2017年上海市普陀区中考数学一模试卷含答案解析
2018年上海市普陀区中考一模数学试题2017-12-27

2018年上海市普陀区九年级第一学期期末考试数学试题2017年12月27日,考试时间100分钟,满分150分一、选择题(本大题共6题,每题4分,共24分) 1.下列函数中,y 关于x 的二次函数是(). (A)y =ax 2+bx +c ;(B) y =x (x -1);(C)21y x =;(D)y =(x -1)2-x 2.2.在Rt △ABC 中,∠C =90°,AC =2,下面结论中,正确的是(). (A)AB =2sin A ;(B)AB =2cos A ;(C)BC =2tan A ;(D)BC =2cot A .3.如图1,在△ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断ED ∥BC 的是().(A)BA CA BD CE =; (B)EA DA EC DB =; (C) ED EABC AC=; (D)EA ACAD AB=. 4.已知5a b =,下列说法中,不正确的是().(A)50a b -= ; (B)a 与b 方向相同; (C)a ∥b ; (D)5a b = .图15.如图2,在平行四边形ABCD 中,F 是边AD 上一点,射线CF 和BA 的延长线交于点E ,如果12EAF CDF C C ∆∆=,那么EAF EBCSS ∆∆的值是(). (A)12; (B)13; (C)14; (D)19.图26.如图3,已知AB 和CD 是 O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中,①AB CD =;②OM =ON ;③P A =PC ;④∠BPO =∠DPO ,正确的个数是(). (A)1个;(B)2个;(C)3个;(D)4个.图3二、填空题(每小题4分,共48分) 7.如果那么=________. 8.已知线段a =4厘米,b =9厘米,线段c 是线段a 和线段b 的比例中项,线段c 的长度等于_________厘米.9.化简:_________.10.在直角坐标平面内,抛物线y =3x 2+2x 在对称轴的左侧部分是_______的.(填“上升”或“下降”)11.二次函数y =(x -1)2-3的图像与y 轴的交点坐标是_________.12.将抛物线y =2x 2平移,使顶点移动到点P (-3,1)的位置,那么平移后所得新抛物线的表达式是_________.13.在直角坐标平面内有一点A (3,4),点A 与原点O 的连线与x 轴的正半轴夹角为α,那么角α的余弦值是_________.14.如图4,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、AB 上,且∠ADE =∠B ,如果DE ∶AD =2∶5,BD =3,那么AC =_________.15.如图5,某水库大坝的横断面是梯形ABCD ,坝顶宽AD 是6米,坝高是20米,背水坡AB 的坡角为30°,迎水坡CD 的坡度为1∶2,那么坝底BC 的长度等于_________米.(结果保留根号)图4 图532a =b ba a+-b =--)23(4b b a16.已知Rt △ABC 中,∠C =90°,AC =3,BC =,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内,设⊙D 的半径为r ,那么r 的取值范围是_________.17.如图6,点D 在△ABC 的边BC 上,已知点E 、点F 分别为△ABD 和△ADC 的重心,如果BC =12,那么两个三角形重心之间的距离EF 的长等于__________.18.如图7,△ABC 中,AB =5,AC =6,将△ABC 翻折,使得点A 落到边BC 上的点A ´处,折痕分别交边AB 、AC 于点E 、点F ,如果A ′F ∥AB ,那么BE =______________.图6 图7三、解答题(本题共7题,满分78分) 19.(本题满分10分)计算:21tan 60sin 452cos30cot 45︒︒︒︒-⋅-.20.(本题满分10分)已知一个二次函数的图像经过点A (0,-3)、B (1,0)、C (m ,2m +3)、D (-1,-2)四点,求这个函数的解析式及点C 的坐标.7如图8,已知O 经过△ABC 的顶点A 、B ,交边BC 于点D ,点A 恰为 BD的中点,且BD=8,AC=9,1sin 3C =,求O 的半径.图822.(本题满分10分)下面是一位同学的一道作图题:(1) 试将结论补完整:线段__________就是所求的线段x . (2) 这位同学作图的依据是__________;(3) 如果OA=4,AB=5,AC m = ,试用m 表示向量DB.已知:如图9,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE·DB.求证:(1)△BCE∽△ADE;(2)AB·BC=BD·BE.图924.(本题满分12分,每小题满分各4分)如图10,在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(-3, 0),与y轴交于点B,此抛物线顶点C到x轴的距离为4.(1)求该抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.图1025.(本题满分14分,第(1)小题满分3分,第(1)小题满分5分,第(1)小题满分6分)如图11,∠BAC的余切值为2,AB=D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E的右侧.联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,______是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BP A;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.图11备用图。
中考数学一模试题含解析_6

2017年上海市浦东新区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,必然是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.2.若是向量、、知足+=(﹣),那么用、表示正确的是()A.B.C.D.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα4.在△ABC中,点D、E别离在边AB、AC上,若是AD=2,BD=4,那么由下列条件能够判定DE∥BC的是()A.B.C.D.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,若是AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=156.若是抛物线A:y=x2﹣1通过左右平移取得抛物线B,再通过上下平移抛物线B取得抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于cm.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= .9.已知||=2,||=4,且和反向,用向量表示向量= .10.若是抛物线y=mx2+(m﹣3)x﹣m+2通过原点,那么m= .11.若是抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,若是设剩余部份的面积为y,那么y关于x的函数解析式是.13.若是抛物线y=ax2﹣2ax+1通过点A(﹣1,7)、B(x,7),那么x= .14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1y2(填“>”、“=”或“<”)15.如图,已知小鱼同窗的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长别离为DE=2米,BE=5米,那么树的高度AB= 米.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= .17.如图,点M是△ABC的角平分线AT的中点,点D、E别离在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C别离落在点B'、C'处,联结BC'与AC边交于点D,那么= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:2cos230°﹣sin30°+.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)若是=, =,求向量;(用向量、表示)21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,和该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情形下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,若是∠ADG=∠B,求证:CD2=AC•CF.24.已知极点为A(2,﹣1)的抛物线通过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,若是∠APB=45°,求点P的坐标.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF 与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.2017年上海市浦东新区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.在下列y关于x的函数中,必然是二次函数的是()A.y=2x2B.y=2x﹣2 C.y=ax2D.【考点】二次函数的概念.【分析】依照二次函数的概念形如y=ax2+bx+c (a≠0)是二次函数.【解答】解:A、是二次函数,故A符合题意;B、是一次函数,故B错误;C、a=0时,不是二次函数,故C错误;D、a≠0时是分式方程,故D错误;故选:A.【点评】本题考查二次函数的概念,形如y=ax2+bx+c (a≠0)是二次函数.2.若是向量、、知足+=(﹣),那么用、表示正确的是()A.B.C.D.【考点】*平面向量.【分析】利用一元一次方程的求解方式,求解此题即可求得答案.【解答】解:∵ +=(﹣),∴2(+)=3(﹣),∴2+2=3﹣2,∴2=﹣2,解得: =﹣.故选D.【点评】此题考查了平面向量的知识.此题难度不大,注意把握一元一次方程的求解方式是解此题的关键.3.已知在Rt△ABC中,∠C=90°,∠A=α,BC=2,那么AB的长等于()A.B.2sinαC.D.2cosα【考点】锐角三角函数的概念.【分析】依照锐角三角函数的概念得出sinA=,代入求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=α,BC=2,∴sinA=,∴AB==,故选A.【点评】本题考查了锐角三角函数的概念,能熟记锐角三角函数的概念是解此题的关键,注意:在Rt△ACB中,∠ACB=90°,则sinA=,cosA=,tanA=.4.在△ABC中,点D、E别离在边AB、AC上,若是AD=2,BD=4,那么由下列条件能够判定DE∥BC的是()A.B.C.D.【考点】平行线分线段成比例;平行线的判定;相似三角形的判定与性质.【分析】先求出比例式,再依照相似三角形的判定得出△ADE∽△ABC,依照相似推出∠ADE=∠B,依照平行线的判定得出即可.【解答】解:只有选项C正确,理由是:∵AD=2,BD=4, =,∴==,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,依照选项A、B、D的条件都不能推出DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.5.如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,若是AD=9,CE=12,那么下列结论不正确的是()A.AC=10 B.AB=15 C.BG=10 D.BF=15【考点】三角形的重心.【分析】依照题意取得点G是△ABC的重心,依照重心的性质取得AG=AD=6,CG=CE=8,EG=CE=4,依照勾股定理求出AC、AE,判定即可.【解答】解:∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴AG=AD=6,CG=CE=8,EG=CE=4,∵AD⊥CE,∴AC==10,A正确;AE==2,∴AB=2AE=4,B错误;∵AD⊥CE,F是AC的中点,∴GF=AC=5,∴BG=10,C正确;BF=15,D正确,故选:B.【点评】本题考查的是三角形的重心的概念和性质,三角形的重心是三角形三条中线的交点,且重心到极点的距离是它到对边中点的距离的2倍.6.若是抛物线A:y=x2﹣1通过左右平移取得抛物线B,再通过上下平移抛物线B取得抛物线C:y=x2﹣2x+2,那么抛物线B的表达式为()A.y=x2+2 B.y=x2﹣2x﹣1 C.y=x2﹣2x D.y=x2﹣2x+1【考点】二次函数图象与几何变换.【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,依照抛物线的极点式可求抛物线解析式.【解答】解:抛物线A:y=x2﹣1的极点坐标是(0,﹣1),抛物线C:y=x2﹣2x+2=(x﹣1)2+1的极点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移2个单位取得抛物线C.因此抛物线B是将抛物线A向右平移1个单位取得的,其解析式为y=(x﹣1)2﹣1=x2﹣2x.故选:C.【点评】本题考查了抛物线的平移与解析式转变的关系.关键是明确抛物线的平移实质上是极点的平移,能用极点式表示平移后的抛物线解析式.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a=3cm,b=4cm,那么线段a、b的比例中项等于2cm.【考点】比例线段.【分析】依照线段的比例中项的概念列式计算即可得解.【解答】解:∵线段a=3cm,b=4cm,∴线段a、b的比例中项==2cm.故答案为:2.【点评】本题考查了比例线段,熟记线段比例中项的求解方式是解题的关键,要注意线段的比例中项是正数.8.已知点P是线段AB上的黄金分割点,PB>PA,PB=2,那么PA= ﹣1 .【考点】黄金分割.【分析】依照黄金分割的概念和黄金比值是计算即可.【解答】解:∵点P是线段AB上的黄金分割点,PB>PA,∴PB=AB,解得,AB=+1,∴PA=AB﹣PB=+1﹣2=﹣1,故答案为:﹣1.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.9.已知||=2,||=4,且和反向,用向量表示向量= ﹣2.【考点】*平面向量.【分析】依照向量b向量的模是a向量模的2倍,且和反向,即可得出答案.【解答】解:||=2,||=4,且和反向,故可得: =﹣2.故答案为:﹣2.【点评】本题考查了平面向量的知识,关键是得出向量b向量的模是a向量模的2倍.10.若是抛物线y=mx2+(m﹣3)x﹣m+2通过原点,那么m= 2 .【考点】二次函数图象上点的坐标特点.【分析】依照图象上的点知足函数解析式,可得答案.【解答】解:由抛物线y=mx2+(m﹣3)x﹣m+2通过原点,得﹣m+2=0.解得m=2,故答案为:2.【点评】本题考查了二次函数图象上点的坐标特点,把原点代入函数解析式是解题关键.11.若是抛物线y=(a﹣3)x2﹣2有最低点,那么a的取值范围是a>3 .【考点】二次函数的最值.【分析】由于原点是抛物线y=(a+3)x2的最低点,这要求抛物线必需开口向上,由此能够确信a的范围.【解答】解:∵原点是抛物线y=(a﹣3)x2﹣2的最低点,∴a﹣3>0,即a>3.故答案为a>3.【点评】本题要紧考查二次函数的最值的知识点,解答此题要把握二次函数图象的特点,本题比较基础.12.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,若是设剩余部份的面积为y,那么y 关于x的函数解析式是y=﹣x2+4(0<x<2).【考点】函数关系式.【分析】依照剩下部份的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.【解答】解:设剩下部份的面积为y,则:y=﹣x2+4(0<x<2),故答案为:y=﹣x2+4(0<x<2).【点评】此题要紧考查了依如实际问题列二次函数关系式,利用剩下部份的面积=大正方形的面积﹣小正方形的面积得出是解题关键.13.若是抛物线y=ax2﹣2ax+1通过点A(﹣1,7)、B(x,7),那么x= 3 .【考点】二次函数图象上点的坐标特点.【分析】第一求出抛物线的对称轴方程,进而求出x的值.【解答】解:∵抛物线的解析式为y=ax2﹣2ax+1,∴抛物线的对称轴方程为x=1,∵图象通过点A(﹣1,7)、B(x,7),∴=1,∴x=3,故答案为3.【点评】本题要紧考查了二次函数图象上点的坐标特点,解题的关键是求出抛物线的对称轴,此题难度不大.14.二次函数y=(x﹣1)2的图象上有两个点(3,y1)、(,y2),那么y1<y2(填“>”、“=”或“<”)【考点】二次函数图象上点的坐标特点.【分析】把两点的横坐标代入函数解析式别离求出函数值即可得解.【解答】解:当x=3时,y1=(3﹣1)2=4,当x=时,y2=(﹣1)2=,y1<y2,故答案为<.【点评】本题考查了二次函数图象上点的坐标特点,依照函数图象上的点知足函数解析式求出相应的函数值是解题的关键.15.如图,已知小鱼同窗的身高(CD)是1.6米,她与树(AB)在同一时刻的影子长别离为DE=2米,BE=5米,那么树的高度AB= 4 米.【考点】相似三角形的应用.【分析】由CD⊥BE、AB⊥BE知CD∥AB,从而得△CDE∽△ABE,由相似三角形的性质有=,将相关数据代入计算可得.【解答】解:由题意知CD⊥BE、AB⊥BE,∴CD∥AB,∴△CDE∽△ABE,∴=,即=,解得:AB=4,故答案为:4.【点评】本题要紧考查相似三角形的应用,熟练把握相似三角形的判定与性质是解题的关键.16.如图,梯形ABCD中,AD∥BC,对角线BD与中位线EF交于点G,若AD=2,EF=5,那么FG= 4 .【考点】梯形中位线定理.【分析】依照梯形中位线性质得出EF∥AD∥BC,推出DG=BG,则EG是△ABD的中位线,即可求得EG的长,则FG即可求得.【解答】解:∵EF是梯形ABCD的中位线,∴EF∥AD∥BC,∴DG=BG,∴EG=AD=×2=1,∴FG=EF﹣EG=5﹣1=4.故答案是:4.【点评】本题考查了梯形的中位线,三角形的中位线的应用,要紧考查学生的推理能力和计算能力.17.如图,点M是△ABC的角平分线AT的中点,点D、E别离在AB、AC边上,线段DE过点M,且∠ADE=∠C,那么△ADE和△ABC的面积比是1:4 .【考点】相似三角形的判定与性质.【分析】依照相似三角形的判定和性质即可取得结论.【解答】解:∵AT是△ABC的角平分线,∵点M是△ABC的角平分线AT的中点,∴AM=AT,∵∠ADE=∠C,∠BAC=∠BAC,∴△ADE∽△ACB,∴=()2=()2=1:4,故答案为:1:4.【点评】本题考查了相似三角形的判定和性质,熟练把握相似三角形的判定和性质是解题的关键.18.如图,在Rt△ABC中,∠C=90°,∠B=60°,将△ABC绕点A逆时针旋转60°,点B、C别离落在点B'、C'处,联结BC'与AC边交于点D,那么= .【考点】旋转的性质.【分析】依照直角三角形的性质取得BC=AB,依照旋转的性质和平行线的判定取得AB∥B′C′,依照平行线分线段成比例定理计算即可.【解答】解:∵∠C=90°,∠B=60°,∴∠BAC=30°,∴BC=AB,由旋转的性质可知,∠CAC′=60°,AB′=AB,B′C′=BC,∠C′=∠C=90°,∴∠BAC′=90°,∴AB∥B′C′,∴===,∴=,∵∠BAC=∠B′AC,∴==,又=,∴=,故答案为:.【点评】本题考查的是旋转变换的性质,把握对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角、旋转前、后的图形全等是解题的关键.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.计算:2cos230°﹣sin30°+.【考点】特殊角的三角函数值.【分析】依照特殊角三角函数值,可得答案.【解答】解:原式=2×()2﹣+=1++.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.20.如图,已知在平行四边形ABCD中,点E是CD上一点,且DE=2,CE=3,射线AE与射线BC相交于点F;(1)求的值;(2)若是=, =,求向量;(用向量、表示)【考点】相似三角形的判定与性质;平行四边形的性质;*平面向量.【分析】(1)依照平行四边形的性质得出AB=五、AB∥EC,证△FEC∽△FAB得==;(2)由△FEC∽△FAB得=,从而知FC=BC,EC=AB,再由平行四边形性质及向量可得==, ==,最后依照向量的运算得出答案.【解答】解:(1)∵四边形ABCD是平行四边形,DE=2,CE=3,∴AB=DC=DE+CE=5,且AB∥EC,∴△FEC∽△FAB,∴==;(2)∵△FEC∽△FAB,∴=,∴FC=BC,EC=AB,∵四边形ABCD是平行四边形,∴AD∥BC,EC∥AB,∴==,∴==, ==,则=+=.【点评】本题要紧考查相似三角形的判定与性质、平行四边形的性质及向量的运算,熟练把握相似三角形的判定与性质是解题的关键.21.如图,在△ABC中,AC=4,D为BC上一点,CD=2,且△ADC与△ABD的面积比为1:3;(1)求证:△ADC∽△BAC;(2)当AB=8时,求sinB.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)作AE⊥BC,依照△ADC与△ABD的面积比为1:3且CD=2可得BD=6,即BC=8,从而得,结合∠C=∠C,可证得△ADC∽△BAC;(2)由△ADC∽△BAC得,求出AD的长,依照AE⊥BC得DE=CD=1,由勾股定理求得AE的长,最后依照正弦函数的概念可得.【解答】解:(1)如图,作AE⊥BC于点E,∵===,∴BD=3CD=6,∴CB=CD+BD=8,则=,,∴,∵∠C=∠C,∴△ADC∽△BAC;(2)∵△ADC∽△BAC,∴,即,∴AD=AC=4,∵AE⊥BC,∴DE=CD=1,∴AE==,∴sinB==.【点评】本题要紧考查相似三角形的判定与性质及勾股定理、等腰三角形的性质、三角函数的概念,熟练把握相似三角形的判定与性质是解题的关键.22.如图,是某广场台阶(结合轮椅专用坡道)景观设计的模型,和该设计第一层的截面图,第一层有十级台阶,每级台阶的高为0.15米,宽为0.4米,轮椅专用坡道AB的顶端有一个宽2米的水平面BC;《城市道路与建筑物无障碍设计规范》第17条,新建轮椅专用坡道在不同坡度的情形下,坡道高度应符合以下表中的规定:坡度1:20 1:16 1:12最大高度(米)(1)选择哪个坡度建设轮椅专用坡道AB是符合要求的?说明理由;(2)求斜坡底部点A与台阶底部点D的水平距离AD.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)计算最大高度为:×10=(米),由表格查对应的坡度为:1:20;(2)作梯形的高BE、CF,由坡度计算AE和DF的长,相加可得AD的长.【解答】解:(1)∵第一层有十级台阶,每级台阶的高为0.15米,∴最大高度为×10=(米),由表知建设轮椅专用坡道AB选择符合要求的坡度是1:20;(2)如图,过B作BE⊥AD于E,过C作CF⊥AD于F,∴BE=CF=,EF=BC=2,∵=,∴=,∴AE=DF=30,∴AD=AE+EF+DF=60+2=62,答:斜坡底部点A与台阶底部点D的水平距离AD为62米.【点评】本题考查了坡度坡角问题,在解决坡度的有关问题中,一样通过作高组成直角三角形,坡角即是一锐角,坡度实际确实是一锐角的正切值,利用三角函数的概念列等式即可.23.如图,在△ABC中,AB=AC,点D、E是边BC上的两个点,且BD=DE=EC,过点C作CF∥AB交AE延长线于点F,连接FD并延长与AB交于点G;(1)求证:AC=2CF;(2)连接AD,若是∠ADG=∠B,求证:CD2=AC•CF.【考点】相似三角形的判定与性质;等腰三角形的性质.【分析】(1)由BD=DE=EC知BE=2CE,由CF∥AB证△ABE∽△FCE得=2,即AB=2FC,依照AB=AC即可得证;(2)由∠1=∠B证△DAG∽△BAD得∠AGD=∠ADB,即∠B+∠2=∠5+∠6,结合∠B=∠五、∠2=∠3得∠3=∠6,再由CF∥AB得∠4=∠B,继而知∠4=∠5,即可证△ACD∽△DCF得CD2=AC•CF.【解答】证明:(1)∵BD=DE=EC,∴BE=2CE,∵CF∥AB,∴△ABE∽△FCE,∴=2,即AB=2FC,又∵AB=AC,∴AC=2CF;(2)如图,∵∠1=∠B,∠DAG=∠BAD,∴△DAG∽△BAD,∴∠AGD=∠ADB,∴∠B+∠2=∠5+∠6,又∵AB=AC,∠2=∠3,∴∠B=∠5,∴∠3=∠6,∵CF∥AB,∴∠4=∠B,∴∠4=∠5,则△ACD∽△DCF,∴,即CD2=AC•CF.【点评】本题要紧考查相似三角形的判定与性质,熟练把握三角形外角性质和平行线的性质得出三角形相似所需要的条件是解题的关键.24.已知极点为A(2,﹣1)的抛物线通过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);(1)求这条抛物线的表达式;(2)联结AB、BD、DA,求△ABD的面积;(3)点P在x轴正半轴上,若是∠APB=45°,求点P的坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】(1)设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,即可解决问题.(2)第一证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB∽△ADP,推出PD2=BD•AD=3=6,由此即可解决问题.【解答】解:(1)∵极点为A(2,﹣1)的抛物线通过点B(0,3),∴能够假设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,∴抛物线的解析式为y=x2﹣4x+3.(2)令y=0,x2﹣4x+3=0,解得x=1或3,∴C(1,0),D(3,0),∵OB=OD=3,∴∠BDO=45°,∵A(2,﹣1),D(3,0),∴∠ADO=45°,∴∠BDA=90°,∵BD=3,AD=,∴S△ABD=•BD•AD=3.(3)∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,∴∠DBP=∠APD,∵∠PDB=∠ADP=135°,∴△PDB∽△ADP,∴PD2=BD•AD=3=6,∴PD=,∴OP=3+,∴点P(3+,0).【点评】本题考查二次函数与x轴的交点、待定系数法.三角形的面积、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用相似三角形的性质解决问题,属于中考常考题型.25.如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF 与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【考点】相似形综合题.【分析】(1)第一证明△ABE∽△ADF,推出=,推出=,因为∠BAD=∠EAF,即可证明△AEF∽△ABD.(2)如图连接AG.由△AEF∽△ABD,推出∠ABG=∠AEG,推出A、B、E、G四点共圆,推出∠ABE+∠AGE=180°,由∠ABE=90°,推出∠AGE=90°,推出∠AGM=∠MDF,推出∠AMG=∠FMD,推出∠MAG=∠EFC,推出y=tan∠MAG=tan∠EFC=,由△ABE∽△ADF,得=,得DF=x,由此即可解决问题.(3)分两种情形①如图2中,当点E在线段CB上时,②如图3中,当点E在CB的延长线上时,别离列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAD=∠ADC=∠ADF=90°,∵AF⊥AE,∴∠EAF=90°,∴∠BAD=∠EAF,∴∠BAE=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE∽△ADF,∴=,∴=,∵∠BAD=∠EAF,∴△AEF∽△ABD.(2)解:如图连接AG.∵△AEF∽△ABD,∴∠ABG=∠AEG,∴A、B、E、G四点共圆,∴∠ABE+∠AGE=180°,∵∠ABE=90°,∴∠AGE=90°,∴∠AGM=∠MDF,∴∠AMG=∠FMD,∴∠MAG=∠EFC,∴y=tan∠MAG=tan∠EFC=,∵△ABE∽△ADF,∴=,∴DF=x,∴y=,即y=(0≤x≤4).(3)解:①如图2中,当点E在线段CB上时,∵△AGM∽ADF,∴tan∠MAG==,∴=,解得x=.②如图3中,当点E在CB的延长线上时,由△MAG∽△AFD∽△EFC,∴=,∴=,解得x=1,∴BE的长为或1.【点评】本题考查相似形综合题、相似三角形的判定和性质、锐角三角函数、四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.。
2017年上海市普陀区高考数学一模试卷

2017年上海市普陀区高考数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共12小题,共54.0分)1.若集合A={x|y2=x,y∈R},B={y|y=sinx,x∈R},A∩B= ______ .2.若-<a<,sinα=,则cot2α= ______ .3.函数f(x)=1+log2x(x≥1)的反函数f-1(x)= ______ .4.若(1+x)5=a0+a1x+a2x2+…+a5x5,则a1+a2+…+a5= ______ .5.设k∈R,若-=1表示焦点在y轴上的双曲线,则半焦距的取值范围是______ .6.设m∈R,若函数f(x)=(m+1)x+mx+1是偶函数,则f(x)的单调递增区间是______ .7.方程log2(9x-5)=2+log2(3x-2)的解为______ .8.已知圆C:x2+y2+2kx+2y+k2=0(k∈R)和定点P(1,-1),若过P点可以作两条直线与圆C相切,则k的取值范围是______ .9.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1,若A1C与平面B1BCC1所成的角为,则三棱锥A1-ABC的体积为______ 。
10.掷两颗骰子得两个数,若两数的差为d,则d∈{-2,-1,0,1,2}出现的概率的最大值为______ (结果用最简分数表示)11.设地球半径为R,若A、B两地均位于北纬45°,且两地所在纬度圈上的弧长为πR,则A、B之间的球面距离是______ (结果用含有R的代数式表示)12.已知定义域为R的函数y=f(x)满足f(x+2)=f(x),且-1≤x<1时,f(x)=1-x2;函数g(x)=,,,若F(x)=f(x)-g(x),则x∈[-5,10],函数F(x)零点的个数是______ .三、解答题(本大题共5小题,共76.0分)17.已知a∈R,函数f(x)=a+(1)当a=1时,解不等式f(x)≤2x;(2)若关于x的方程f(x)-2x=0在区间[-2,-1]上有解,求实数a的取值范围.18.已知椭圆Г:+=1(a>b>0)的左、右两个焦点分别为F1、F2,P是椭圆上位于第一象限内的点,PQ⊥x轴,垂足为Q,且|F1F2|=6,∠PF1F2=arccos,△PF1F2的面积为3.(1)求椭圆Г的方程;(2)若M是椭圆上的动点,求|MQ|的最大值.并求出|MQ|取得最大值时M的坐标.19.现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.8g/cm3,总重量为5.8kg,其中一个螺帽的三视图如图所示,(单位毫米)(1)这堆螺帽至少有多少个;(2)对于上述螺帽做防腐处理,每平方米需要耗材0.11千克,共需要多少千克防腐材料?(结果精确到0.01)20.已知数列{a n}的各项均为正数,且a1=1,对任意的n∈N*,均有a n+12-1=4a n(a n+1),b n=2log2(1+a n)-1.(1)求证:{1+a n}是等比数列,并求出{a n}的通项公式;(2)若数列{b n}中去掉{a n}的项后,余下的项组成数列{c n},求c1+c2+…+c100;(3)设d n=,数列{d n}的前n项和为T n,是否存在正整数m(1<m<n),使得T1、T m、T n成等比数列,若存在,求出m的值;若不存在,请说明理由.21.已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x-k)成立,则称函数f(x)的“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡“数对.(1)若m=1,判断f(x)=sinx是否为“可平衡“函数,并说明理由;(2)若a∈R,a≠0,当a变化时,求证f(x)=x2与g(x)=a+2x的平衡“数对”相同.(3)若m1、m2∈R,且(m1,)(m2,)均为函数,f(x)=cos2x(0<)的“平衡”数对,求m12+m22的取值范围.二、选择题(本大题共4小题,共20.0分)13.若a<b<0,则下列不等式关系中,不能成立的是()A.>B.>C.a<D.a2>b214.设无穷等比数列{a n}的首项为a1,公比为q,前n项和为S n,则“a1+q=1”是“S n=1”成立()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件15.设α-l-β是二面角,直线a在平面α内,直线b在平面β内,且a、b与l均不垂直,则()A.a与b可能垂直,但不可能平行B.a与b可能垂直也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行16.设θ是两个非零向量、的夹角,若对任意实数t,|+t|的最小值为1,则下列判断正确的是()A.若||确定,则θ唯一确定B.若||确定,则θ唯一确定C.若θ确定,则||唯一确定D.若θ确定,则||唯一确定。
2023年上海市普陀区中考数学一模试卷 含答案

2023年上海市普陀区中考数学一模试卷一、选择题(共6题,每题4分,满分24分).1.(4分)下列函数图象中,与y 轴交点的坐标是(0,1)的是()A .2y x =B .21y x =-C .221y x =+D .22(1)y x =+2.(4分)在Rt ABC ∆中,已知90ACB ∠=︒,2tan 3B =,4AC =,那么BC 的长是()A .6B .3C .25D .5.3.(4分)如果二次函数2()y x m k =-+的图象如图所示,那么下列说法中正确的是()A .0m >,0k >B .0m >,0k <C .0m <,0k >D .0m <,0k <4.(4分)如图,已知D 是AB 的中点,EA AB ⊥,CB AB ⊥,2AE AB BC ==,那么下列结论中错误的是()A .ED AC =B .EDAC ∠=∠C .ED AC ⊥D .30CAB ∠=︒5.(4分)已知k 为实数,a 是非零向量,下列关于ka 的说法中正确的是()A .如果0k =,那么0ka = B .如果k 是正整数,那么ka 表示k 个a 相加C .如果0k ≠,那么||||ka k a = D .如果0k ≠,ka 与a 的方向一定相同6.(4分)在ABC ∆和DEF ∆中,已知AB AC =,DE DF =,如果从下列条件中增添一个条件,ABC ∆与DEF ∆仍不一定相似,那么这个条件是()A .A D ∠=∠B .B E ∠=∠C .A E ∠=∠D .AB DE BC EF=二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知32x y =,10x y +=,那么x y -=.8.(4分)已知反比例函数(0)k y k x =≠的图象在第一、三象限,如果120x x <<,那么1y 2y (填“>”、“<”或“=“)9.(4分)已知二次函数2(1)31y a x x =-+-的图象有最高点,那么a 的取值范围是.10.(4分)已知抛物线2(2)y mx m x =-+的对称轴是直线1x =,那么m 的值等于.11.(4分)已知点(1,)A a 在抛物线221y x =-+上,将此抛物线沿着y 轴向上平移3个单位,点A 随之平移到点A '的位置,那么点A '的坐标是.12.(4分)已知C 是线段AB 的中点,设AB a = ,那么AB BC +=.(用向量a 表示)13.(4分)在ABC ∆中,5AC =,12BC =,13AB =,那么sin B =.14.(4分)如图,在四边形ABCD 中,//AD BC ,BAC ADC ∠=∠,如果2AD =,5BC =,那么AC =.15.(4分)如图,方格纸上各小正方形的边长都为1,点A 、B 、C 、D 都在小正方形顶点的位置上,AD 与BC 交于点E ,那么BE 的长是.16.(4分)如图,ABC ∆中的一边BC 与双边平行且单位相同的刻度尺的一边重合,边AB 、AC 分别与刻度尺的另一边交于点D 、E ,点B 、C 、D 、E 在刻度尺上的读数分别为0、5、1、3,如果刻度尺的宽度为3,那么ABC ∆的面积是.17.(4分)如图,点D 、E 在ABC ∆的边BC 上,BAD C ∠=∠,B EAC ∠=∠,如果4BD =,3EC =,那么AB AC 的值是.18.(4分)如图,在ABC ∆中,AD 为边BC 上的中线,2BC AC =,6BC =,2AD =.将ADC ∆绕点D 以逆时针方向旋转得到△A DC '',点A '、C '分别与点A 、C 对应.联结BC ',BC '与线段AD 交于点G .如果点A '、A 、C '在同一条直线上,那么C G '=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:22sin 604cot 30cos 302sin 45tan 45︒-︒⋅︒︒+︒.20.(10分)如图,已知梯形ABCD 中,//AD BC ,E 是BC 上一点,//AE CD ,AE 、BD 相交于点F ,:1:3EF CD =.(1)求BE AD的值;(2)联结FC ,设AB a = ,FE b = ,那么BF =,FC = .(用向量a 、b 表示)21.(10分)如图,在平面直角坐标系xOy 中,正比例函数(0)y kx k =≠的图象与反比例函数3(0)y x x=>的图象交于点(3,)A a .(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移(0)m m >个单位,新函数的图象与反比例函数3(0)y x x=>的图象交于点B ,如果点B 的纵坐标是横坐标的3倍,求m 的值.22.(10分)如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD 射到池底点D处,入射角30∠=︒;入射光线AC射到水池的水DBN∠=︒,折射角22ABM面C点后折射光线CE射到池底点E处,入射角60ACM∠'=︒,折射角∠'=︒.//DE BC,MN、M N''为法线.入射光线AB、AC和折射光线BD、CE40.5ECN及法线MN、M N''都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果8.72DE=米,求水池的深.(参考数据:2取1.41,3取1.73,sin22︒取0.37,cos22︒取0.93,tan22︒取0.4,sin40.5︒取0.65,cos40.5︒取0.76,tan40.5︒取0.85)23.(12分)已知:如图,在四边形ABCD中,E为BC上一点,AB DE AE EC⋅=⋅,∠=∠.ABE AED(1)求证:ABE ECD∽;∆∆(2)如果F 、G 、H 分别是AE 、DE 、AD 的中点,联结BF 、HF 、HG 、CG .求证:BF HF CG HG ⋅=⋅.24.(12分)在平面直角坐标系xOy 中(如图),抛物线22(0)y ax x c a =++≠与x 轴交于点A 、B ,其中点A 的坐标为(1,0),与y 轴交于点(0,3)C -.抛物线的顶点为D .(1)求抛物线的表达式,并写出点D 的坐标;(2)抛物线的对称轴上有一点M ,且点M 在第二象限,如果点M 到x 轴的距离与它到直线BD 的距离相等,求点M 的坐标;(3)抛物线上有一点N ,直线ON 恰好经过OBD ∆的重心,求点N 到x 轴的距离.25.(14分)如图,在矩形ABCD 中,3tan 4ABD ∠=,E 是边DC 上一动点,F 是线段DE延长线上一点,且EAF ABD∠=∠,AF与矩形对角线BD交于点G.(1)当点F与点C重合时,如果6AD=,求DE的长;(2)当点F在线段DC的延长线上,①求AGAE的值;②如果3DE CF=,求AED∠的余切值.参考答案一、选择题(共6题,每题4分,满分24分).1.(4分)下列函数图象中,与y 轴交点的坐标是(0,1)的是()A .2y x =B .21y x =-C .221y x =+D .22(1)y x =+【分析】把(0,1)代入解析式,解答即可.解:A .当0x =时,2001y =⨯=≠,不符合题意;B .当0x =时,20111y =⨯-=-≠,不符合题意;C .当0x =时,2011y =⨯+=,符合题意;D .当0x =时,22(01)21y =⨯+=≠,不符合题意;故选:C .【点评】本题考查的是二次函数图象上点的坐标特征,二次函数图象上的点都在该函数的图象上.2.(4分)在Rt ABC ∆中,已知90ACB ∠=︒,2tan 3B =,4AC =,那么BC 的长是()A .6B .3C .D .【分析】根据三角函数中正切值的定义解决此题.解:如图.在Rt ABC ∆中,90ACB ∠=︒,2tan 3B =,4AC =,42tan 3AC B BC BC ∴===.6BC ∴=.故选:A .【点评】本题主要考查正切值,熟练掌握正切值的定义是解决本题的关键.3.(4分)如果二次函数2()y x m k =-+的图象如图所示,那么下列说法中正确的是()A .0m >,0k >B .0m >,0k <C .0m <,0k >D .0m <,0k <【分析】根据解析式知,m ,k 是抛物线的顶点坐标,再根据函数图象得出结论.解:2()y x m k =-+ ,顶点坐标为(,)m k ,由图象可得,0m >,0k <,故选:B .【点评】本题考查了二次函数图象和系数的关系,解题的关键是能根据图象找出二次函数的顶点存在的特点、性质.4.(4分)如图,已知D 是AB 的中点,EA AB ⊥,CB AB ⊥,2AE AB BC ==,那么下列结论中错误的是()A .ED AC =B .EDAC ∠=∠C .ED AC ⊥D .30CAB ∠=︒【分析】用SAS 证明EAD ABC ∆≅∆,得ADE C ∠=∠,可证90AFD ∠=︒,从而说明A 、B 、C 正确.解:设AC 交DE 于点F .点D 是AB 的中点,AD DB ∴=,2AE AB BC == ,AD BC ∴=,EA AB ⊥ ,CB AB ⊥,90EAD B ∴∠=∠=︒,在EAD ∆和ABC ∆中,90AE BA EAD B AD BC =⎧⎪∠=∠=︒⎨⎪=⎩,()EAD ABC SAS ∴∆≅∆,ED AC ∴=,ADE C ∠=∠,90A C ∠+∠=︒ ,90A ADE ∴∠+∠=︒,AC DE ∴⊥,故选项A ,B ,C 正确.故选:D .【点评】本题主要考查了全等三角形的判定与性质,含30︒角的直角三角形的性质等知识,证明DAE ABC ∆≅∆是解题的关键.5.(4分)已知k 为实数,a 是非零向量,下列关于ka 的说法中正确的是()A .如果0k =,那么0ka = B .如果k 是正整数,那么ka 表示k 个a 相加C .如果0k ≠,那么||||ka k a = D .如果0k ≠,ka 与a 的方向一定相同【分析】若0k =,则0ka = ;当0k <时,||||ka k a =- ;当0k <时,ka 与a 的方向相反,由此可得答案.解:A .若0k =,则0ka = ,故A 选项错误,不符合题意;B .若k 是正整数,则ka 表示k 个a 相加,故B 选项正确,符合题意;C .当0k <时,||||ka k a =- ,故C 选项错误,不符合题意;D .当0k <时,ka 与a 的方向相反,故D 选项错误,不符合题意.故选:B .【点评】本题考查平面向量,熟练掌握平面向量的性质是解答本题的关键.6.(4分)在ABC ∆和DEF ∆中,已知AB AC =,DE DF =,如果从下列条件中增添一个条件,ABC ∆与DEF ∆仍不一定相似,那么这个条件是()A .A D ∠=∠B .B E ∠=∠C .A E ∠=∠D .AB DE BC EF=【分析】利用等腰三角形的性质以及相似三角形的判定解决问题即可.解:A 、由A D ∠=∠,可以根据两边成比例夹角相等,推出两三角形相似.本选项不符合题意;B 、由B E ∠=∠,可以推出A D ∠=∠根据两边成比例夹角相等,推出两三角形相似.本选项不符合题意;C 、由A E ∠=∠,不能判定两三角形相似.本选项符合题意;D 、由AB DE BC EF =,可以推出AB AC BC DE DF EF==,根据三边成比例两三角形相似,本选项不符合题意.故选:C .【点评】本题考查相似三角形的判定,等腰三角形的性质等知识,解题的关键是掌握相似三角形的判定方法,属于中考常考题型.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)已知32x y =,10x y +=,那么x y -=2.【分析】直接利用已知代入求出y 的值,即可得出x 的值,进而得出答案.解: 32x y =,10x y +=,32x y ∴=,则3102y y +=,解得:4y =,故6x =,那么642x y -=-=.故答案为:2.【点评】此题主要考查了比例的性质,正确将已知代入是解题关键.8.(4分)已知反比例函数(0)k y k x =≠的图象在第一、三象限,如果120x x <<,那么1y >2y (填“>”、“<”或“=“)【分析】先根据反比例函数(0)k y k x=≠的图象在第一、三象限可知0k >,故在每一象限内y 随x 的增大而减小,据此可得出结论.解: 反比例函数(0)k y k x=≠的图象在第一、三象限,0k ∴>,在每一象限内y 随x 的增大而减小.120x x << ,12y y ∴>.故答案为:>.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数的增减性是解题的关键.9.(4分)已知二次函数2(1)31y a x x =-+-的图象有最高点,那么a 的取值范围是1a <.【分析】根据二次函数的图象与性质即可求出答案.解:由题意可知:10a -<,1a ∴<,故答案为:1a <.【点评】本题考查二次函数图象与系数关系,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(4分)已知抛物线2(2)y mx m x =-+的对称轴是直线1x =,那么m 的值等于2.【分析】由对称轴公式可得到关于m 的方程,可求得答案.解:2(2)y mx m x =-+ 的对称轴是直线1x =,(2)12m m -+∴-=,解得:2m =.故答案为:2.【点评】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键,即2y ax bx c =++的对称轴为2b x a=-.11.(4分)已知点(1,)A a 在抛物线221y x =-+上,将此抛物线沿着y 轴向上平移3个单位,点A 随之平移到点A '的位置,那么点A '的坐标是(1,2).【分析】确定平移后得顶点坐标,再根据顶点式写出最后抛物线的解析式,进而解答即可.解:抛物线221y x =-+上,将此抛物线沿着y 轴向上平移3个单位,得到的抛物线是2213y x =-++,即224y x =-+,把1x =,y a =代入221y x =-+中,可得:21a -+=,解得:1a =-,∴点A '的坐标是(1,2),故答案为:(1,2).【点评】本题考查了二次函数的图象与几何变换,关键是根据平移的规律解答.12.(4分)已知C 是线段AB 的中点,设AB a = ,那么AB BC += 12a .(用向量a 表示)【分析】由题意得12BC a =- ,则11()22AB BC a a a +=+-= .解:C 是线段AB 的中点,AB a = ,∴12BC a =- ,∴11()22AB BC a a a +=+-= .故答案为:12a .【点评】本题考查平面向量,熟练掌握平面向量的加法运算法则是解答本题的关键.13.(4分)在ABC ∆中,5AC =,12BC =,13AB =,那么sin B =513.【分析】首先根据题意得出ABC ∆为直角三角形,再画出图形,其中5AC =,12BC =,13AB =;然后根据sin AC B AB=计算即可.解:5AC = ,12BC =,13AB =,222AC BC AB ∴+=,ABC ∴∆是直角三角形,如图所示:在Rt ABC ∆中,5AC =,12BC =,13AB =,则5sin 13AC B AB ==.【点评】本题考解直角三角形,牢记锐角三角函数的定义是解题关键.14.(4分)如图,在四边形ABCD 中,//AD BC ,BAC ADC ∠=∠,如果2AD =,5BC =,那么AC =【分析】先根据平行线的性质得到DAC ACB ∠=∠,加上BAC ADC ∠=∠,则利用相似三角形的判定方法可判断ABC DCA ∆∆∽,然后利用相似比可求出AC 的长.解://AD BC ,DAC ACB ∴∠=∠,BAC ADC ∠=∠ ,ABC DCA ∴∆∆∽,::AC AD BC AC ∴=,即:25:AC AC =,解得AC =,即AC ..【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.在应用相似三角形的性质时利用相似比进行几何计算.15.(4分)如图,方格纸上各小正方形的边长都为1,点A、B、C、D都在小正方形顶点的位置上,AD与BC交于点E,那么BE的长是 2.5.【分析】先根据勾股定理,得5BC=,再根据比例线段求出BE.解:连接BD,根据勾股定理,得5BC==,//AB CD,ABE DEC∴∆∆∽,∴AB BE CD EC=,∴245BE =,解得: 2.5BE=,故答案为:2.5.【点评】本题考查了相似三角形的判定与性质、勾股定理,掌握两个知识点的应用,推出比例线段是解题关键.16.(4分)如图,ABC∆中的一边BC与双边平行且单位相同的刻度尺的一边重合,边AB、AC分别与刻度尺的另一边交于点D、E,点B、C、D、E在刻度尺上的读数分别为0、5、1、3,如果刻度尺的宽度为3,那么ABC∆的面积是252.【分析】过点A作AF DE⊥,垂足为G,并延长AG交BC于点H,根据题意得:2DE=,5BC=,3GH=,//DE BC,从而可得ADE ABC∠=∠,AED ACB∠=∠,然后证明A字模型相似三角形ADE ABC∆∆∽,从而利用相似三角形的性质求出AH的长,最后利用三角形的面积公式进行计算,即可解答.解:过点A作AF DE⊥,垂足为G,并延长AG交BC于点H,由题意得:2DE=,5BC=,3GH=,//DE BC,ADE ABC∴∠=∠,AED ACB∠=∠,ADE ABC∴∆∆∽,∴DE AG BC AH=,∴23 5AHAH-=,解得:5AH =,ABC ∴∆的面积112555222BC AH =⋅=⨯⨯=,故答案为:252.【点评】本题考查了相似三角形的判定与性质,三角形的面积,平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.(4分)如图,点D 、E 在ABC ∆的边BC 上,BAD C ∠=∠,B EAC ∠=∠,如果4BD =,3EC =,那么AB AC 的值是233.【分析】由BAD C ∠=∠,B B ∠=∠,得BAD BCA ∆∆∽,有2AB BC BD =⋅,同理可得2AC BC CE =⋅,故2243AB BC BD BD AC BC CE CE ⋅===⋅,即可得答案.解:BAD C ∠=∠ ,B B ∠=∠,BAD BCA ∴∆∆∽,∴AB BD BC AB=,2AB BC BD ∴=⋅,B EAC ∠=∠ ,C C ∠=∠,ACE BCA ∴∆∆∽,∴AC CE BC AC=,2AC BC CE ∴=⋅,∴2243AB BC BD BD AC BC CE CE ⋅===⋅,∴3AB AC =,故答案为:3.【点评】本题考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理.18.(4分)如图,在ABC ∆中,AD 为边BC 上的中线,2BC AC =,6BC =,2AD =.将ADC ∆绕点D 以逆时针方向旋转得到△A DC '',点A '、C '分别与点A 、C 对应.联结BC ',BC '与线段AD 交于点G .如果点A '、A 、C '在同一条直线上,那么C G '=7.【分析】以D 为原点,DC 所在直线为x 轴建立直角坐标系,过A 作AH DC ⊥于H ,设A C ''交y 轴于M ,由AD 为边BC 上的中线,2BC AC =,6BC =,可得3BD CD AC ===,(3,0)B -,设DH m =,由22222AD DH AH AC CH -==-,可得23m =,故23DH =,423AH =,2(3A ,423,直线DA解析式为y =,根据将ADC ∆绕点D 以逆时针方向旋转得到△A DC '',可证//A C DC '',得四边形AMDH 是矩形,从而求得7(3C ',423,直线BC '解析式为23244y x =+,联立44y x y ⎧=+⎪⎨⎪=⎩得3(7G ,62)7,即可得到答案.解:以D 为原点,DC 所在直线为x 轴建立直角坐标系,过A 作AH DC ⊥于H ,设A C ''交y 轴于M,如图:AD 为边BC 上的中线,2BC AC =,6BC =,3BD CD AC ∴===,(3,0)B ∴-,设DH m =,则3CH m =-,22222AD DH AH AC CH -==- ,222223(3)m m ∴-=--,解得23m =,23DH ∴=,423AH =,2(3A ∴,423,由(0,0)D ,2(3A ,3得直线DA 解析式为y =, 将ADC ∆绕点D 以逆时针方向旋转得到△A DC '',AD A D '∴=,CAD C A D ''∠=∠,AA D A AD ''∴∠=∠,CAD A AD '∴∠=∠,AC CD = ,CAD ADC ∴∠=∠,A AD ADC '∴∠=∠,//A C DC ''∴,∴四边形AMDH 是矩形,23AM DH ∴==,423DM AH ==,AD A D '= ,23A M AM '∴==,27333C M A C A M ''''∴=-=-=,7(3C '∴,由(3,0)B -,7(3C '得直线BC '解析式为y =+联立23244y x y ⎧=+⎪⎨⎪=⎩得37627x y ⎧=⎪⎪⎨⎪=⎪⎩,3(7G ∴,)7,7C G '∴==,故答案为:7.【点评】本题考查三角形中的旋转问题,解题的关键是建立直角坐标系,求出相关点的坐标.三、解答题:(本大题共7题,满分78分)19.(10分)计算:22sin 604cot 30cos 302sin 45tan 45︒-︒⋅︒︒+︒.【分析】把特殊角的三角函数值代入计算即可.解:原式34=-==-=.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.20.(10分)如图,已知梯形ABCD 中,//AD BC ,E 是BC 上一点,//AE CD ,AE 、BD 相交于点F ,:1:3EF CD =.(1)求BE AD的值;(2)联结FC ,设AB a = ,FE b = ,那么BF =2b a -,FC = .(用向量a 、b 表示)【分析】(1)根据题意可证明四边形AECD 为平行四边形,得到AE CD =,则:1:3EF AE =,:1:2EF AF =,易证明BEF DAF ∆∆∽,由相似三角形的性质即可求解;(2)由2AF EF =得2AF b =,3AE b =,由三角形法则求出BF 和BE ,再求出BC ,最后利用三角形法则即可求出FC .解://AD BC ,//AE CD ,∴四边形AECD 为平行四边形,AE CD ∴=,:1:3EF CD = ,:1:3EF AE ∴=,:1:2EF AF =,//AD BC ,BEF DAF ∴∆∆∽,∴12BE EF AD AF ==;(2)联结FC ,如图,由(1)可得2AF EF =,FE b = ,∴2AF b =,3AE b =,∴2BF AF AB b a =-=-,3BE AE AB b a =-=-, 12BE AD =,AD EC =,∴2(3)62EC b a b a =-=-,∴36293BC BE EC b a b a b a =+=-+-=-,∴93272FC BC BF b a b a b a =-=--+=-.故答案为:2b a -,72b a -.【点评】本题主要考查平行四边形的判定与性质、相似三角形的判定与性质、平面向量,熟练三角形法则是解题关键.21.(10分)如图,在平面直角坐标系xOy中,正比例函数(0)y kx k=≠的图象与反比例函数3(0)y xx=>的图象交于点(3,)A a.(1)求这个正比例函数的解析式;(2)将这个正比例函数的图象向上平移(0)m m>个单位,新函数的图象与反比例函数3(0)y xx=>的图象交于点B,如果点B的纵坐标是横坐标的3倍,求m的值.【分析】(1)将点(3,)A a代入反比例函数3yx=,求出a的值,再待定系数法求正比例函数解析式即可;(2)设点B横坐标为t,则纵坐标为3t,根据点B的纵坐标是横坐标的3倍,列方程求出t的值,即可确定点B坐标,再将点B坐标代入13y x m=+,即可求出m的值.解:(1)根据题意,将点(3,)A a代入反比例函数3 yx =,得33a=,解得1a=,∴点A坐标为(3,1),将点(3,1)A代入正比例函数y kx=,得31k=,解得13 k=,∴正比例函数解析式为13y x =;(2)这个正比例函数的图象向上平移(0)m m>个单位,得13y x m =+,设点B横坐标为t,则纵坐标为3 t,点B的纵坐标是横坐标的3倍,∴33t t=,解得1t=或1t=-(舍),∴点B坐标为(1,3),将点B坐标代入13y x m =+,得133m =+,解得83 m=.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求解析式,一次函数的图象与几何变换,熟练掌握待定系数法求解析式是解题的关键.22.(10分)如图,光从空气斜射入水中,入射光线AB射到水池的水面B点后折射光线BD 射到池底点D处,入射角30ABM∠=︒,折射角22DBN∠=︒;入射光线AC射到水池的水面C点后折射光线CE射到池底点E处,入射角60ACM∠'=︒,折射角40.5ECN∠'=︒.//DE BC,MN、M N''为法线.入射光线AB、AC和折射光线BD、CE 及法线MN、M N''都在同一平面内,点A到直线BC的距离为6米.(1)求BC的长;(结果保留根号)(2)如果8.72DE =米,求水池的深.(参考数据:2取1.41,3取1.73,sin 22︒取0.37,cos 22︒取0.93,tan 22︒取0.4,sin 40.5︒取0.65,cos 40.5︒取0.76,tan 40.5︒取0.85)【分析】(1)根据题意和锐角三角函数,可以求得CF 和BF 的值,然后即可计算出BC 的值;(2)根据(1)中的结果和锐角三角函数,可以求得水池的深.解:(1)作AF BC ⊥,交CB 的延长线于点F ,则////AF MN M N '',ABM BAF ∴∠=∠,ACM CAF ∠'=∠,30ABM ∠=︒ ,60ACM ∠'=︒,30BAF ∴∠=︒,60CAF ∠=︒,6AF = 米,3tan 30633BF AF ∴=⋅︒=⨯=(米),tan 606363CF AF =⋅︒==(米),32343BC CF BF ∴=-=-=),即BC 的长为43米;(2)设水池的深为x 米,则BN CN x ='=米,由题意可知:22∠'=︒.8.72DE=米,ECN∠=︒,40.5DBNN E CN x'='⋅︒≈(米),∴=⋅︒≈(米),tan40.50.85DN BN xtan220.4,+=+'DN DE BC N E∴+=+,0.48.720.85x x解得4x≈,即水池的深约为4米.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.23.(12分)已知:如图,在四边形ABCD中,E为BC上一点,AB DE AE EC⋅=⋅,∠=∠.ABE AED(1)求证:ABE ECD∽;∆∆(2)如果F、G、H分别是AE、DE、AD的中点,联结BF、HF、HG、CG.求证:BF HF CG HG⋅=⋅.【分析】(1)将AB DE AE EC ⋅=⋅变形为AB AE EC DE=,由ABE AED ∠=∠,根据三角形的内角和定理推导出BAE CED ∠=∠,即可证明ABE ECD ∆∆∽;(2)根据三角形的中位线定理得//HF ED ,12HF ED =,12EG ED =,2AE AF =,2DE EG =,可证明四边形EFHG 是平行四形,则AF EF HG ==,再证明ABF ECG ∆∆∽,得BF AF HG CG EG HF==,所以BF HF CG HG ⋅=⋅.【解答】证明:(1)如图1,AB DE AE EC ⋅=⋅ ,∴AB AE EC DE =,ABE AED ∠=∠ ,180180ABE AEB AED AEB ∴︒-∠-∠=︒-∠-∠,180BAE ABE AEB ∠=︒-∠-∠ ,180CED AED AEB ∠=︒-∠-∠,BAE CED ∴∠=∠,ABE ECD ∴∆∆∽.(2)如图2,F 、G 、H 分别是AE 、DE 、AD 的中点,//HF ED ∴,12HF ED =,12EG ED =,2AE AF =,2DE EG =,//HF EG ∴,HF EG =,∴四边形EFHG 是平行四形,AF EF HG ∴==, 22AB AE AF AF EC DE EG EG===,BAF CEG ∠=∠,ABF ECG ∴∆∆∽,∴BF AF CG EG=,∴BF HG CG HF=,BF HF CG HG ∴⋅=⋅.【点评】此题重点考查三角形的内角和定理、相似三角形的判定与性质、三角形的中位线定理、平行线边形的判定等知识,证明四边形EFHG 是平行四形及ABF ECG ∆∆∽是解题的关键.24.(12分)在平面直角坐标系xOy 中(如图),抛物线22(0)y ax x c a =++≠与x 轴交于点A 、B ,其中点A 的坐标为(1,0),与y 轴交于点(0,3)C -.抛物线的顶点为D .(1)求抛物线的表达式,并写出点D 的坐标;(2)抛物线的对称轴上有一点M ,且点M 在第二象限,如果点M 到x 轴的距离与它到直线BD 的距离相等,求点M 的坐标;(3)抛物线上有一点N ,直线ON 恰好经过OBD ∆的重心,求点N 到x 轴的距离.【分析】(1)用待定系数法即可求解;(2)设点(1,)M m -,则MH m MN ==,在Rt BDH ∆中,21tan 42BH BDH DH ∠===,则1sin 45m BDH m ∠=+,即可求解;(3)直线ON 恰好经过OBD ∆的重心,则ON 为BD 边上的中线,由点B 、D 的坐标得BD 的中点坐标为(2,2)--,进而求解.解:(1)由题意得:320c a c =-⎧⎨++=⎩,解得:13a c =⎧⎨=-⎩,故抛物线的表达式为:223y x x =+-,则抛物线的对称轴为1x =-,则点(1,4)D --;(2)设抛物线的对称轴交x 轴于点R ,过点M 作MR BC ⊥于点R ,设点(1,)M m -,则MH m MR ==,在Rt BDH ∆中,21tan 42BH BDH DH ∠===,则sin 4MR m BDH MD m ∠==+,解得:1m =+,即点M的坐标为:(1)-+;(3) 直线ON 恰好经过OBD ∆的重心,则ON 为BD 边上的中线,由点B 、D 的坐标得BD 的中点坐标为(2,2)--,则直线ON 的表达式为:y x =,联立223y x x =+-和y x =并解得:x y ⎧=⎪⎪⎨⎪=⎪⎩,即点N 的坐标为113(2-,1132+-,故点N 到x轴的距离为:12+.【点评】本题考查了二次函数综合运用,涉及到重心的定义、解直角三角形、一次函数的应用等知识点,数形结合是本题解题的关键.25.(14分)如图,在矩形ABCD 中,3tan 4ABD ∠=,E 是边DC 上一动点,F 是线段DE 延长线上一点,且EAF ABD ∠=∠,AF 与矩形对角线BD 交于点G .(1)当点F 与点C 重合时,如果6AD =,求DE 的长;(2)当点F 在线段DC 的延长线上,①求AG AE的值;②如果3DE CF =,求AED ∠的余切值.【分析】(1)设DE x =,根据矩形的性质即解直角三角形推出8CD AB ==,8AE CE x ==-,根据勾股定理得到2226(8)x x +=-,据此求解即可;(2)①AE 交BD 于点M ,连接EG ,根据相似三角形的判定与性质推出AMG DME ∆∆∽,AMD GME ∆∆∽,ABD GAE ∆∆∽,根据相似三角形的性质得出AB AG BD AE=,设3AD a =,则4AB a =,根据勾股定理求出5BD a =,据此求解即可;②设3AD a =,则4CD AB a ==,设CF x =,且0a >,0x >,则4DF a x =+,根据锐角三角函数得到cot DE x AED AD a∠==,根据勾股定理求出AE =,AF =DGF BGA ∆∆∽,根据相似三角形的性质得AG AB FG DF =,进而求出13x a =,据此即可得解.解:(1)如图,当点F 与点C 重合时,设DE x =,四边形ABCD 是矩形,//AB CD ∴,AC BD =,12DG BD =,12CG AC =,90ADC BAD ∠=∠=︒,AB CD =,ABD BDC ∴∠=∠,DG CG =,683tan 4AD CD AB ABD ====∠,ACD BDC ∴∠=∠,EAF ABD ∠=∠ ,EAF ACD ∴∠=∠,8AE CE x ∴==-,90ADC ∠=︒ ,222AD DE AE ∴+=,即2226(8)x x +=-,74x ∴=,74DE ∴=;(2)①如图,AE 交BD 于点M ,连接EG ,由(1)得,EAF BDC ∠=∠,AMG DME ∠=∠ ,AMG DME ∴∆∆∽,∴AM GM DM EM=,又AMD GME ∠=∠ ,AMD GME ∴∆∆∽,ADB GEA ∴∠=∠,ABD EAF ∠=∠ ,ABD GAE ∴∆∆∽,∴AB AG BD AE=,3tan 4AD ABD AB ∠== ,∴设3AD a =,则4AB a =,5BD a ∴===,∴4455AG AB a AE BD a ===;②如图,连接EG ,3tan 4AD ABD AB ∠== ,∴设3AD a =,则4CD AB a ==,设CF x =,且0a >,0x >,则4DF a x =+,3DE CF = ,3DE x ∴=,3cot 3DE x x AED AD a a ∴∠===,AE ==,AF ,//AB CD ,DGF BGA ∴∆∆∽,∴AGABFG DF =,44aa x =+,AG ∴=,由①得,45 AGAE=,54AG AE∴=,54∴=,两边平方并整理得,22(3)(7)(3287)0x a x a x ax a-+++=,a>,0x>,30x a∴-,2232870x ax a++>,30x a∴-=,∴13xa=,1 cot3AED∴∠=,即AED∠的余切值1 3.【点评】此题是相似综合题,考查了相似三角形的判定与性质、矩形的性质、解直角三角形等知识,熟练掌握相似三角形的判定与性质、矩形的性质、解直角三角形并作出合理的辅助线是解题的关键.。
2017年上海中考数学模拟试题(

<p> ?</p><p> 1.要使分式1x-1有意义,则x的取值范围应满足()</p><p> A.x=1B.x≠0C.x≠1D.x=0</p><p> 2.(2013年贵州黔西南州)分式x2-1x+1的值为零,则x的值为()</p><p> A.-1B.0C.±1D.1</p><p> 3.(2013年山东滨州)化简a3a,正确结果为()</p><p> A.aB.a2C.a-1D.a-2</p><p> 4.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.</p><p> 5.已知a-ba+b=15,则ab=__________.</p><p> 6.当x=______时,分式x2-2x-3x-3的值为零.</p><p> 7.(2013年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.</p><p> 8.(2012年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.</p> <p> 9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.</p><p> 10.(2012年山东泰安)化简:2mm+2-mm-2÷mm2-4=________.</p><p> 11.(2013年河北)若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.</p><p>12.(2013年贵州遵义)已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷?a+1a+2?a2-2a+1的值.</p><p> 13.(2012年四川内江)已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.</p><p> 14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.</p><p> 分式</p><p> 1.C2.D3.B4.7z36x2yx+3x+15.326.-1</p><p> 7.解:原式=x+4+x-4x+4x-4?x+4x-42</p><p> =x+4+x-42=x.</p><p> 8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).</p><p>9.解:原式=?m-22m+1m-1?m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,</p><p> 当m=2时,原式=4-2+43=2.</p><p> 10.m-611.1</p><p> 12.解:原式=1a+1-a+2a+1a-1?a-12a+1a+2=1a+1-a-1a+12=2a+12,</p><p> ∵a2+2a-15=0,∴(a+1)2=16.</p><p> ∴原式=216=18.</p><p> 13.-4解析:</p><p> 由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.</p><p> 同理1z+1y=43,1x+1z=-43.</p><p> 所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.</p><p> 于是xy+yz+zxxyz=1z+1y+1x=</p><p> -14,所以xyzxy+yz+zx=-4.</p><p> 14.解:原式=a?b+1b+1b-1?+b-1?b-1?2=ab-1+1b-1=a+1b-1.</p><p> 由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,</p><p> ∴b=2,6a=b,即a=13,b=2.</p><p> ∴原式=13+12-1=43.</p><p> ?</p>语文Ⅰ、文言文阅读1.一读,划出难字,疏通文意;2.二读,以题解题,从已知求未知;3.实词考查题可使用“代入法”,信息筛选题一般采用“排除法”;4.翻译题直译为主,意译为辅,做到信、达、雅。
上海市各市县2017届中考数学试题分类汇编-初三一模相似三角形的性质

【答案】 1 2
【 2017 年杨浦一模 13】如果两个相似三角形的面积之比是
9 : 25 ,其中小三角形一边上的中线长是
12cm ,
那么大三角形中与之相对应的中线长是
cm
【答案】 20
【 2017 年虹口一模 6】如图,在 ABCD 中,点 E 是边 AD 的中点, EC 交对角线 BD 于点 F 若
上海市各市县 2017 届中考数学试题分类汇编 初三一模相似三角形的判定
【 2017 年宝山一模 8】如果两个相似三角形的相似比是 1:4,那么它们的面积比是
;
【答案】 1:16
【 2017 年奉贤一模 13】如果两个相似三角形对应角平分线的比是
是
;
【答案】 4: 9
4: 9,那么这两个三角形的周长比
过点 M ,且 ADE C ,那么 ADE 和 ABC 的面积比是
.
【答案】 1 4
【 2017 年普陀一模 13】利用复印机的缩放功能,将原图中边长为
5 厘米的一个等边三角形放大成边长为
20 厘米的等边三角形,那么放大前后的两个三角形的周长比是
;
【答案】 1:4
【 2017 年松江一模 3】小明身高 1.5 米,在某一时刻的影长为 2 米,同时测得教学大楼的影长为 60 米,则
【答案】 73 4
【 2017 年徐汇一模 16】在梯形 ABCD 中, AD∥ BC,AC、 BD 相交于 O,如果 △BOC 、△ACD 的面积分别 是 9 和 4,那么梯形 ABCD 的面积是 ___________ 【答案】 16
【 2017 年徐汇一模 17】在 Rt△ABC 中,∠ ABC= 90°, AC= 5, BC= 3, CD 是∠ ACB 的平分线,将△ ABC 沿直线 CD 翻折,点 A 落在点 E 处,那么 AE 的长是 ______________
2017年中考数学一模试卷含答案解析 (4)

2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.502.001.202.40?绝对宽度 2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE 【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα 【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断. 【解答】解:i=tanα. 故选C .【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是( )A .B .C .D .||﹣||=0【考点】*平面向量. 【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0, 故选D .【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3B .y=(x+2)2﹣3C .y=(x ﹣2)2+3D .y=(x ﹣2)2﹣3 【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x 2的图象向左平移个单位得到y=(x+2)2, 由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A .【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形 图① 图②图③图④ 图⑤绝对高度1.502.00 1.20 2.40 ?绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00 【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB ,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A 点作AD ⊥BC 于D , BD=3.60÷2=1.80, 在Rt △ABD 中,AB==3,图⑤绝对宽度为3; 图⑤绝对高度为: 2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=x sin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
上海市各市县2017届中考数学试题分类汇编-初三一模代数运算

上海市各市县2017届中考数学试题分类汇编初三一模代数运算【2017年一模静安1】等于)0(21>-a a ( ) A.a B.a - C.a a D.a a - 【答案】:C【2017年一模静安2】下列多项式中,在实数范围不能分解因式的是( )A.y x y x 2222+++B.2222-++xy y xC.y x y x 4422++-D.4422-+-y y x【答案】:A【2017年一模青浦1】下列各数中,属于无理数的是( )(A ) 214 (B ) 6 (C )322 (D ) 327【答案】:B【2017年一模青浦2】已知a >b ,下列关系式中一定正确的是( )(A ) 2a 2b < (B )2a b 2< (C )2b 2a +<+ (D )a b -<-【答案】:D【2017年一模静安7】16的平方根是_________.【答案】:4±【2017年一模静安8】如果代数式23+-x x 有意义,那么x 的取值范围为___________. 【答案】:2x >-【2017年一模静安9】方程112152=-+--x x x 的根为___________.【答案】:=2x【2017年一模青浦8】方程213=-x 的根是__________.【答案】:35=x【2017年一模青浦9】如果关于x 的一元二次方程022=+-m x x 有实数根,那么m 的取值范围是________________.【答案】:1≤m【2017年一模青浦19】计算:()121112222++-+-÷+-a a a a a a【答案】:1【2017年一模静安20】解方程:22220694x xy y x xy y ⎧-+=⎨-+=⎩【答案】:(1)123434120042222033x x x x y y y y ==⎧⎧=-=-⎧⎧⎪⎪⎨⎨⎨⎨=-==-=⎩⎩⎪⎪⎩⎩或或或.【2017年一模青浦20】解方程组:2244410x xy y x y ⎧-+=⎨++=⎩【答案】:⎪⎪⎩⎪⎪⎨⎧=-=⎩⎨⎧-==3134102211y x y x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共26页) 2017年上海市普陀区中考数学一模试卷
一、选择题(每题4分) 1.“相似的图形”是( )
A.形状相同的图形 B.大小不相同的图形
C.能够重合的图形 D.大小相同的图形
2.下列函数中,y关于x的二次函数是( )
A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x﹣2)2﹣x2 3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别
交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于( )
A. B. C. D.
4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x … ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 … 从上表可知,下列说法中,错误的是( ) A.抛物线于x轴的一个交点坐标为(﹣2,0)
B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△
ADC和△BAC相似的是( ) 第2页(共26页)
A.∠DAC=∠ABC B.AC是∠BCD的平分线
C.AC2=BC•CD D. = 6.下列说法中,错误的是( )
A.长度为1的向量叫做单位向量
B.如果k≠0,且≠,那么k的方向与的方向相同
C.如果k=0或=,那么k= D.如果=, =,其中是非零向量,那么∥
二、填空题(每题2分) 7.如果x:y=4:3,那么= .
8.计算:3﹣4(+)= .
9.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是 .
10.抛物线y=4x2﹣3x与y轴的交点坐标是 .
11.若点A(3,n)在二次函数y=x2+2x﹣3的图象上,则n的值为 .
12.已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线
段AP的长等于 厘米. 13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边
长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是 . 14.已知点P在半径为5的⊙O外,如果设OP=x,那么x的取值范围是 .
15.如果港口A的南偏东52°方向有一座小岛B,那么从小岛B观察港口A的方
向是 . 16.在半径为4厘米的圆面中,挖去一个半径为x厘米的圆面,剩下部分的面积
为y平方厘米,写出y关于x的函数解析式: (结果保留π,不要求写出定义域) 第3页(共26页)
17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于 .
18.如图,DE∥BC,且过△ABC的重心,分别与AB、AC交于点D、E,点P是
线段DE上一点,CP的延长线交AB于点Q,如果=,那么S△DPQ:S△CPE的值是 .
三、解答题 19.计算:cos245°+﹣•tan30°.
20.如图,已知AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,
求⊙O的直径.
21.如图,已知向量,,.
(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和). (2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=, =,那么试用,表示向量,(请直接写出结论)
22.一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,第4页(共26页)
现计划削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)
23.已知:如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,
求证: (1)△DEC∽△ADC; (2)AE•AB=BC•DE.
24.如图,已知在平面直角坐标系xOy中,点A(4,0)是抛物线y=ax2+2x﹣c上的一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P. (1)求平移后所得到的新抛物线的表达式,并写出点C的坐标; (2)求∠CAB的正切值; (3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.
25.如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中
点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N. 第5页(共26页)
(1)当CM=2时,求线段CD的长; (2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域; (3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长. 第6页(共26页) 2017年上海市普陀区中考数学一模试卷
参考答案与试题解析
一、选择题(每题4分) 1.“相似的图形”是( )
A.形状相同的图形 B.大小不相同的图形
C.能够重合的图形 D.大小相同的图形
【考点】相似图形. 【分析】根据相似形的定义直接进行判断即可. 【解答】解:相似图形是形状相同的图形,大小可以相同,也可以不同, 故选A.
2.下列函数中,y关于x的二次函数是( )
A.y=2x+1 B.y=2x(x+1) C.y= D.y=(x﹣2)2﹣x2 【考点】二次函数的定义. 【分析】根据二次函数的定义,可得答案. 【解答】解:A、y=2x+1是一次函数,故A错误; B、y=2x(x+1)是二次函数,故B正确;
C、y=不是二次函数,故C错误;
D、y=(x﹣2)2﹣x2是一次函数,故D错误;
故选:B.
3.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3与点A、B、C,直线DF分别
交l1、l2、l3与点D、E、F,AC与DF相交于点H,如果AH=2,BH=1,BC=5,那么的值等于( ) 第7页(共26页)
A. B. C. D.
【考点】平行线分线段成比例. 【分析】根据平行线分线段成比例,可以解答本题. 【解答】解:∵直线l1∥l2∥l3, ∴, ∵AH=2,BH=1,BC=5, ∴AB=AH+BH=3, ∴, ∴, 故选D.
4.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x … ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 … 从上表可知,下列说法中,错误的是( ) A.抛物线于x轴的一个交点坐标为(﹣2,0)
B.抛物线与y轴的交点坐标为(0,6)
C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的
【考点】二次函数的性质. 【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D. 【解答】解: 当x=﹣2时,y=0, 第8页(共26页)
∴抛物线过(﹣2,0), ∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确; 当x=0时,y=6, ∴抛物线与y轴的交点坐标为(0,6),故B正确; 当x=0和x=1时,y=6, ∴对称轴为x=,故C错误; 当x<时,y随x的增大而增大, ∴抛物线在对称轴左侧部分是上升的,故D正确; 故选C.
5.如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△
ADC和△BAC相似的是( )
A.∠DAC=∠ABC B.AC是∠BCD的平分线
C.AC2=BC•CD D. = 【考点】相似三角形的判定. 【分析】已知∠ADC=∠BAC,则A、B选项可根据有两组角对应相等的两个三角形相似来判定;C选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似;D选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定. 【解答】解:在△ADC和△BAC中,∠ADC=∠BAC, 如果△ADC∽△BAC,需满足的条件有: ①∠DAC=∠ABC或AC是∠BCD的平分线; ②=; 故选:C. 第9页(共26页)
6.下列说法中,错误的是( )
A.长度为1的向量叫做单位向量
B.如果k≠0,且≠,那么k的方向与的方向相同
C.如果k=0或=,那么k= D.如果=, =,其中是非零向量,那么∥
【考点】*平面向量. 【分析】由平面向量的性质来判断选项的正误. 【解答】解:A、长度为1的向量叫做单位向量,故本选项错误; B、当k>0且≠时,那么k的方向与的方向相同,故本选项正确;
C、如果k=0或=,那么k=,故本选项错误;
D、如果=, =,其中是非零向量,那么向量a与向量b共线,即∥,
故本选项错误; 故选:B.
二、填空题(每题2分) 7.如果x:y=4:3,那么= .
【考点】比例的性质. 【分析】根据比例的性质用x表示y,代入计算即可. 【解答】解:∵x:y=4:3, ∴x=y,
∴==, 故答案为:.
8.计算:3﹣4(+)= ﹣﹣4 .
【考点】*平面向量. 【分析】根据向量加法的运算律进行计算即可.