx +4b 2-12=0.令Δ=64k 2b 2-4(3+4k 2)(4b 2-12)=0,得b 2=3+4k 2. 由⎩⎪⎨⎪⎧y =kx +b ,x 216+y 212=1,化简得()3+4k 2x 2+8kbx +4b 2-48=0.Δ>0显然成立.设A (x 1,y 1),B (x 2,y 2), 则⎩⎪⎨⎪⎧x 1+x 2=-8kb 3+4k 2=-8k b ,x 1·x 2=4b 2-483+4k 2=4b 2-48b2.∴|AB |=1+k 2|x 1-x 2|=121+k 2|b |,而原点O 到直线l 的距离d =|b |1+k2,∴S △ABO =12|AB |·d =6.当直线l 的斜率不存在时,l :x =2或x =-2, 则|AB |=6,原点O 到直线l 的距离d =2, ∴S △ABO =6.综上所述,△ABO 的面积为定值6.思维升华 (1)动直线过定点问题的两大类型及解法①动直线l 过定点问题,解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m,0).②动曲线C 过定点问题,解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点. (2)求解定值问题的两大途径①由特例得出一个值(此值一般就是定值)→证明定值:将问题转化为证明待证式与参数(某些变量)无关②先将式子用动点坐标或动线中的参数表示,再利用其满足的约束条件使其绝对值相等的正负项抵消或分子、分母约分得定值.跟踪演练2 (2018·凯里市第一中学模拟)已知抛物线C :y 2=2px (p >0)的焦点与曲线Γ:12x 2-4y 2=3的一个焦点相同,O 为坐标原点,点M 为抛物线C 上任意一点,过点M 作x 轴的平行线交抛物线的准线于点P ,直线OP 交抛物线于点N . (1)求抛物线C 的方程;(2)求证:直线MN 过定点G ,并求出此定点的坐标. 解 (1)由曲线Γ:12x 2-4y 2=3, 化为标准方程可得x 214-y 234=1,所以曲线Γ:x 214-y 234=1是焦点在x 轴上的双曲线,其中a 2=14,b 2=34,故c 2=a 2+b 2=1,Γ的焦点坐标分别为F 1(-1,0),F 2(1,0),因为抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0(p >0),由题意知p2=1,所以p =2,即抛物线的方程为y 2=4x .(2)由(1)知,抛物线y 2=4x 的准线方程为x =-1, 设P ()-1,m ,显然m ≠0.故M ⎝ ⎛⎭⎪⎫m 24,m ,从而直线OP 的方程为y =-mx , 联立直线OP 与抛物线方程得⎩⎪⎨⎪⎧y 2=4x ,y =-mx ,解得N ⎝ ⎛⎭⎪⎫4m 2,-4m .①当4m 2=m 24,即m =±2时,直线MN 的方程为x =1;②当4m 2≠m 24,即m ≠±2时,直线MN 的方程为y -m =4m m 2-4⎝⎛⎭⎪⎫x -m 24,整理得MN 的方程为y =4mm 2-4(x -1), 此时直线恒过定点G (1,0),因为(1,0)也在直线MN 的方程x =1上, 故直线MN 恒过定点G (1,0). 热点三 探索性问题1.解析几何中的探索性问题,从类型上看,主要是存在类型的相关题型,解决这类问题通常采用“肯定顺推法”,将不确定性问题明确化.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在. 2.反证法与验证法也是求解存在性问题常用的方法.例3 已知圆C 的圆心为原点,其半径与椭圆D :x 24+y 23=1的左焦点和上顶点的连线线段长度相等.(1)求圆C 的标准方程;(2)过椭圆右焦点的动直线l 2(其斜率不为0)交圆C 于A ,B 两点,试探究在x 轴正半轴上是否存在定点E ,使得直线AE 与BE 的斜率之和为0?若存在,求出点E 的坐标,若不存在,请说明理由.解 (1)由题意知,椭圆D :x 24+y 23=1的左焦点的坐标为(-1,0),上顶点的坐标为()0,3,故圆的半径r =()-1-02+()0-32=2,所以圆C 的标准方程为x 2+y 2=4. (2)假设存在符合条件的点E . 设E ()t ,0,A (x 1,y 1),B (x 2,y 2), 当直线l 2的斜率存在时, 设直线l 2的方程为y =k (x -1).由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得()k 2+1x 2-2k 2x +k 2-4=0,Δ>0显然成立. 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.由k AE +k BE =0,得k AE =-k BE , 所以y 1x 1-t +y 2x 2-t=0,即k ()x 1-1x 1-t +k ()x 2-1x 2-t=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,即2()k 2-4k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4.即E (4,0).当直线l 2的斜率不存在时,直线l 2的方程为x =1,与圆C 的交点坐标分别为(1,3),()1,-3,由E (4,0)知满足kAE+k BE =0.所以当点E 的坐标为(4,0)时,k AE +k BE =0. 思维升华 解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.跟踪演练3 (2018·山东、湖北部分重点中学模拟)已知长轴长为4的椭圆x 2a 2+y 2b2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫1,32,点F 是椭圆的右焦点. (1)求椭圆方程;(2)在x 轴上是否存在定点D ,使得过D 的直线l 交椭圆于A ,B 两点.设点E 为点B 关于x 轴的对称点,且A ,F ,E 三点共线?若存在,求D 点坐标;若不存在,说明理由. 解 (1)∵ 2a =4,∴ a =2,将点P ⎝ ⎛⎭⎪⎫1,32代入x 2a 2+y 2b 2=1,得b 2=3.∴椭圆方程为x 24+y 23=1. (2)存在定点D 满足条件.设D (t,0),直线l 方程为x =my +t (m ≠0),联立⎩⎪⎨⎪⎧x =my +t ,x 24+y23=1,消去x ,得(3m 2+4)y 2+6mt ·y +3t 2-12=0, 设A (x 1,y 1),B (x 2,y 2),则E (x 2,-y 2), ⎩⎪⎨⎪⎧y 1+y 2=-6mt 3m 2+4,y 1y 2=3t 2-123m 2+4且Δ>0.由A ,F ,E 三点共线,可得(x 2-1)y 1+(x 1-1)y 2=0, 即2my 1y 2+(t -1)(y 1+y 2)=0, ∴ 2m ·3t 2-123m 2+4+(t -1)·-6mt3m 2+4=0,解得t =4, 此时由Δ>0得m 2>4.∴存在定点D (4,0)满足条件,且m 满足m 2>4.真题体验1.(2017·全国Ⅰ改编)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.答案 16解析 因为F 为y 2=4x 的焦点,所以F (1,0).由题意知,直线l 1,l 2的斜率均存在且不为0,设l 1的斜率为k ,则l 2的斜率为-1k,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k(x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1,所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫2k 2+4k 22-4 =4(1+k 2)k2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k2+4(1+k 2) =4⎝ ⎛⎭⎪⎫1k 2+1+1+k 2=8+4⎝⎛⎭⎪⎫k 2+1k2≥8+4×2=16,当且仅当k 2=1k2,即k =±1时,取得等号.2.(2017·山东)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,焦距为2.(1)求椭圆E 的方程; (2)如图,动直线l :y =k 1x -32交椭圆E 于A ,B 两点,C 是椭圆E 上一点,直线OC 的斜率为k 2,且k 1k 2=24.M 是线段OC 延长线上一点,且|MC |∶|AB |=2∶3,⊙M 的半径为|MC |,OS ,OT 是⊙M 的两条切线,切点分别为S ,T .求∠SOT 的最大值,并求取得最大值时直线l的斜率.解 (1)由题意知,e =c a =22,2c =2,所以c =1, 所以a =2,b =1,所以椭圆E 的方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =k 1x -32,消去y ,得(4k 21+2)x 2-43k 1x -1=0. 由题意知,Δ>0,且x 1+x 2=23k 12k 21+1,x 1x 2=-12(2k 21+1), 所以|AB |=1+k 21|x 1-x 2|=2·1+k 21·1+8k 211+2k 21. 由题意可知,圆M 的半径r 为 r =23|AB |=223·1+k 21 1+8k 212k 21+1. 由题设知k 1k 2=24,所以k 2=24k 1,因此直线OC 的方程为y =24k 1x .联立方程⎩⎪⎨⎪⎧x 22+y 2=1,y =24k 1x ,得x 2=8k 211+4k 21,y 2=11+4k 21,因此|OC |=x 2+y 2=1+8k 211+4k 21. 由题意可知,sin ∠SOT 2=r r +|OC |=11+|OC |r.而|OC |r =1+8k 211+4k 21223·1+k 21 1+8k 211+2k 21=324·1+2k 211+4k 21 1+k 21, 令t =1+2k 21,则t >1,1t∈(0,1),因此|OC |r =32·t 2t 2+t -1=32·12+1t -1t 2=32·1-⎝ ⎛⎭⎪⎫1t -122+94≥1,当且仅当1t =12,即t =2时等号成立,此时k 1=±22,所以sin ∠SOT 2≤12,因此∠SOT 2≤π6,所以∠SOT 的最大值为π3.综上所述,∠SOT 的最大值为π3,取得最大值时直线l 的斜率为k 1=±22.押题预测已知椭圆C 1:x 2a 2+y 23=1(a >0)与抛物线C 2:y 2=2ax 相交于A ,B 两点,且两曲线的焦点F 重合.(1)求C 1,C 2的方程;(2)若过焦点F 的直线l 与椭圆分别交于M ,Q 两点,与抛物线分别交于P ,N 两点,是否存在斜率为k (k ≠0)的直线l ,使得|PN ||MQ |=2?若存在,求出k 的值;若不存在,请说明理由.押题依据 本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色. 解 (1)因为C 1,C 2的焦点重合, 所以a 2-3=a2,所以a 2=4. 又a >0,所以a =2.于是椭圆C 1的方程为x 24+y 23=1,抛物线C 2的方程为y 2=4x . (2)假设存在直线l 使得|PN ||MQ |=2,当l ⊥x 轴时,|MQ |=3,|PN |=4,不符合题意, ∴直线l 的斜率存在,∴可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),M (x 3,y 3),N (x 4,y 4).由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),可得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 4=2k 2+4k2,x 1x 4=1,且Δ=16k 2+16>0,所以|PN |=1+k 2·(x 1+x 4)2-4x 1x 4=4(1+k 2)k2. 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1),可得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 2+x 3=8k 23+4k 2,x 2x 3=4k 2-123+4k 2,且Δ=144k 2+144>0,所以|MQ |=1+k 2·(x 2+x 3)2-4x 2x 3=12(1+k 2)3+4k2.若|PN ||MQ |=2, 则4(1+k 2)k 2=2×12(1+k 2)3+4k 2,解得k =±62.6 2的直线l,使得|PN||MQ|=2.故存在斜率为k=±A 组 专题通关1.(2018·安徽省“皖南八校”联考)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,椭圆C上一点M 到左、右两个焦点F 1,F 2的距离之和是4. (1)求椭圆的方程;(2)已知过F 2的直线与椭圆C 交于A ,B 两点,且两点与左、右顶点不重合,若F 1M —→=F 1A —→+F 1B —→,求四边形AMBF 1面积的最大值. 解 (1)依题意知,2a =4,a =2, 因为e =12,所以c =1,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),AB :x =my +1,则由⎩⎪⎨⎪⎧x =my +1,x 24+y23=1,可得3(my +1)2+4y 2=12,即(3m 2+4)y 2+6my -9=0,Δ=36m 2+36(3m 2+4)=144(m 2+1)>0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 又因为F 1M —→=F 1A —→+F 1B —→, 所以四边形AMBF 1是平行四边形, 设平行四边形AMBF 1的面积为S ,则S =12ABF S =2×12×|F 1F 2|×|y 1-y 2|=24×m 2+13m 2+4.设t =m 2+1,则m 2=t 2-1(t ≥1),所以S =24×t 3t 2+1=24×13t +1t,因为t ≥1,所以3t +1t≥4(当t =1时取等号),所以S ∈(0,6],所以四边形AMBF 1面积的最大值为6.2.已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为2 2. (1)求椭圆C 的方程;(2)已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.解 (1)由已知得⎩⎪⎨⎪⎧c a =13,12×2c ×b =22,c 2=a 2-b 2,解得a 2=9,b 2=8,c 2=1, ∴椭圆C 的方程为x 29+y 28=1.(2)设M (x 1,y 1),N (x 2,y 2),MN 的中点为E ()x 0,y 0,点G ()m ,0,使得|GM |=|GN |, 则GE ⊥MN .由⎩⎪⎨⎪⎧y =kx +2,x 29+y28=1,得()8+9k 2x 2+36kx -36=0,由Δ>0,得k ∈R 且k ≠0. ∴x 1+x 2=-36k9k 2+8,∴x 0=-18k 9k 2+8,y 0=kx 0+2=169k 2+8. ∵GE ⊥MN ,∴k GE =-1k,即169k 2+8-0-18k 9k 2+8-m =-1k, ∴m =-2k 9k 2+8=-29k +8k.当k >0时,9k +8k≥29×8=12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =223时,取等号,∴-212≤m <0; 当k <0时,9k +8k≤-12 2⎝ ⎛⎭⎪⎫当且仅当9k =8k ,即k =-223时,取等号,∴0<m ≤212, ∴点G 的横坐标的取值范围为⎣⎢⎡⎭⎪⎫-212,0∪⎝ ⎛⎦⎥⎤0,212. 3.(2018·全国Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 证明 (1)设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k ,得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=(x 1-1)2+y 21 =(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|.4.(2018·龙岩质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点P ⎝⎛⎭⎪⎫1,-32在椭圆上.不过原点的直线l 与椭圆交于A ,B 两点,且OA →·OB →=0(O 为坐标原点). (1)求椭圆C 的方程;(2)试判断1|OA |2+1|OB |2是否为定值?若是,求出这个值;若不是,请说明理由.解 (1)∵椭圆C 的离心率e =c a =32, 又c 2=a 2-b 2,∴34a 2=a 2-b 2,∴a 2=4b 2. 又点P ⎝ ⎛⎭⎪⎫1,-32在椭圆上, ∴1a 2+34b 2=1, 即14b 2+34b2=1,∴b 2=1,则a 2=4, ∴椭圆C 的方程为x 24+y 2=1.(2)当直线OA 的斜率存在且不为0时, 设其方程为y =kx ,∵A ,B 分别为椭圆上的两点,且OA →·OB →=0, 即OA ⊥OB ,∴直线OB 的方程为y =-1kx .设A (x 1,y 1),B (x 2,y 2), 把y =kx 代入椭圆C :x 24+y 2=1,得x 21=41+4k 2,∴y 21=4k 21+4k2,同理x 22=4k 24+k 2,∴y 22=44+k2,∴1|OA |2+1|OB |2=1x 21+y 21+1x 22+y 22=141+4k 2+4k 21+4k 2+14k 24+k 2+44+k2=54. 当直线OA ,OB 中的一条直线的斜率不存在时, 则另一条直线的斜率为0,此时1|OA |2+1|OB |2=1a 2+1b 2=14+1=54. 综上所述,1|OA |2+1|OB |2为定值54.B 组 能力提高5.已知点M ()x 0,y 0在圆O :x 2+y 2=4上运动,且存在一定点N ()6,0,点P (x ,y )为线段MN 的中点.(1)求点P 的轨迹C 的方程;(2)过A (0,1)且斜率为k 的直线l 与点P 的轨迹C 交于不同的两点E ,F ,是否存在实数k ,使得OE →·OF →=12?若存在,求出k 的值,若不存在,说明理由. 解 (1)设P (x ,y ),由中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+62,y =y2,即x 0=2x -6,y 0=2y .∵点M ()x 0,y 0在圆x 2+y 2=4上运动,∴x 20+y 20=4,即()2x -62+()2y 2=4,整理,得()x -32+y 2=1.∴点P 的轨迹C 的方程为()x -32+y 2=1.(2)设E (x 1,y 1),F (x 2,y 2),直线l 的方程是y =kx +1, 代入圆()x -32+y 2=1.可得()1+k 2x 2-2()3-k x +9=0,由Δ=-32k 2-24k >0,得-34<k <0,且x 1+x 2=2()3-k 1+k 2,x 1x 2=91+k 2,∴y 1y 2=()kx 1+1()kx 2+1 =k 2x 1x 2+k (x 1+x 2)+1=9k 21+k 2+2k ()3-k 1+k 2+1=8k 2+6k +11+k2. ∴OE →·OF →=x 1x 2+y 1y 2=8k 2+6k +101+k 2=12. 解得k =12或1,都不满足Δ>0.∴不存在实数k ,使得OE →·OF →=12.6.(2018·河北省武邑中学模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A ⎝ ⎛⎭⎪⎫12,354,且两个焦点F 1,F 2的坐标依次为(-1,0)和(1,0). (1)求椭圆C 的标准方程;(2)设E ,F 是椭圆C 上的两个动点,O 为坐标原点,直线OE 的斜率为k 1,直线OF 的斜率为k 2,若k 1·k 2=-1,证明:直线EF 与以原点为圆心的定圆相切,并写出此定圆的标准方程.解 (1)由椭圆定义得2a =⎝ ⎛⎭⎪⎫12+12+⎝ ⎛⎭⎪⎫354-02+⎝ ⎛⎭⎪⎫12-12+⎝ ⎛⎭⎪⎫354-02=4,即a =2,又c =1,所以b 2=3,得椭圆C 的标准方程为x 24+y 23=1.(2)当直线EF 的斜率存在时,设直线EF 的方程为y =kx +b ,E (x 1,y 1),F (x 2,y 2),直线EF 的方程与椭圆方程联立,消去y 得()3+4k 2x 2+8kbx +4b 2-12=0,当判别式Δ=3+4k 2-b 2>0时, 得x 1+x 2=-8kb 3+4k 2,x 1x 2=4b 2-123+4k 2.由已知k 1·k 2=-1,即y 1y 2x 1x 2=-1, 因为点E ,F 在直线y =kx +b 上, 所以()kx 1+b ()kx 2+b =-x 1x 2, 整理得()k 2+1x 1x 2+bk (x 1+x 2)+b 2=0,即()k 2+1×4b 2-123+4k 2+bk ⎝ ⎛⎭⎪⎫-8kb 3+4k 2+b 2=0,化简得b 2=12k 2+127.原点O 到直线EF 的距离d =|b |1+k2,21 d 2=b 21+k 2=12k 2+127k 2+7=127, 所以直线与一个定圆相切,定圆的标准方程为x 2+y 2=127.当直线EF 的斜率不存在时,此时,直线EF 的方程为x =±847,满足与定圆x 2+y 2=127相切. 故直线EF 与以原点为圆心的定圆相切,定圆的标准方程为x 2+y 2=127.。

2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

2019届高考数学二轮复习  专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时讲义(含答案)

第3讲 立体几何中的计算 课时讲义1. 高考对立体几何的计算,主要是能利用公式求常见几何体(柱体、锥体、台体和球)的表面积与体积.有时还需能解决距离、翻折、存在性等比较综合性的问题.2. 高考中常见的题型为:(1) 常见几何体的表面积与体积的计算;(2) 利用等积变换求距离问题;(3) 通过计算证明平行与垂直等问题;(4) 几何体的内切和外接.1. 棱长都是2的三棱锥的表面积为________. 答案:43解析: 因为四个面是全等的正三角形,则S 表面积=4×34×4=43.2. 如图,正方体ABCDA 1B 1C 1D 1的棱长为1,点P 是棱BB 1的中点,则四棱锥PAA 1C 1C的体积为________.答案:13解析:四棱锥PAA 1C 1C 的体积为13×22×2×1=13.3. (2018·南京学情调研)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2.答案:18π解析:设正方形的边长为a cm ,则πa 2·a =27π,解得a =3,所以侧面积2π×3×3=18π.4. (2018·海安质量测试)已知正三棱锥的体积为36 3 cm 3,高为4 cm ,则底面边长为________cm.答案:63解析: 设正三棱锥的底面边长为a ,则其面积为S =34a 2.由题意13·34a 2×4=363,解得a =63., 一) 表面积与体积, 1) 如图,在以A ,B ,C ,D ,E 为顶点的六面体中,△ABC 和△ABD 均为等边三角形,且平面ABC ⊥平面ABD ,EC ⊥平面ABC ,EC =3,AB =2.(1) 求证:DE ∥平面ABC ; (2) 求此六面体的体积.(1) 证明:作DF ⊥AB ,交AB 于点F ,连结CF. 因为平面ABC ⊥平面ABD , 且平面ABC ∩平面ABD =AB , 所以DF ⊥平面ABC.因为EC ⊥平面ABC ,所以DF ∥EC. 因为△ABD 是边长为2的等边三角形, 所以DF =3,因此DF =EC ,所以四边形DECF 为平行四边形,所以DE ∥CF.因为DE ⊄平面ABC ,CF ⊂平面ABC , 所以DE ∥平面ABC.(2) 解:因为△ABD 是等边三角形,所以点F 是AB 的中点. 又△ABC 是等边三角形,所以CF ⊥AB. 由DF ⊥平面ABC 知,DF ⊥CF , 所以CF ⊥平面ABD.因为DE ∥CF ,所以DE ⊥平面ABD , 因此四面体ABDE 的体积为13S △ABD ·DE =1;四面体ABCE 的体积为13S △ABC ·CE =1,而六面体ABCED 的体积=四面体ABDE 的体积+四面体ABCE 的体积, 故所求六面体的体积为2.(2018·苏州暑假测试)如图,正四棱锥P ABCD 的底面一边AB 的长为2 3 cm ,侧面积为83 cm 2,则它的体积为________cm 3.答案:4解析:记正四棱锥P ABCD 的底面中心为点O ,棱AB 的中点为H, 连结PO ,HO ,PH ,则PO ⊥平面ABCD .因为正四棱锥的侧面积为83 cm 2,所以83=4×12×23×PH ,解得PH =2.在直角△PHO 中,PH =2,HO =3,所以PO =1,所以V PABCD =13×S 四边形ABCD ×PO =13×23×23×1=4(cm 3)., 二) 翻折与切割问题, 2) 如图,在菱形ABCD 中,AB =2,∠ABC =60°,BD ∩AC =O ,现将其沿菱形对角线BD 折起得到空间四边形EBCD ,使EC =2.(1) 求证:EO ⊥CD ;(2) 求点O 到平面EDC 的距离.(1) 证明:∵ 四边形ABCD 为菱形,∴ AC ⊥BD . ∵ BD ∩AC =O ,∴ AO ⊥BD ,即EO ⊥BD .∵ 在菱形ABCD 中,AB =2,∠ABC =60°,∴ AD =CD =BC =2,AO =OC =1. ∵ EC =2,CO =EO =1,∴ EO 2+OC 2=EC 2,∴ EO ⊥OC . 又BD ∩OC =O ,∴ EO ⊥平面BCD ,∴ EO ⊥CD .(2) 解:设点O 到平面ECD 的距离为h ,由(1)知EO ⊥平面OCD .V 三棱锥O CDE =V 三棱锥E OCD ,即13S △OCD ·EO =13S △ECD ·h . 在Rt △OCD 中,OC =1,OD =3,∠DOC =90°,∴ S △OCD =12OC ·OD =32.在△CDE 中,ED =DC =2,EC =2,∴ S △CDE =12×2×22-(22)2=72, ∴ h =S △OCD ·EO S △ECD =217,即点O 到平面EDC 的距离为217.如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,点E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图②中△A 1BE 的位置,得到四棱锥A 1BCDE .(1) 求证:CD ⊥平面A 1OC ;(2) 当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.,①) ,②)(1) 证明:在图①中,因为AB =BC =12AD =a ,点E 是AD 的中点,∠BAD =π2,所以BE ⊥AC ,即在图②中,BE ⊥A 1O ,BE ⊥OC . 又A 1O ∩OC =O ,所以BE ⊥平面A 1OC . 在图①中,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形,所以BE ∥CD , 所以CD ⊥平面A 1OC .(2) 解:因为平面A 1BE ⊥平面BCDE ,所以A 1O 是四棱锥A 1BCDE 的高. 根据图①可得A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 所以VA 1BCDE =13×S ×A 1O =13×a 2×22a =26a 3.由26a 3=362,解得a =6., 三) 立体几何中的以算代证问题, 3) (2018·泰州中学学情调研)在直三棱柱ABCA 1B 1C 1中,AB =AC =AA 1=3a ,BC =2a ,D 是BC 的中点,E ,F 分别是AA 1,CC 1上一点,且AE =CF =2a.(1) 求证:B 1F ⊥平面ADF ; (2) 求三棱锥B 1ADF 的体积.(1) 证明:∵ AB =AC ,D 为BC 中点,∴ AD ⊥BC.在直三棱柱ABC -A 1B 1C 1中,B 1B ⊥底面ABC ,AD ⊂底面ABC ,∴ AD ⊥B 1B.∵ BC ∩B 1B =B ,∴ AD ⊥平面B 1BCC 1. ∵ B 1F ⊂平面B 1BCC 1,∴ AD ⊥B 1F.在矩形B 1BCC 1中,C 1F =CD =a ,B 1C 1=CF =2a , ∴ Rt △DCF ≌Rt △FC 1B 1,∴ ∠CFD =∠C 1B 1F , ∴ ∠B 1FD =90°,∴ B 1F ⊥FD . ∵ AD ∩FD =D ,∴ B 1F ⊥平面AFD . (2) 解: ∵ B 1F ⊥平面AFD ,∴ VB 1-ADF =13·S △ADF ·B 1F =13×12×AD ×DF ×B 1F =52a 33.如图①,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2.将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图②.(1) 求证:BC ⊥平面ACD ; (2) 求几何体DABC 的体积.(1) 证明:(证法1)在图①中,由题意知,AC =BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC .取AC 的中点O ,连结DO ,由AD =CD ,得DO ⊥AC .又平面ADC ⊥平面ABC ,且平面ADC ∩平面ABC =AC ,DO ⊂平面ACD , ∴ OD ⊥平面ABC ,∴ OD ⊥BC . 又AC ⊥BC ,AC ∩OD =O , ∴ BC ⊥平面ACD .(证法2)在图①中,由题意得AC =BC =22,∴ AC 2+BC 2=AB 2, ∴ AC ⊥BC .∵ 平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,BC ⊂平面ABC , ∴ BC ⊥平面ACD .(2) 解:由(1)知,BC 为三棱锥BACD 的高, 且BC =22,S △ACD =12×2×2=2,∴ 三棱锥BACD 的体积V BACD =13S △ACD ·BC =13×2×22=423,即几何体DABC 的体积为423.1. (2018·天津卷)如图,已知正方体ABCDA 1B 1C 1D 1的棱长为1,则四棱锥A 1BB 1D 1D 的体积为________.答案:13解析:如图,连结A 1C 1,交B 1D 1于点O ,很明显A 1C 1⊥平面BDD 1B 1,则A 1O 是四棱锥的高,且A 1O =12A 1C 1=12×12+12=22,S 四边形BDD 1B 1=BD ×DD 1=2×1=2,结合四棱锥体积公式可得其体积为V =13Sh =13×2×22=13.2. (2018·江苏卷)如图,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案:43解析:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.3. (2017·北京卷)如图,在三棱锥PABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,点D 为线段AC 的中点,E 为线段PC 上一点.(1) 求证:PA ⊥BD ;(2) 求证:平面BDE ⊥平面PAC ;(3) 当PA ∥平面BDE 时,求三棱锥EBCD 的体积.(1) 证明:因为PA ⊥AB ,PA ⊥BC ,AB ∩BC =B ,所以PA ⊥平面ABC. 因为BD ⊂平面ABC ,所以PA ⊥BD.(2) 证明:因为AB =BC ,点D 为AC 的中点,所以BD ⊥AC. 由(1)知,PA ⊥BD ,PA ∩AC =A ,所以BD ⊥平面PAC. 又BD ⊂平面BDE , 所以平面BDE ⊥平面PAC.(3) 解:因为PA ∥平面BDE ,平面PAC ∩平面BDE =DE ,所以PA ∥DE. 因为点D 为AC 的中点,所以DE =12PA =1,BD =DC =2.由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC , 所以三棱锥EBCD 的体积为V =13×12×BD ×DC ×DE =13.4. (2017·全国卷Ⅰ)如图,在四棱锥PABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1) 求证:平面PAB ⊥平面PAD ;(2) 若PA =PD =AB =DC ,∠APD =90°,且四棱锥PABCD 的体积为83,求该四棱锥的侧面积.(1) 证明:由已知∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD .由于AB ∥CD ,故AB ⊥PD .又PA ∩PD =P ,所以AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2) 解:如图,在平面PAD 内作PE ⊥AD ,垂足为点E .由(1)知,AB ⊥平面PAD ,故AB ⊥PE ,由AB ∩AD =A ,可得PE ⊥平面ABCD .设AB =x ,则由已知可得AD =2x ,PE =22x ,故四棱锥PABCD 的体积V PABCD =13AB ·AD ·PE =13x 3.由题设得13x 3=83,解得x =2. 从而PA =PD =2,AD =BC =22,PB =PC =22,所以△PBC 为等边三角形,可得四棱锥PABCD 的侧面积为 12PA ·PD +12PA ·AB +12PD ·DC +12BC 2sin 60°=6+2 3.5. (2017·全国卷Ⅲ)如图,在四面体ABCD 中,△ABC 是正三角形,AD =CD .(1) 求证:AC ⊥BD ;(2) 已知△ACD 是直角三角形,AB =BD ,若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.(1) 证明:如图,取AC 的中点O ,连结DO ,BO .因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO . 又DO ∩BO =O ,所以AC ⊥平面DOB . 因为BD ⊂平面DOB ,所以AC ⊥BD . (2) 解:连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,BO 2+AO 2=AB 2. 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC .又△ABC 是正三角形,且AB =BD ,所以EO =12BD ,故点E 为BD 的中点.所以点E 到平面ABC 的距离为点D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1.(本题模拟高考评分标准,满分14分) (2018·长春模拟)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1) 求证:平面AEC ⊥平面BED ;(2) 若∠ABC =120°,AE ⊥EC ,三棱锥EACD 的体积为63,求该三棱锥的侧面积.(1) 证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC ⊥BE .(2分) 因为BD ∩BE =B ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(6分)(2) 解:设AB =x ,在菱形ABCD 中,由∠ABC =120°,得AG =GC =32x ,GB =GD=x2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .(8分)由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得三棱锥EACD 的体积为63,即13×12·AC ·GD ·BE =624x 3=63,解得x =2.(9分)从而可得AE =EC =ED =6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥EACD 的侧面积为3+25.(14分)1. 若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为________. 答案:2π解析: 设圆柱的底面半径为r ,高为h ,则有2πr =2,即r =1π,故圆柱的体积为V =πr 2h =π⎝ ⎛⎭⎪⎫1π2×2=2π.2. 如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,∠DAB =90°,AB ∥CD ,AD =AF =CD =2,AB =4.(1) 求证:AF ∥平面BCE ; (2) 求证:AC ⊥平面BCE ; (3) 求三棱锥EBCF 的体积.(1) 证明:∵ 四边形ABEF 为矩形,∴ AF ∥BE .又BE ⊂平面BCE ,AF ⊄平面BCE , ∴ AF ∥平面BCE .(2) 证明:如图,过点C 作CM ⊥AB ,垂足为点M . ∵ AD ⊥DC ,∴ 四边形ADCM 为矩形, ∴ AM =DC =MB =AD =2.∴ AC =22,CM =2,BC =22,∴ AC 2+BC 2=AB 2,∴ AC ⊥BC . ∵ AF ⊥平面ABCD ,AF ∥BE , ∴ BE ⊥平面ABCD ,∴ BE ⊥AC .∵ BE ⊂平面BCE ,BC ⊂平面BCE ,BC ∩BE =B , ∴ AC ⊥平面BCE .(3) 解:∵ AF ⊥平面ABCD ,∴ AF ⊥CM .∵ CM ⊥AB ,AF ⊂平面ABEF ,AB ⊂平面ABEF ,AF ∩AB =A ,∴ CM ⊥平面ABEF ,∴ V 三棱锥EBCF =V 三棱锥CBEF =13×12×BE ×EF ×CM =16×2×4×2=83.3. (2016·江苏卷)现需要设计一个仓库,它由上、下两部分组成,上部分的形状是正四棱锥P A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD A 1B 1C 1D 1(如图),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解:(1) ∵ PO 1=2 m ,正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,∴ O 1O =8 m ,∴ 仓库的容积V =13×62×2+62×8=312(m 3). (2) 若正四棱锥的侧棱长为6 m ,设PO 1=x m ,则O 1O =4x m ,A 1O 1=36-x 2 m ,A 1B 1=2·36-x 2 m , 则仓库的容积V (x )=13×(2·36-x 2)2·x +(2·36-x 2)2·4x =-263x 3+312x (0<x<6), V ′(x )=-26x 2+312(0<x <6).当0<x <23时,V ′(x )>0,V (x )单调递增; 当23<x <6时,V ′(x )<0,V (x )单调递减. 故当x =23时,V (x )取最大值. 即当PO 1=23 m 时,仓库的容积最大.请使用“课后训练·第19讲”活页练习,及时查漏补缺!。

2019年高考数学大二轮复习高考阅卷评分指导课五解析几何类解答题课件理ppt版本

2019年高考数学大二轮复习高考阅卷评分指导课五解析几何类解答题课件理ppt版本
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
[真题案例] (12 分)(2016·全国卷Ⅱ)已知 A 是椭圆 E:x42+y32=1 的 左顶点,斜率 k(k>0)的直线交 E 于 A,M 两点,点 N 在 E 上,MA⊥NA. (1)当|AM|=|AN|时,求△AMN 的面积; (2)当 2|AM|=|AN|时,证明: 3<k<2.
[审→
求直线AM的倾斜角

求AM的方程 → 联立lAM与椭圆E的方程 → 求M的纵坐标 → 求S△AMN (2) 联立lAM与椭圆E的方程 → 利用根与系数的关系及弦长公式 → 建立关于k的方程
→ 利用函数性质解决
(1)设 M(x1,y1),则由题意知 y1>0.由已知及椭圆
所以 3<k<2. 得分点⑧ (12 分)
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
谢谢
的对称性知,直线 AM 的倾斜角为 .又 A(-2,0), 因此直线 AM 的方程为 y=x+2.得分点①(2 分)
• 单击此处编辑母版文本样式 – 第二级 • 第三级 – 第四级 »第五级
因此△AMN 的面积
S△AMN=2×12×172×172=14494. 得分点③ (5 分)
(2)证明 将直线 AM 的方程 y=k(x+2)(k>0)代入x42+y32=1,得
(3+4k2)x2+16k2x+16k2-12=0.得分点④ (6分)
由x1·(-2)=136+k2-4k122,得x1=2(33+-44kk22),

2019届高考数学二轮复习第一部分专题五解析几何第三讲第二课时圆锥曲线的定点定值存在性问题教案3

第三讲 第二课时 圆锥曲线的定点、定值、存在性问题圆锥曲线中的定点问题[方法结论]定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b ,k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.[典例](2017·洛阳模拟)设椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点为A ,B ,C 是椭圆上关于原点对称的两点(B ,C 均不在x 轴上),线段AC 的中点为D ,且B ,F ,D 三点共线.(1)求椭圆E 的离心率;(2)设F (1,0),过F 的直线l 交E 于M ,N 两点,直线MA ,NA 分别与直线x =9交于P ,Q 两点.证明:以PQ 为直径的圆过点F .解析:(1)法一:由已知A (a,0),F (c,0),设B (x 0,y 0),C (-x 0-y 0),则D (a -x 02,-y 02), ∵B ,F ,D 三点共线,∴BF →∥BD →,又BF →=(c -x 0,-y 0),BD →=(a -3x 02,-3y 02),∴-32y 0(c -x 0)=-y 0·a -3x 02,∴a =3c ,从而e =13.法二:设直线BF 交AC 于D ,连接OD ,由题意知,OD 是△CAB 的中位线,∴OD 綊12AB ,∴AB →∥OD →,∴△OFD ∽△AFB . ∴ca -c =12,解得a =3c ,从而e =13. (2)∵F 的坐标为(1,0), ∴c =1,从而a =3,∴b 2=8. ∴椭圆E 的方程为x 29+y 28=1.设直线l 的方程为x =ny +1,(n ≠0)由⎩⎪⎨⎪⎧x =ny +1x 29+y28=1⇒(8n 2+9)y 2+16ny -64=0,∴y 1+y 2=-16n 8n 2+9,y 1y 2=-648n 2+9,其中M (ny 1+1,y 1),N (ny 2+1,y 2).∴直线AM 的方程为y y 1=x -3ny 1-2,∴P (9,6y 1ny 1-2),同理Q (9,6y 2ny 2-2), 从而FP →·FQ →=(8,6y 1ny 1-2)·(8,6y 2ny 2-2)=64+36y 1y 2n 2y 1y 2-2n y 1+y 2+4=64+-8n 2+9-64n 28n 2+9+32n28n 2+9+4 =64+-36=0.∴FP ⊥FQ ,即以PQ 为直径的圆恒过点F . [类题通法]定点的探索与证明问题注意利用特殊化思想探求再证明,求解的方法常见的有如下两种: (1)直线过定点,引入适当的变量,求出直线方程,根据方程求出定点;(2)曲线过定点,先用特殊位置的曲线探求定点,再证明曲线过该点,与变量无关.[演练冲关](2017·高考全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 解析:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP →=(x -x 0,y ),NM →=(0,y 0), 由NP →= 2 NM →得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q (-3,t ),P (m ,n ),则 OQ →=(-3,t ),PF →=(-1-m ,-n ),OQ →·PF →=3+3m -tn , OP →=(m ,n ),PQ →=(-3-m ,t -n ),由OP →·PQ →=1得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →,又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .圆锥曲线中的定值问题[方法结论]解答圆锥曲线的定值,从三个方面把握(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以求出定值.[典例](2017·沈阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-6,0),e =22.(1)求椭圆C 的方程;(2)如图,设R (x 0,y 0)是椭圆C 上一动点,由原点O 向圆(x -x 0)2+(y -y 0)2=4引两条切线,分别交椭圆于点P ,Q ,若直线OP ,OQ 的斜率存在,并记为k 1,k 2,求证:k 1k 2为定值. (3)在(2)的条件下,试问|OP |2+|OQ |2是否为定值?若是,求出该值;若不是,请说明理由. 解析:(1)由题意得,c =6,e =22,解得a =23,∴椭圆C 的方程为x 212+y26=1.(2)由已知,直线OP :y =k 1x ,OQ :y =k 2x ,且与圆R 相切, ∴|k 1x 0-y 0|1+k 21=2,化简得(x 20-4)k 21-2x 0y 0k 1+y 20-4=0, 同理,可得(x 20-4)k 22-2x 0y 0k 2+y 20-4=0,∴k 1,k 2是方程(x 20-4)k 2-2x 0y 0k +y 20-4=0的两个不相等的实数根,∴x 20-4≠0,Δ>0,k 1k 2=y 20-4x 20-4.∵点R (x 0,y 0)在椭圆C 上,∴x 2012+y 206=1,即y 20=6-12x 20,∴k 1k 2=2-12x 20x 20-4=-12.(3)|OP |2+|OQ |2是定值18.设P (x 1,y 1),Q (x 2,y 2),联立得⎩⎪⎨⎪⎧y =k 1xx 212+y 26=1,解得⎩⎪⎨⎪⎧x 21=121+2k 21y 21=12k211+2k21,∴x 21+y 21=+k 211+2k 21,同理,可得x 22+y 22=+k 221+2k 22由k 1k 2=-12,得|OP |2+|OQ |2=x 21+y 21+x 22+y 22=+k 211+2k21++k 221+2k 22=+k 211+2k21+12[1+-12k 12]1+-12k 12=18+36k 211+2k 21=18. 综上:|OP |2+|OQ |2=18. [类题通法]定值问题在求解时注意“设而不求”思想方法的灵活运用,即引入参变量,用它来表示有关量,进而看能否把变量消去.“先猜后证”法是解决这类问题的有效方法,也就是先由特殊情形探求出定值或定点,进而证明它适用所有情形.[演练冲关](2016·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值.解析:(1)由题意得⎩⎪⎨⎪⎧c a =32,12ab =1,a 2=b 2+c 2,解得a =2,b =1.所以椭圆C 的方程为x 24+y 2=1.(2)证明:由(1)知,A (2,0),B (0,1). 设P (x 0,y 0),则x 20+4y 20=4. 当x 0≠0时,直线PA 的方程为y =y 0x 0-2(x -2).令x =0,得y M =-2y 0x 0-2,从而|BM |=|1-y M |=|1+2y 0x 0-2|. 直线PB 的方程为y =y 0-1x 0x +1. 令y =0,得x N =-x 0y 0-1,从而|AN |=|2-x N |=|2+x 0y 0-1|. 所以|AN |·|BM |=|2+x 0y 0-1|·|1+2y 0x 0-2|=|x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2|=|4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2|=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4. 综上|AN |·|BM |为定值.存在性问题[方法结论]1.存在性问题的解题步骤(1)先假设存在,引入参变量,根据题目条件列出关于参变量的方程(组)或不等式(组). (2)解此方程(组)或不等式(组),若有解则存在,若无解则不存在. (3)得出结论.2.解决存在性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.[典例](2017·西安模拟)已知F 1,F 2为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P (1,32)在椭圆E 上 ,且|PF 1|+|PF 2|=4. (1)求椭圆E 的方程;(2)过F 1的直线l 1,l 2分别交椭圆E 于A ,C 和B ,D ,且l 1⊥l 2,问是否存在常数λ,使得1|AC |,λ,1|BD |成等差数列?若存在,求出λ的值,若不存在,请说明理由.解析:(1)∵|PF 1|+|PF 2|=4,∴2a =4,a =2.∴椭圆E :x 24+y 2b2=1.将P (1,32)代入可得b 2=3,∴椭圆E 的方程为x 24+y 23=1.(2)①当AC 的斜率为零或斜率不存在时,1|AC |+1|BD |=13+14=712;②当AC 的斜率k 存在且k ≠0时,AC 的方程为y =k (x +1), 代入椭圆方程x 24+y 23=1,并化简得(3+4k 2)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 2=-8k 23+4k 2,x 1·x 2=4k 2-123+4k 2.|AC |=1+k 2|x 1-x 2|=+k2x 1+x 22-4x 1x 2]=+k 23+4k2.∵直线BD 的斜率为-1k,∴|BD |=12[1+-1k2]3+-1k2=+k 23k 2+4.∴1|AC |+1|BD |=3+4k2+k2+3k 2+4+k 2=712. 综上,2λ=1|AC |+1|BD |=712,∴λ=724.故存在常数λ=724,使得1|AC |,λ,1|BD |成等差数列.[类题通法]存在性问题的两种常考题型的求解方法(1)给出问题的一些特殊关系,要求探索出一些规律,并能论证所得规律的正确性.通常要对已知关系进行观察、比较、分析,然后概括出一般规律.(2)只给出条件,求“不存在”“是否存在”等语句表述.此类问题也是最常考的探索性问题,解答这类问题时,一般要先对结论给出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到肯定;若导致矛盾,则假设不存在.本题就是“是否存在”型探索性问题.[演练冲关](2017·湖南东部五校联考)已知椭圆E :x 2a 2+y 2b2=1的右焦点为F (c,0)且a >b >c >0,设短轴的一个端点为D ,原点O 到直线DF 的距离为32,过原点和x 轴不重合的直线与椭圆E 相交于C ,G两点,且|GF →|+|CF →|=4. (1)求椭圆E 的方程.(2)是否存在过点P (2,1)的直线l 与椭圆E 相交于不同的两点A ,B 且使得OP →2=4PA →·PB →成立?若存在,试求出直线l 的方程;若不存在,请说明理由. 解析:(1)由椭圆的对称性知|GF →|+|CF →|=2a =4, ∴a =2.又原点O 到直线DF 的距离为32,∴bc a =32, ∴bc =3,又a 2=b 2+c 2=4,a >b >c >0,∴b =3,c =1. 故椭圆E 的方程为x 24+y 23=1.(2)当直线l 与x 轴垂直时不满足条件.故可设A (x 1,y 1),B (x 2,y 2),直线l 的方程为y =k (x -2)+1, 代入椭圆方程得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0,∴x 1+x 2=8k k -3+4k2,x 1x 2=16k 2-16k -83+4k 2,Δ=32(6k +3)>0,∴k >-12. ∵OP →2=4PA →·PB →,即4[(x 1-2)(x 2-2)+(y 1-1)(y 2-1)]=5, ∴4(x 1-2)(x 2-2)(1+k 2)=5,即4[x 1x 2-2(x 1+x 2)+4](1+k 2)=5, ∴4⎣⎢⎡⎦⎥⎤16k 2-16k -83+4k2-2×8k k -3+4k 2+4(1+k 2)=4×4+4k 23+4k 2=5,解得k =±12, k =-12不符合题意,舍去.∴存在满足条件的直线l ,其方程为y =12x .。

江苏省2019高考数学二轮复习 专题五 解析几何 高考提能 五大技巧简化几何的综合问题学案

五大技巧,简化解析几何运算解析几何是通过建立平面直角坐标系,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性.解析几何题目的难度很大程度上体现在运算上,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.因此,探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程就成了突破解析几何问题的关键. 技巧一 利用定义,回归本质例1 (1)已知点F 为抛物线y 2=-8x 的焦点,O 为原点,点P 是抛物线准线上一动点,A 在抛物线上,且AF =4,则PA +PO 的最小值是__________. 答案 213解析 如图,可求A ()-2,4,再求A ()-2,4关于抛物线的准线x =2的对称点A ′()6,4,因此PA +PO =PA ′+PO ,当O ,P ,A ′三点共线时PA +PO 取到最小值.即()PA +PO min =A ′O =62+42=213.(2)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.答案62解析 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知,可得⎩⎪⎨⎪⎧AF 1+AF 2=4,AF 2-AF 1=2a ,AF 21+AF 22=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. 跟踪演练1 (1)已知椭圆x 225+y 216=1内有两点A (1,3),B (3,0),P 为椭圆上一点,则PA +PB 的最大值为______.答案 15解析 由椭圆方程可知点B 为椭圆的右焦点,设椭圆的左焦点为B ′,由椭圆的定义可知PB =2a -PB ′=10-PB ′, 则PA +PB =10+()PA -PB ′, 很明显,()PA -PB ′max =AB ′ =()-3-12+()0-32=5,据此可得PA +PB 的最大值为10+5=15.(2)抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则PF PA的最小值为______. 答案22解析 设点P 的坐标为(x P ,y P ),由抛物线的定义, 知PF =x P +m ,又PA 2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则⎝ ⎛⎭⎪⎫PF PA2=(x p +m )2(x p +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号), 所以PF PA ≥22,所以PF PA 的最小值为22. 技巧二 设而不求,整体代换例2 (1)已知直线l 交椭圆4x 2+5y 2=80于M ,N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是___________________________. 答案 6x -5y -28=0解析 由4x 2+5y 2=80得x 220+y 216=1,∴椭圆上顶点为B (0,4),右焦点F (2,0)为△BMN 的重心,故线段MN 的中点为C (3,-2). 直线l 的斜率存在,设为k , ∵点M (x 1,y 1),N (x 2,y 2)在椭圆上,∴⎩⎪⎨⎪⎧4x 21+5y 21=80,4x 22+5y 22=80,∴4(x 1-x 2)(x 1+x 2)+5(y 1-y 2)(y 1+y 2)=0, ∴k =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45·6-4=65. ∴直线l 的方程为y +2=65(x -3),即6x -5y -28=0.(2)设椭圆C :x 24+y 23=1与函数y =tan x4的图象相交于A 1,A 2两点,若点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤38,34解析 由题意,得A 1,A 2两点关于原点对称, 设A 1(x 1,y 1),A 2(-x 1,-y 1),P (x 0,y 0), 则x 214+y 213=1,x 204+y 203=1, 即y 21=34(4-x 21),y 20=34(4-x 20),两式相减整理,得y 0+y 1x 0+x 1=-34×x 0-x 1y 0-y 1=-34×1kPA 1. 因为直线PA 2的斜率的取值范围是[-2,-1], 所以-2≤y 0+y 1x 0+x 1≤-1, 所以-2≤-34·11PA k ≤-1,解得38≤1PA k ≤34跟踪演练2 (2018·全国大联考江苏卷)已知椭圆M: x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过其左焦点F (-c,0)的直线交椭圆M 于A ,B 两点,若弦AB 的中点为D (-4,2),则椭圆M 的方程是________. 答案x 272+y 236=1 解析 设A(x 1,y 1),B (x 2,y 2),由中点坐标公式得x 1+x 2=-8,y 1+y 2=4.将A ,B 的坐标分别代入M 的方程中得⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减,化简得y 1-y 2x 1-x 2=2b 2a 2,又因为A ,B ,D ,F 四点共线,所以2-0c -4=y 1-y 2x 1-x 2=2b 2a2,所以a 2=b 2(c -4).由⎩⎪⎨⎪⎧a 2=b 2(c -4),c 2a 2=12,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧a 2=72,b 2=36,c =6,所以椭圆M 的方程为x 272+y 236=1.技巧三 根与系数的关系,化繁为简例3 已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,短轴的两个顶点与F 1,F 2构成面积为2的正方形.(1)求椭圆Γ的方程;(2)直线l 与椭圆Γ在y 轴的右侧交于点P ,Q ,以PQ 为直径的圆经过点F 2,PQ 的垂直平分线交x 轴于A 点,且OA →=611OF 2→,求直线l 的方程.解 (1)因为椭圆C 的短轴的两个端点和其两个焦点构成正方形,所以b =c , 因为S =a 2=2,所以a =2,b =c =1,故椭圆Γ的方程为x 22+y 2=1.(2)设P (x 1,y 1),Q (x 2,y 2),直线l 的斜率存在, 设直线l :y =kx +m ,显然k ≠0,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2(m 2-1)=0,因为x 1,2=-4km ±8(2k 2-m 2+1)2(1+2k 2) 所以x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-1)1+2k2,Δ=8(2k 2-m 2+1)>0,(*)y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k2,y 1+y 2=kx 1+m +kx 2+m =k (x 1+x 2)+2m =2m1+2k2, 由PF 2→·QF 2→=0,得(x 1-1)(x 2-1)+y 1y 2=0,即x 1x 2-(x 1+x 2)+1+y 1y 2=0,得3m 2-1+4km =0,即k =1-3m24m,PQ 的中点为点C ⎝⎛⎭⎪⎫-2km 2k 2+1,m 2k 2+1,所以线段PQ 的中垂线AB 的方程为y -m2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2km 2k 2+1,令y =0,可得A ⎝⎛⎭⎪⎫-km 2k 2+1,0, 由OA →=611OF 2→,得-km 2k 2+1=611,将k =1-3m 24m 代入上式,得3m 4-m 29m 4+2m 2+1=311, 即6m 4-17m 2-3=0,解得m 2=3,所以m =3,k =-233或m =-3,k =233,经检验满足(*)式,所以直线PQ 的方程为 2x +3y -3=0或2x -3y -3=0.跟踪演练3 (2018·连云港期末)过抛物线y 2=4x 的焦点F 的直线与抛物线交于A, B 两点,若FA →=2BF →,则直线AB 的斜率为________. 答案 ±2 2解析 当直线AB 的斜率不存在时,不满足题意. ∵抛物线C 的焦点F (1,0), 设直线AB 的方程为y =k (x -1),联立⎩⎨⎧y =k ()x -1,y 2=4x ,可得k 2x 2-2(2+k 2)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1,2=2(2+k 2)±4(2+k 2)2-4k42k 2, 则x 1+x 2=2()2+k 2k2,x 1·x 2=1, y 1+y 2=k (x 1+x 2-2)=4k,①∵FA →=(x 1-1,y 1),BF →=(1-x 2,-y 2),∴FA →=2BF →,即⎩⎪⎨⎪⎧x 1-1=2(1-x 2),y 1=-2y 2,∴⎩⎪⎨⎪⎧x 1=3-2x 2,y 1=-2y 2,②①②联立可得,x 2=k 2-4k 2,y 2=-4k,代入抛物线方程y 2=4x 可得k 2=8, 故 k =±2 2.技巧四 平几助力,事半功倍例4 (1)已知直线y =kx +1(k ≠0)交抛物线x 2=4y 于E ,F 两点,以EF 为直径的圆被x 轴截得的弦长为27,则k =________. 答案 ±1解析 直线y =kx +1()k ≠0恒过定点()0,1, 则EF =y E +y F +p , 圆心到x 轴的距离为d =y E +y F2,圆的半径为r =EF2,联立⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去x 得,y 2-2()1+2k 2y +1=0,则y E +y F =2()1+2k 2, 所以根据垂径定理有⎝ ⎛⎭⎪⎫EF 22=⎝⎛⎭⎪⎫y E +y F 22+()72,代入计算得k =±1.(2)已知P 是抛物线y 2=4x 上的动点,点Q 在圆C :()x +32+()y -32=1上,点R 是点P在y 轴上的射影,则PQ +PR 的最小值是________. 答案 3解析 根据抛物线的定义,可知PR =PF -1,而PQ 的最小值是PC -1, 所以PQ +PR 的最小值就是PF +PC -2的最小值,当C ,P ,F 三点共线时,PF +FC 最小,最小值是CF =(-3-1)2+(3-0)2=5 , 所以PQ +PR 的最小值是3.跟踪演练4 已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上,且AK =2AF ,则△AFK 的面积为___________. 答案 32解析 双曲线x 27-y 29=1的右焦点为点(4,0),即为抛物线y 2=2px 的焦点⎝ ⎛⎭⎪⎫p 2,0,所以p2=4,即p =8,所以抛物线的方程为y 2=16x ,其准线为x =-4,所以K (-4,0),过A 作AM 垂直于准线,垂足为M ,则AM =AF ,所以AK =2AM ,所以∠MAK =45°,所以AM =MK =AF ,从而易知四边形AMKF 为正方形,所以KF =AF ,所以△AFK 的面积为12KF 2=32.技巧五 巧设参数,方便计算例5 (2018·无锡期末)在平面直角坐标系xOy 中,已知点M 是椭圆C :x 24+y 2=1上位于第一象限的点,O 为坐标原点,A ,B 分别为椭圆C 的右顶点和上顶点,则四边形OAMB 的面积的最大值为________. 答案2解析 S 四边形OAMB =S △OAB +S △AMB =12()2+AB ·d =12(2+5d ),其中d 为点M 到直线AB 的距离,当M 到直线AB 距离最远时S四边形OAMB取得最大值,设M (2cos θ,sin θ),直线AB :x +2y-2=0,所以d =||2cos θ+2sin θ-25=⎪⎪⎪⎪⎪⎪22sin ⎝ ⎛⎭⎪⎫θ+π4-25≤22-25,故S四边形OAMB的最大值为 2.跟踪演练5 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若AF =3,则△AOB 的面积为________. 答案322解析 设∠AFx =θ(0<θ<π)及BF =m , ∵AF =3,∴点A 到准线l :x =-1的距离为3, ∴2+3cos θ=3,∴cos θ=13,∵m =2+m cos(π-θ),∴m =21+cos θ=32,∵cos θ=13,0<θ<π,∴sin θ=223,∴△AOB 的面积为S = 12×OF ×AB ×sin θ= 12×1×⎝ ⎛⎭⎪⎫3+32×223=322.。

江苏省2019高考数学二轮复习 专题五 解析几何 高考提能 五大技巧简化几何的综合问题学案

五大技巧,简化解析几何运算解析几何是通过建立平面直角坐标系,用方程的观点来研究曲线,体现了用代数的方法解决几何问题的优越性.解析几何题目的难度很大程度上体现在运算上,但有时运算量过大,或需繁杂的讨论,这些都会影响解题的速度,甚至会中止解题的过程,达到“望题兴叹”的地步.因此,探索减轻运算量的方法和技巧,合理简化解题过程,优化思维过程就成了突破解析几何问题的关键. 技巧一 利用定义,回归本质例1 (1)已知点F 为抛物线y 2=-8x 的焦点,O 为原点,点P 是抛物线准线上一动点,A 在抛物线上,且AF =4,则PA +PO 的最小值是__________. 答案 213解析 如图,可求A ()-2,4,再求A ()-2,4关于抛物线的准线x =2的对称点A ′()6,4,因此PA +PO =PA ′+PO ,当O ,P ,A ′三点共线时PA +PO 取到最小值.即()PA +PO min =A ′O =62+42=213.(2)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是________.答案62解析 由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知,可得⎩⎪⎨⎪⎧AF 1+AF 2=4,AF 2-AF 1=2a ,AF 21+AF 22=12,解得a 2=2,故a = 2.所以双曲线C 2的离心率e =32=62. 跟踪演练1 (1)已知椭圆x 225+y 216=1内有两点A (1,3),B (3,0),P 为椭圆上一点,则PA +PB 的最大值为______.答案 15解析 由椭圆方程可知点B 为椭圆的右焦点,设椭圆的左焦点为B ′,由椭圆的定义可知PB =2a -PB ′=10-PB ′, 则PA +PB =10+()PA -PB ′, 很明显,()PA -PB ′max =AB ′ =()-3-12+()0-32=5,据此可得PA +PB 的最大值为10+5=15.(2)抛物线y 2=4mx (m >0)的焦点为F ,点P 为该抛物线上的动点,若点A (-m,0),则PF PA的最小值为______. 答案22解析 设点P 的坐标为(x P ,y P ),由抛物线的定义, 知PF =x P +m ,又PA 2=(x P +m )2+y 2P =(x P +m )2+4mx P ,则⎝ ⎛⎭⎪⎫PF PA2=(x p +m )2(x p +m )2+4mx P =11+4mx P (x P +m )2≥11+4mx P (2x P ·m )2=12(当且仅当x P =m 时取等号), 所以PFPA ≥22,所以PF PA 的最小值为22. 技巧二 设而不求,整体代换例2 (1)已知直线l 交椭圆4x 2+5y 2=80于M ,N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是___________________________. 答案 6x -5y -28=0解析 由4x 2+5y 2=80得x 220+y 216=1,∴椭圆上顶点为B (0,4),右焦点F (2,0)为△BMN 的重心,故线段MN 的中点为C (3,-2). 直线l 的斜率存在,设为k , ∵点M (x 1,y 1),N (x 2,y 2)在椭圆上,∴⎩⎪⎨⎪⎧4x 21+5y 21=80,4x 22+5y 22=80,∴4(x 1-x 2)(x 1+x 2)+5(y 1-y 2)(y 1+y 2)=0, ∴k =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45·6-4=65. ∴直线l 的方程为y +2=65(x -3),即6x -5y -28=0.(2)设椭圆C :x 24+y 23=1与函数y =tan x4的图象相交于A 1,A 2两点,若点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1斜率的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤38,34解析 由题意,得A 1,A 2两点关于原点对称, 设A 1(x 1,y 1),A 2(-x 1,-y 1),P (x 0,y 0), 则x 214+y 213=1,x 204+y 203=1, 即y 21=34(4-x 21),y 20=34(4-x 20),两式相减整理,得y 0+y 1x 0+x 1=-34×x 0-x 1y 0-y 1=-34×1kPA 1. 因为直线PA 2的斜率的取值范围是[-2,-1], 所以-2≤y 0+y 1x 0+x 1≤-1, 所以-2≤-34·11PA k ≤-1,解得38≤1PA k ≤34跟踪演练2 (2018·全国大联考江苏卷)已知椭圆M: x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过其左焦点F (-c,0)的直线交椭圆M 于A ,B 两点,若弦AB 的中点为D (-4,2),则椭圆M 的方程是________. 答案x 272+y 236=1解析 设A (x 1,y 1),B (x 2,y 2),由中点坐标公式得x 1+x 2=-8,y 1+y 2=4.将A ,B 的坐标分别代入M 的方程中得⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,两式相减,化简得y 1-y 2x 1-x 2=2b 2a 2,又因为A ,B ,D ,F 四点共线,所以2-0c -4=y 1-y 2x 1-x 2=2b 2a2,所以a 2=b 2(c -4).由⎩⎪⎨⎪⎧a 2=b 2(c -4),c 2a 2=12,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧a 2=72,b 2=36,c =6,所以椭圆M 的方程为x 272+y 236=1.技巧三 根与系数的关系,化繁为简例3 已知椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,短轴的两个顶点与F 1,F 2构成面积为2的正方形.(1)求椭圆Γ的方程;(2)直线l 与椭圆Γ在y 轴的右侧交于点P ,Q ,以PQ 为直径的圆经过点F 2,PQ 的垂直平分线交x 轴于A 点,且OA →=611OF 2→,求直线l 的方程.解 (1)因为椭圆C 的短轴的两个端点和其两个焦点构成正方形,所以b =c , 因为S =a 2=2,所以a =2,b =c =1, 故椭圆Γ的方程为x 22+y 2=1.(2)设P (x 1,y 1),Q (x 2,y 2),直线l 的斜率存在, 设直线l :y =kx +m ,显然k ≠0,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,得(1+2k 2)x 2+4kmx +2(m 2-1)=0,因为x 1,2=-4km ±8(2k 2-m 2+1)2(1+2k 2) 所以x 1+x 2=-4km 1+2k 2,x 1x 2=2(m 2-1)1+2k 2,Δ=8(2k 2-m 2+1)>0,(*)y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-2k 21+2k2,y 1+y 2=kx 1+m +kx 2+m =k (x 1+x 2)+2m =2m1+2k2, 由PF 2→·QF 2→=0,得(x 1-1)(x 2-1)+y 1y 2=0,即x 1x 2-(x 1+x 2)+1+y 1y 2=0,得3m 2-1+4km =0,即k =1-3m24m,PQ 的中点为点C ⎝⎛⎭⎪⎫-2km 2k 2+1,m 2k 2+1,所以线段PQ 的中垂线AB 的方程为y -m2k 2+1=-1k ⎝ ⎛⎭⎪⎫x +2km 2k 2+1,令y =0,可得A ⎝⎛⎭⎪⎫-km 2k 2+1,0, 由OA →=611OF 2→,得-km 2k 2+1=611,将k =1-3m 24m 代入上式,得3m 4-m 29m 4+2m 2+1=311, 即6m 4-17m 2-3=0,解得m 2=3,所以m =3,k =-233或m =-3,k =233,经检验满足(*)式,所以直线PQ 的方程为 2x +3y -3=0或2x -3y -3=0.跟踪演练3 (2018·连云港期末)过抛物线y 2=4x 的焦点F 的直线与抛物线交于A, B 两点,若FA →=2BF →,则直线AB 的斜率为________. 答案 ±2 2解析 当直线AB 的斜率不存在时,不满足题意. ∵抛物线C 的焦点F (1,0), 设直线AB 的方程为y =k (x -1), 联立⎩⎨⎧y =k ()x -1,y 2=4x ,可得k 2x 2-2(2+k 2)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1,2=2(2+k 2)±4(2+k 2)2-4k42k 2, 则x 1+x 2=2()2+k 2k2,x 1·x 2=1, y 1+y 2=k (x 1+x 2-2)=4k,①∵FA →=(x 1-1,y 1),BF →=(1-x 2,-y 2),∴FA →=2BF →,即⎩⎪⎨⎪⎧x 1-1=2(1-x 2),y 1=-2y 2,∴⎩⎪⎨⎪⎧x 1=3-2x 2,y 1=-2y 2,②①②联立可得,x 2=k 2-4k 2,y 2=-4k,代入抛物线方程y 2=4x 可得k 2=8, 故 k =±2 2.技巧四 平几助力,事半功倍例4 (1)已知直线y =kx +1(k ≠0)交抛物线x 2=4y 于E ,F 两点,以EF 为直径的圆被x 轴截得的弦长为27,则k =________. 答案 ±1解析 直线y =kx +1()k ≠0恒过定点()0,1, 则EF =y E +y F +p , 圆心到x 轴的距离为d =y E +y F2,圆的半径为r =EF2,联立⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,消去x 得,y 2-2()1+2k 2y +1=0,则y E +y F =2()1+2k 2, 所以根据垂径定理有⎝ ⎛⎭⎪⎫EF 22=⎝⎛⎭⎪⎫y E +y F 22+()72,代入计算得k =±1.(2)已知P 是抛物线y 2=4x 上的动点,点Q 在圆C :()x +32+()y -32=1上,点R 是点P在y 轴上的射影,则PQ +PR 的最小值是________. 答案 3解析 根据抛物线的定义,可知PR =PF -1,而PQ 的最小值是PC -1, 所以PQ +PR 的最小值就是PF +PC -2的最小值,当C ,P ,F 三点共线时,PF +FC 最小,最小值是CF =(-3-1)2+(3-0)2=5 , 所以PQ +PR 的最小值是3.跟踪演练4 已知抛物线y 2=2px 的焦点F 与双曲线x 27-y 29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上,且AK =2AF ,则△AFK 的面积为___________. 答案 32解析 双曲线x 27-y 29=1的右焦点为点(4,0),即为抛物线y 2=2px 的焦点⎝ ⎛⎭⎪⎫p 2,0,所以p2=4,即p =8,所以抛物线的方程为y 2=16x ,其准线为x =-4,所以K (-4,0),过A 作AM 垂直于准线,垂足为M ,则AM =AF ,所以AK =2AM ,所以∠MAK =45°,所以AM =MK =AF ,从而易知四边形AMKF 为正方形,所以KF =AF ,所以△AFK 的面积为12KF 2=32.技巧五 巧设参数,方便计算例5 (2018·无锡期末)在平面直角坐标系xOy 中,已知点M 是椭圆C :x 24+y 2=1上位于第一象限的点,O 为坐标原点,A ,B 分别为椭圆C 的右顶点和上顶点,则四边形OAMB 的面积的最大值为________. 答案2解析 S 四边形OAMB =S △OAB +S △AMB =12()2+AB ·d =12(2+5d ),其中d 为点M 到直线AB 的距离,当M 到直线AB 距离最远时S四边形OAMB取得最大值,设M (2cos θ,sin θ),直线AB :x +2y-2=0,所以d =||2cos θ+2sin θ-25=⎪⎪⎪⎪⎪⎪22sin ⎝ ⎛⎭⎪⎫θ+π4-25≤22-25,故S四边形OAMB的最大值为 2.跟踪演练5 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若AF =3,则△AOB 的面积为________. 答案322解析 设∠AFx =θ(0<θ<π)及BF =m , ∵AF =3,∴点A 到准线l :x =-1的距离为3, ∴2+3cos θ=3,∴cos θ=13,∵m =2+m cos(π-θ),∴m =21+cos θ=32,∵cos θ=13,0<θ<π,∴sin θ=223,∴△AOB 的面积为S = 12×OF ×AB ×si n θ= 12×1×⎝ ⎛⎭⎪⎫3+32×223=322.。

(全国通用版)2019高考数学二轮复习 专题五 解析几何 第2讲 圆锥曲线学案 文

第2讲 圆锥曲线[考情考向分析] 1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).热点一 圆锥曲线的定义与标准方程 1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|). (2)双曲线:||PF 1|-|PF 2||=2a (2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,点F 不在直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)(2018·乌鲁木齐诊断)椭圆的离心率为22,F 为椭圆的一个焦点,若椭圆上存在一点与F 关于直线y =x +4对称,则椭圆方程为( ) A.x 218+y 29=1 B.x 29+y 218=1C.x 218+y 29=1或x 29+y 218=1 D.x 28+y 24=1或x 24+y 28=1 答案 C解析 由题意知,ca =22,得a 2=2b 2=2c 2, 当F 在x 轴上时,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),椭圆上任取点P ()x 0,y 0,取焦点F (-c,0), 则PF 中点M ⎝⎛⎭⎪⎫x 0-c 2,y 02,根据条件可得⎩⎪⎨⎪⎧y 02=x 0-c 2+4,k PF=yx 0+c =-1,联立两式解得x 0=-4,y 0=4-c , 代入椭圆方程解得a =32,b =3, 由此可得椭圆方程为x 218+y 29=1.同理,当F 在y 轴上时,椭圆方程为y 218+x 29=1.(2)(2018·龙岩质检)已知以圆C :(x -1)2+y 2=4的圆心为焦点的抛物线C 1与圆C 在第一象限交于A 点,B 点是抛物线C 2:x 2=8y 上任意一点,BM 与直线y =-2垂直,垂足为M ,则|BM |-|AB |的最大值为( ) A .1 B .2 C .-1 D .8 答案 A解析 因为圆C :(x -1)2+y 2=4的圆心为C (1,0), 所以可得以C (1,0)为焦点的抛物线方程为y 2=4x ,由⎩⎪⎨⎪⎧y 2=4x ,(x -1)2+y 2=4,解得A (1,2).抛物线C 2:x 2=8y 的焦点为F (0,2), 准线方程为y =-2,即有|BM |-|AB |=|BF |-|AB |≤|AF |=1,当且仅当A ,B ,F (A 在B ,F 之间)三点共线时,可得最大值1.思维升华 (1)准确把握圆锥曲线的定义和标准方程及其简单几何性质,注意当焦点在不同坐标轴上时,椭圆、双曲线、抛物线方程的不同表示形式.(2)求圆锥曲线方程的基本方法就是待定系数法,可结合草图确定.跟踪演练1 (1)(2018·黑龙江哈尔滨师范大学附属中学模拟)与椭圆C :y 26+x 22=1共焦点且渐近线方程为y =±3x 的双曲线的标准方程为( ) A .x 2-y 23=1B.x 23-y 2=1 C .y 2-x 23=1D.y 23-x 2=1 答案 D解析 ∵y 26+x 22=1的焦点坐标为(0,±2),∴双曲线的焦点为(0,±2),可得c =2=a 2+b 2, 由渐近线方程为y =±3x ,得a b=3, ∴a =3,b =1,∴双曲线的标准方程为y 23-x 2=1,故选D.(2)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线方程为( )A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x 答案 C解析 如图分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设准线交x 轴于点G .设||BF =a ,则由已知得||BC =2a ,由抛物线定义,得||BD =a ,故∠BCD =30°, 在Rt△ACE 中,∵||AE =|AF |=3,||AC =3+3a ,|AC |=2|AE |, ∴3+3a =6,从而得a =1,||FC =3a =3. ∴p =||FG =12||FC =32,因此抛物线方程为y 2=3x ,故选C. 热点二 圆锥曲线的几何性质1.椭圆、双曲线中a ,b ,c 之间的关系 (1)在椭圆中:a 2=b 2+c 2,离心率为e =ca=1-⎝ ⎛⎭⎪⎫b a 2.(2)在双曲线中:c 2=a 2+b 2,离心率为e =c a=1+⎝ ⎛⎭⎪⎫b a2.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax .注意离心率e 与渐近线的斜率的关系.例2 (1)(2018·永州模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F 2,O 为坐标原点,M为y 轴上一点,点A 是直线MF 2与椭圆C 的一个交点,且|OA |=|OF 2|=3|OM |,则椭圆C 的离心率为( ) A.104 B.106 C.55 D.53答案 A解析 因为|OA |=|OF 2|=3|OM |, 所以∠F 1AF 2=90°. 设|AF 1|=m ,|AF 2|=n , 如图所示,由题意可得Rt△AF 1F 2∽Rt△OMF 2, 所以|AF 1||AF 2|=|OM ||OF 2|=13,则m +n =2a ,m 2+n 2=4c 2,n =3m ,解得m 2=2b 23,n 2=9m 2=6b 2,所以2b 23+6b 2=4c 2,即5(a 2-c 2)3=c 2,解得e =c a =104,故选A. (2)(2018·全国Ⅲ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为( )A. 2 B .2 C.322 D .2 2答案 D解析 由题意,得e =c a=2,c 2=a 2+b 2,得a 2=b 2. 又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0, 所以点(4,0)到渐近线的距离为42=2 2.思维升华 (1)明确圆锥曲线中a ,b ,c ,e 各量之间的关系是求解问题的关键.(2)在求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.跟踪演练2 (1)(2018·全国Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( ) A .1-32 B .2- 3 C.3-12D.3-1 答案 D解析 在Rt△PF 1F 2中,∠PF 2F 1=60°,设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,直线l 过点⎝ ⎛⎭⎪⎫23a ,0且与双曲线C 的一条渐近线垂直,以双曲线C 的右焦点为圆心,半焦距为半径的圆与直线l 交于M ,N 两点,若|MN |=423c ,则双曲线C 的渐近线方程为( )A .y =±2xB .y =±3xC .y =±2xD .y =±4x答案 B解析 方法一 由题意可设渐近线方程为y =b a x ,则直线l 的斜率k l =-a b,直线l 的方程为y =-a b ⎝ ⎛⎭⎪⎫x -23a ,整理可得ax +by -23a 2=0.焦点(c,0)到直线l 的距离d =⎪⎪⎪⎪⎪⎪ac -23a 2a 2+b 2=⎪⎪⎪⎪⎪⎪ac -23a 2c,则弦长为2c 2-d 2=2c 2-⎝ ⎛⎭⎪⎫ac -23a 22c 2=423c ,即e 4-9e 2+12e -4=0,分解因式得()e -1()e -2()e 2+3e -2=0.又双曲线的离心率e >1,则e =c a=2,所以b a =c 2-a 2a 2=⎝ ⎛⎭⎪⎫c a 2-1=3, 所以双曲线C 的渐近线方程为y =±3x . 方法二 圆心到直线l 的距离为c 2-⎝⎛⎭⎪⎫223c 2=c3, ∴⎪⎪⎪⎪⎪⎪ac -23a 2c=c 3,∴c 2-3ac +2a 2=0,∴c =2a ,b =3a ,∴渐近线方程为y =±3x . 热点三 直线与圆锥曲线判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标. (2)几何法:画出直线与圆锥曲线的图象,根据图象判断公共点个数.例3 (2018·衡水金卷调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)若直线AB 与椭圆的长轴垂直,|AB |=12a ,求椭圆的离心率;(2)若直线AB 的斜率为1,|AB |=2a3a 2+b 2,求椭圆的短轴与长轴的比值.解 (1)由题意可知,直线AB 的方程为x =-c , ∴|AB |=2b 2a =12a ,即a 2=4b 2,故e =c a =a 2-b 2a 2=1-b 2a 2=32. (2)设F 1(-c,0),则直线AB 的方程为y =x +c ,联立⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y2b2=1,消去y ,Δ=4a 4c 2-4a 2(a 2+b 2)(c 2-b 2)=8a 2b 4. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2,∴|AB |=1+1|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=2·8a 2b4a 2+b2=4ab 2a 2+b 2=2a 3a 2+b 2, ∴a 2=2b 2,∴b 2a 2=12,∴2b 2a =22,即椭圆的短轴与长轴之比为22. 思维升华 解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.跟踪演练3 如图所示,抛物线y 2=4x 的焦点为F ,动点T (-1,m ),过F 作TF 的垂线交抛物线于P ,Q 两点,弦PQ 的中点为N .(1)证明:线段NT 平行于x 轴(或在x 轴上); (2)若m >0且|NF |=|TF |,求m 的值及点N 的坐标.(1)证明 抛物线的焦点为F (1,0),准线方程为x =-1,动点T (-1,m )在准线上, 则k TF =-m2.当m =0时,T 为抛物线准线与x 轴的交点,这时PQ 为抛物线的通径,点N 与焦点F 重合,显然线段NT 在x 轴上; 当m ≠0时,由条件知k PQ =2m,所以直线PQ 的方程为y =2m(x -1).联立⎩⎪⎨⎪⎧y 2=4x ,y =2m(x -1),消去y ,得x 2-(2+m 2)x +1=0,Δ=[-(2+m 2)]2-4=m 2(4+m 2)>0, 设P (x 1,y 1),Q (x 2,y 2),可知x 1+x 2=2+m 2,y 1+y 2=2m(x 1+x 2-2)=2m .所以弦PQ 的中点N ⎝ ⎛⎭⎪⎫2+m 22,m ,又T (-1,m ),所以k NT =0,则NT 平行于x 轴.综上可知,线段NT 平行于x 轴(或在x 轴上). (2)解 已知|NF |=|TF |,在△TFN 中,tan∠NTF =|NF ||TF |=1,得∠NTF =45°,设A 是准线与x 轴的交点,则△TFA 是等腰直角三角形,所以|TA |=|AF |=2, 又动点T (-1,m ),其中m >0,则m =2. 因为∠NTF =45°,所以k PQ =tan 45°=1, 又焦点F (1,0),可得直线PQ 的方程为y =x -1. 由m =2,得T (-1,2), 由(1)知线段NT 平行于x 轴,设N (x 0,y 0),则y 0=2,代入y =x -1,得x 0=3, 所以N (3,2).综上可知,m =2,N (3,2).真题体验1.(2017·北京)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.答案 2解析 由双曲线的标准方程知,a =1,b 2=m ,c =1+m , 故双曲线的离心率e =c a=1+m =3, ∴1+m =3,解得m =2.2.(2017·全国Ⅱ改编)若双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则双曲线C 的离心率为________. 答案 2解析 设双曲线的一条渐近线方程为y =b ax , 圆的圆心为(2,0),半径为2,由弦长为2,得圆心到渐近线的距离为22-12= 3. 由点到直线的距离公式,得|2b |a 2+b2=3,解得b 2=3a 2.所以双曲线C 的离心率e =ca =c 2a 2=1+b 2a2=2. 3.(2017·全国Ⅱ改编)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为________. 答案 2 3解析 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式,可得直线MF 的方程为y =3(x -1). 联立方程组⎩⎨⎧y =3(x -1),y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎨⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23). ∵MN ⊥l ,∴N (-1,23). ∴|NF |=(1+1)2+(0-23)2=4, |MF |=|MN |=3-(-1)=4. ∴△MNF 是边长为4的等边三角形. ∴点M 到直线NF 的距离为2 3.4.(2017·山东)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支与焦点为F的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________. 答案 y =±22x 解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py ,消去x ,得a 2y 2-2pb 2y +a 2b 2=0, ∴y 1+y 2=2pb 2a2.又∵|AF |+|BF |=4|OF |,∴y 1+p 2+y 2+p 2=4×p2,即y 1+y 2=p ,∴2pb2a 2=p ,即b 2a 2=12,∴b a =22, ∴双曲线的渐近线方程为y =±22x . 押题预测1.已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2→=13F 2B →,则该双曲线的离心率为( )A.62 B.52C. 3 D .2 押题依据 圆锥曲线的几何性质是圆锥曲线的灵魂,其中离心率、渐近线是高考命题的热点. 答案 A解析 由F 2(c ,0)到渐近线y =bax 的距离为d =bc a 2+b2=b ,即||AF 2→=b ,则||BF 2→=3b . 在△AF 2O 中,||OA →||=a ,OF 2→=c ,tan∠F 2OA =b a ,tan∠AOB =4b a =2×ba 1-⎝ ⎛⎭⎪⎫b a 2,化简可得a2=2b 2,即c 2=a 2+b 2=32a 2,即e =c a =62,故选A.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且点⎝ ⎛⎭⎪⎫1,32在该椭圆上. (1)求椭圆C 的方程;(2)过椭圆C 的左焦点F 1的直线l 与椭圆C 相交于A ,B 两点,若△AOB 的面积为627,求圆心在原点O 且与直线l 相切的圆的方程.押题依据 椭圆及其性质是历年高考的重点,直线与椭圆的位置关系中的弦长、中点等知识应给予充分关注.解 (1)由题意可得e =c a =12,又a 2=b 2+c 2, 所以b 2=34a 2.因为椭圆C 经过点⎝ ⎛⎭⎪⎫1,32, 所以1a 2+9434a 2=1,解得a 2=4,所以b 2=3, 故椭圆C 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),设直线l 的方程为x =ty -1,由⎩⎪⎨⎪⎧x =ty -1,x 24+y23=1,消去x ,得(4+3t 2)y 2-6ty -9=0,显然Δ>0恒成立,设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=6t 4+3t 2,y 1y 2=-94+3t2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2 =36t 2(4+3t 2)2+364+3t 2=12t 2+14+3t2, 所以S △AOB =12·|F 1O |·|y 1-y 2|=6t 2+14+3t 2=627, 化简得18t 4-t 2-17=0,即(18t 2+17)(t 2-1)=0, 解得t 21=1,t 22=-1718(舍去).又圆O 的半径r =|0-t ×0+1|1+t 2=11+t 2, 所以r =22,故圆O 的方程为x 2+y 2=12.A 组 专题通关1.(2018·合肥模拟)已知双曲线C :y 2a 2-x 2b2=1(a >0,b >0)的上焦点为F ,M 是双曲线虚轴的一个端点,过F ,M 的直线交双曲线的下支于A 点.若M 为AF 的中点,且|AF →|=6,则双曲线C 的方程为( )A.y 22-x 28=1 B.y 28-x 22=1 C .y 2-x 24=1D.y 24-x 2=1 答案 C解析 设M 为双曲线虚轴的右端点,由题意,可得F (0,c ),M (b ,0),则A (2b ,-c ),由题意可得⎩⎪⎨⎪⎧b 2+c 2=9,c 2a 2-4b2b 2=1,c 2=a 2+b 2,解得a =1,b =2,所以双曲线C 的方程为y 2-x 24=1.2.(2018·潍坊模拟)设P 为双曲线x 2a 2-y 2b2=1右支上一点,F 1,F 2分别为该双曲线的左、右焦点,c ,e 分别表示该双曲线的半焦距和离心率.若PF 1→·PF 2→=0,直线PF 2交y 轴于点A ,则△AF 1P 的内切圆的半径为( ) A .a B .b C .c D .e 答案 A解析 根据题意PF 1→·PF 2→=0,可知△AF 1P 是直角三角形,根据直角三角形的内切圆的半径公式以及双曲线的定义可知2r =|PF 1|+|PA |-|AF 1|=|PF 1|+|PA |-|AF 2|=|PF 1|-(|AF 2|-|PA |)=|PF 1|-|PF 2|=2a ,求得r =a ,故选A.3.(2018·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( ) A.x 23-y 29=1 B.x 29-y 23=1 C.x 24-y 212=1 D.x 212-y 24=1 答案 A解析 设双曲线的右焦点为F (c ,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴y =±b 2a.不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+(-a )2=|bc -b 2|c=bc(c -b ),d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+(-a )2=|bc +b 2|c=bc(c +b ),∴d 1+d 2=bc·2c =2b =6,∴b =3. ∵c a=2,c 2=a 2+b 2,∴a 2=3, ∴双曲线的方程为x 23-y 29=1.故选A.4.(2018·全国Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为( )A. 5 B .2 C. 3 D. 2 答案 C解析 如图,过点F 1向OP 的反向延长线作垂线,垂足为P ′,连接P ′F 2,由题意可知,四边形PF 1P ′F 2为平行四边形,且△PP ′F 2是直角三角形. 因为|F 2P |=b ,|F 2O |=c ,所以|OP |=a . 又|PF 1|=6a =|F 2P ′|,|PP ′|=2a , 所以|F 2P |=2a =b ,所以c =a 2+b 2=3a ,所以e =ca= 3.5.(2018·全国Ⅲ)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________. 答案 2解析 方法一 设点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,∴y 21-y 22=4(x 1-x 2),∴k =y 1-y 2x 1-x 2=4y 1+y 2. 设AB 的中点为M ′(x 0,y 0),抛物线的焦点为F ,分别过点A ,B 作准线x =-1的垂线,垂足为A ′,B ′,则|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|). ∵M ′(x 0,y 0)为AB 的中点,∴M 为A ′B ′的中点,∴MM ′平行于x 轴, ∴y 1+y 2=2,∴k =2.方法二 由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k2.由M (-1,1),得AM →=(-1-x 1,1-y 1), BM →=(-1-x 2,1-y 2).由∠AMB =90°,得AM →·BM →=0, ∴(x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0,∴x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0.又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1],y 1+y 2=k (x 1+x 2-2),∴1+2k 2+4k2+1+k 2⎝⎛⎭⎪⎫1-2k 2+4k2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k+1=0,解得k =2.6.(2018·北京)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________. 答案3-1 2解析 方法一 双曲线N 的渐近线方程为y =±nm x ,则n m=tan 60°=3,∴双曲线N 的离心率e 1满足e 21=1+n 2m2=4,∴e 1=2.由⎩⎪⎨⎪⎧y =3x ,x 2a 2+y 2b2=1,得x 2=a 2b 23a 2+b2.如图,设D 点的横坐标为x ,由正六边形的性质得|ED |=2x =c ,∴4x 2=c 2. ∴4a 2b 23a 2+b2=a 2-b 2,得3a 4-6a 2b 2-b 4=0, ∴3-6b 2a2-⎝ ⎛⎭⎪⎫b 2a 22=0,解得b2a2=23-3.∴椭圆M 的离心率e 2满足e 22=1-b 2a2=4-2 3.∴e 2=3-1.方法二 双曲线N 的渐近线方程为y =±n mx , 则n m=tan 60°= 3.又c 1=m 2+n 2=2m ,∴双曲线N 的离心率为c 1m=2.如图,连接EC ,由题意知,F ,C 为椭圆M 的两焦点,设正六边形的边长为1, 则|FC |=2c 2=2,即c 2=1.又E 为椭圆M 上一点,则|EF |+|EC |=2a ,即1+3=2a , ∴a =1+32.∴椭圆M 的离心率为c 2a =21+3=3-1.7.(2018·衡阳模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,且直线l 与圆x 2-px +y 2-34p 2=0交于C ,D 两点,若|AB |=3|CD |,则直线l 的斜率为________.答案 ±22解析 由题意得F ⎝ ⎛⎭⎪⎫p 2,0,由x 2-px +y 2-34p 2=0,配方得⎝ ⎛⎭⎪⎫x -p 22+y 2=p 2,所以直线l 过圆心⎝ ⎛⎭⎪⎫p 2,0,可得|CD |=2p ,若直线l 的斜率不存在,则l :x =p2,|AB |=2p ,|CD |=2p ,不符合题意,∴直线l 的斜率存在.∴可设直线l 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,化为x 2-⎝ ⎛⎭⎪⎫p +2p k 2x +p24=0,所以x 1+x 2=p +2pk2,所以|AB |=x 1+x 2+p =2p +2pk 2,由|AB |=3|CD |,所以2p +2pk2=6p ,可得k 2=12,所以k =±22.8.(2018·郑州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且离心率为12,△ABC的三个顶点都在椭圆C 上,设△ABC 三条边AB ,BC ,AC 的中点分别为D ,E ,M ,且三条边所在直线的斜率分别为k 1,k 2,k 3,且k 1,k 2,k 3均不为0.O 为坐标原点,若直线OD ,OE ,OM 的斜率之和为1,则1k 1+1k 2+1k 3=________.答案 -43解析 由题意可得c =1,c a =12,所以a =2,b =3, 椭圆C :x 24+y 23=1,设A (x 1,y 1),B (x 2,y 2),C ()x 3,y 3,x 214+y 213=1,x 224+y 223=1,两式作差得()x 2-x 1()x 2+x 14=-()y 2-y 1()y 2+y 13,则()x 2+x 1()y 2+y 1=-4()y 2-y 13()x 2-x 1,1k 1=-43k OD ,同理可得1k 3=-43k OM ,1k 2=-43k OE ,所以1k 1+1k 2+1k 3=-43()k OD +k OE +k OM =-43.9.(2018·全国Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解 (1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题意知4k 2+4k2=8,解得k =-1(舍去)或k =1.因此l 的方程为x -y -1=0.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3), 即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(x 0-y 0-1)22+16,解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2018·天津)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B ,已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.解 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59,又由a 2=b 2+c 2,可得2a =3b .又|AB |=a 2+b 2=13,从而a =3,b =2,所以椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意知,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1). 由△BPM 的面积是△BPQ 面积的2倍,可得|PM |=2|PQ |, 从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 由题意求得直线AB 的方程为2x +3y =6,由方程组⎩⎪⎨⎪⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2. 由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4.由x 2=5x 1,可得9k 2+4=5(3k +2),两边平方, 整理得18k 2+25k +8=0,解得k =-89或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去;当k =-12时,x 2=12,x 1=125,符合题意.所以k 的值为-12.B 组 能力提高11.(2018·长沙模拟)2000多年前,古希腊大数学家阿波罗尼奥斯(Apollonius)发现:平面截圆锥的截口曲线是圆锥曲线.已知圆锥的高为PH ,AB 为地面直径,顶角为2θ,那么不过顶点P 的平面与PH 夹角π2>a >θ时,截口曲线为椭圆;与PH 夹角a =θ时,截口曲线为抛物线;与PH 夹角θ>a >0时,截口曲线为双曲线.如图,底面内的直线AM ⊥AB ,过AM 的平面截圆锥得到的曲线为椭圆,其中与PB 的交点为C ,可知AC 为长轴.那么当C 在线段PB 上运动时,截口曲线的短轴端点的轨迹为( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分答案 D 解析 如图,因为对于给定的椭圆来说,短轴的端点Q 到焦点F 的距离等于长半轴a ,但短轴的端点Q 到直线AM 的距离也是a ,即说明短轴的端点Q 到定点F 的距离等于到定直线AM 的距离,且点F 不在定直线AM 上,所以由抛物线的定义可知,短轴的端点的轨迹是抛物线的一部分,故选D.12.双曲线C 的左、右焦点分别为F 1,F 2,以F 1为圆心,|F 1F 2|为半径的圆与C 的左支相交于M ,N 两点,若△MNF 2的一个内角为60°,则C 的离心率为________.答案3+12解析 画出图形如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由题意得△MNF 2是等边三角形,点M ,N 关于x 轴对称,且|F 1M |=|F 1N |=2c ,∠MF 1N =120°. ∴点M 的横坐标为-c -2c ·cos 60°=-2c , 纵坐标为2c ·sin 60°=3c , 故点M (-2c ,3c ).又点M 在双曲线x 2a 2-y 2b2=1(a >0,b >0)上,∴4c2a 2-3c 2b 2=1,即4c 2a 2-3c2c 2-a 2=1, 整理得4c 4-8c 2a 2+a 4=0, ∴4e 4-8e 2+1=0,解得e 2=8±488=4±234,∴e =3±12, 又e >1,故e =3+12. 13.已知直线MN 过椭圆x 22+y 2=1的左焦点F ,与椭圆交于M ,N 两点,直线PQ 过原点O 与MN 平行,且与椭圆交于P ,Q 两点,则|PQ |2|MN |=________.答案 2 2解析 方法一 特殊化,设MN ⊥x 轴,则|MN |=2b 2a =22=2,|PQ |2=4,|PQ |2|MN |=42=2 2.方法二 由题意知F (-1,0),当直线MN 的斜率不存在时,|MN |=2b2a=2,|PQ |=2b =2,则|PQ |2|MN |=22; 当直线MN 的斜率存在时,设直线MN 的斜率为k , 则MN 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1, 整理得(2k 2+1)x 2+4k 2x +2k 2-2=0, Δ=8k 2+8>0. 由根与系数的关系,得 x 1+x 2=-4k 22k 2+1,x 1x 2=2k 2-22k 2+1, 则|MN |=1+k 2(x 1+x 2)2-4x 1x 2=22(k 2+1)2k 2+1. 直线PQ 的方程为y =kx ,P (x 3,y 3),Q (x 4,y 4),则⎩⎪⎨⎪⎧y =kx ,x 22+y 2=1,解得x 2=21+2k 2,y 2=2k 21+2k 2, 则|OP |2=x 23+y 23=2(1+k 2)1+2k 2, 又|PQ |=2|OP |, 所以|PQ |2=4|OP |2=8(1+k 2)1+2k 2, 所以|PQ |2|MN |=2 2. 综上,|PQ |2|MN |=2 2. 14.(2017·天津)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c,0),右顶点为A ,点E 的坐标为(0,c ),△EFA 的面积为b 22. (1)求椭圆的离心率;(2)设点Q 在线段AE 上,|FQ |=3c 2,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM ∥QN ,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .①求直线FP 的斜率;②求椭圆的方程.解 (1)设椭圆的离心率为e .由已知可得12(c +a )c =b 22. 又由b 2=a 2-c 2,可得2c 2+ac -a 2=0,即2e 2+e -1=0,解得e =-1或e =12. 又因为0<e <1,所以e =12.所以椭圆的离心率为12. (2)①依题意,设直线FP 的方程为x =my -c (m >0),则直线FP 的斜率为1m. 由(1)知a =2c ,可得直线AE 的方程为x 2c +y c=1, 即x +2y -2c =0,与直线FP 的方程联立,可得x =(2m -2)c m +2,y =3c m +2, 即点Q 的坐标为⎝ ⎛⎭⎪⎫(2m -2)c m +2,3c m +2. 由已知|FQ |=3c 2, 有⎣⎢⎡⎦⎥⎤(2m -2)c m +2+c 2+⎝ ⎛⎭⎪⎫3c m +22=⎝ ⎛⎭⎪⎫3c 22, 整理得3m 2-4m =0,所以m =43(m =0舍去), 即直线FP 的斜率为34. ②由a =2c ,可得b =3c ,故椭圆方程可以表示为x 24c 2+y 23c 2=1. 由①得直线FP 的方程为3x -4y +3c =0,与椭圆方程联立得⎩⎪⎨⎪⎧ 3x -4y +3c =0,x 24c 2+y 23c 2=1,消去y ,整理得7x 2+6cx -13c 2=0,解得x =-13c 7(舍去)或x =c . 因此可得点P ⎝⎛⎭⎪⎫c ,3c 2, 进而可得|FP |=(c +c )2+⎝ ⎛⎭⎪⎫3c 22=5c 2, 所以|PQ |=|FP |-|FQ |=5c 2-3c 2=c .由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN ⊥FP ,所以|QN |=|FQ |·tan∠QFN =3c 2×34=9c 8, 所以△FQN 的面积为12|FQ ||QN |=27c 232. 同理△FPM 的面积等于75c 232. 由四边形PQNM 的面积为3c ,得75c 232-27c 232=3c , 整理得c 2=2c .又由c >0,得c =2.所以椭圆的方程为x 216+y 212=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
专题五 解析几何
规范答题示范
【典例 】 (12分)(2017·全国Ⅱ卷)设O为坐标原点,动点M在椭圆C:x22+y2=1上,过
M

作x轴的垂线,垂足为N,点P满足NP→=2NM→.
(1)求点P的轨迹方程;

(2)设点Q在直线x=-3上,且OP→·PQ→=1.证明:过点P且垂直于OQ的直线l过C的左焦
点F.
[信息提取]
看到求点P的轨迹方程,想到先设出点的坐标,然后利用已知条件,采用代入法求轨迹方
程;

看到过点P且垂直于OQ的直线l过C的左焦点F,想到证明OQ→⊥PF→.
[规范解答]

(1)解 设P(x,y),M(x0,y0),则N(x0,0),NP→=(x-x0,y),NM→=(0,y0),
………………………………………………………………………………1分
由NP→=2NM→得:x0=x,y0=22y,
………………………………………………………………………………3分
因为M(x0,y0)在C上,所以x22+y22=1,
因此点P的轨迹方程为x2+y2=2.
………………………………………………………………………………5分
(2)证明 由题意知F(-1,0),设Q(-3,t),P(m,n),

则OQ→=(-3,t),PF→=(-1-m,-n),
OQ→·PF→=3+3m-tn

………………………………………………………………………………7分

OP→=(m,n),PQ→=(-3-m,t-n
),
2

由OP→·PQ→=1,得-3m-m2+tn-n2=1,
………………………………………………………………………………9分
又由(1)知m2+n2=2,故3+3m-tn=0.

所以OQ→·PF→=0,即OQ→⊥PF→,
………………………………………………………………………………11分
又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.
………………………………………………………………………………12分
[高考状元满分心得]
写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点
步骤一定要写全,如第(1)问,设P(x,y),M(x0,y0),N(x0,0),就得分,第(2)问中求出
-3m-m2+tn-n2=1就得分.
写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写

清得分关键点,如第(1)问中一定要写出x0=x,y0=22y,没有则不得分;第(2)问一定要
写出OQ→·PF→=0,即OQ→⊥PF→,否则不得分,因此步骤才是关键的,只有结果不得分.
[解题程序]

第一步:设出点的坐标,表示向量NP→,NM→;
第二步:由NP→=2NM→,确定点P,N坐标等量关系;
第三步:求点P的轨迹方程x2+y2=2;
第四步:由条件确定点P,Q坐标间的关系;

第五步:由OQ→·PF→=0,证明OQ⊥PF;
第六步:利用过定点作垂线的唯一性得出结论.
【巩固提升】 (2018·郑州质检)已知椭圆C:x24+y2=1,点O是坐标原点,点P是椭圆
C

上任意一点,且点M满足OM→=λOP→(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成
的曲线为Cλ.
(1)求曲线Cλ的轨迹方程;
(2)直线l是椭圆C在点P处的切线,与曲线Cλ的交点为A,B两点,探究△OAB的面积是
否为定值.若是,求△OAB的面积,若不是,请说明理由.
3

解 (1)设点M的坐标为(x,y),对应的点P的坐标为xλ,yλ.由于点P在椭圆C上,得



x
λ

2

4

+yλ2=1,
即曲线Cλ的轨迹是椭圆,标准方程为x24λ2+y2λ2=1(λ>1).
(2)当直线l的斜率不存在时,这时直线l的方程为x=±2,

联立方程组x=±2,x24+y2=λ2,解得y=±λ2-1,
得|AB|=2λ2-1.
得S△OAB=12|OP|×|AB|=2λ2-1,
当直线l的斜率存在时,设l:y=kx+m,

联立方程组y=kx+m,x24+y2=1,
得(4k2+1)x2+8kmx+4(m2-1)=0,
由Δ=0,可得m2=4k2+1.联立方程组y=kx+m,x24+y2=λ2,
得(4k2+1)x2+8kmx+4(m2-λ2)=0.
∴x1+x2=-8km4k2+1,x1x2=4(m2-λ2)4k2+1.
则|AB|=1+k2·16(4k2+1)(λ2-1)4k2+1
=41+k2·λ2-14k2+1,

原点到直线l的距离为d=|m|1+k2=4k2+1k2+1,
所以S△OAB=12|AB|d=2λ2-1.
综上所述,△OAB的面积为定值2λ2-1.

相关文档
最新文档