热敏电阻实践报告

热敏电阻实践报告
热敏电阻实践报告

黑龙江科技学院 综合性、设计性实验报告

实验项目名称热敏电阻特性实验

所属课程名称传感器工程实践

实验日期2011年3月x日

班级

学号

姓名

成绩

电气与信息工程学院实验室

实验概述:

【实验目的及要求】

【实验目的】

1通过实验使学生掌握各种传感器的工作原理;

2掌握热敏电阻传感器的特性测试方法;

3掌握传感器的特性实验数据处理方法;

4培养和提高学生传感器特性测试系统设计和分析的能力;

5通过该课程的学习扩大学生知识面,为今后的研究和技术工作打下坚实的基础。

【设计要求】

1掌握热敏电阻传感器的工作原理、测量电路的原理;

2通过传感器特性系统的设计,多方面知识综合应用,全面提高能力;

3为今后从事传感器工程方面的工作打下基础。

【实验原理】

传感器特性测试系统框图:

传感器测量电路图:

热敏电阻温度传感器工作原理:

热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的。

热敏电阻用于测温是利用了半导体电阻率随温度变化这一特性,对于热敏电阻要求其材料电阻温度系数大、稳定性好、电阻率高,电阻与温度之间最好有线性关系。

热敏电阻采用二线或三线连接法,其中一端接二根引线(三线连接法),主要为了消除引线电阻对测量的影响

【实验环境】(使用的软件)

工具:工程实践台、热敏电阻式传感器、导线、Pt100标准温度传感器、恒温箱。

实验内容:

【实验方案设计】

设计要点:

1)数显电压表分辨率为:1/1999,即:0.5/1000,并存在“〒1”个字的量化误差,在系统精度范围外的数字跳动属正常现象。

2)通用放大器(Ⅰ)调零时数显电压表需从20V档逐步逐步减小。

3)实验中其他单元的电源应关闭,否则有干扰。

4)温度源具有升温快、降温慢的特点,所以在取初始设定值时,应比PV 值略高。

5)插传感器接头时注意对正小方形口。

6)在实验前应先对测量电路进行调零。

7)记录数据时应在温度稳定在某一数值后再记录。

设计方案

(1)由于测量处理电路中存在零位电势,所以在开始实验前先将测量处理

电路得输入端短接并接地(防止输入信号干扰),将增益调至最大值,

并将测量电路调零。

(2)撤去输入端短接的导线,使传感器的信号能够进入测量电路中。

(3)记录恒温箱温度的初始值以及传感器输出的初始电压值,然后逐渐改变恒温箱的温度,再分别记录相应的温度与电压表的示数。(记录数

据时应注意,当温度基本稳定后在记录,否则会使误差增大。)(4)由记录的数据绘制出特性曲线,分析其特性。

【实验过程】(实验步骤、记录、数据、分析)

1.将通用放大器(Ⅰ)单元的输出V0用软线连到数显电压表上。将S6开关抬起,使电路输出处于用户测量状态,打开通用放大器(Ⅰ)单元电源。

温控源电源应先关闭。

2.传感器实践台的温度插座“标准”接Pt100热电阻,热敏电阻插座接热敏电阻。插入时应注意对正小方形口

3.通用放大器 (Ⅰ)的S4开关置热敏电阻档。先不要把热敏电阻传感器的探头插入温度源的插口(即先不加温),抬起S14开关(此时电路输出为第一级放大器输出),将Rw1(放大器第一级增益), Rw3(放大器第二级增益)顺时调至最大,调Rw2(放大器第一级调零)使第一级仪表专用放大器输出Vo3为零。压下S14开关(此时电路输出为第二级放大器输出),调Rw4(放大器第二级调零)使Vo4(Vo)为零。

4.打开温控源电源开关,加热和冷却方式置仪表控制位。设定好初始温度值49℃。

5.将热敏电阻传感器探头插到温度源加热器右边插孔中给传感器加温,开始热敏电阻特性实验。整个实验过程Rw1、Rw2、Rw4不动。温度控制仪表在温度控制过程中,可见加热或冷却指示灯闪烁,待温控仪指示的温度稳定在设定值附近变化后,记录下电压表读数值。

6.重新设定温度值为49℃+n〃Δt,Δt=2℃,n=1……10,每隔1n读出数显电压表指示值与温控仪指示的温度PV(U1)值,并填入表1。

表1:(注意实验要记录温控数显表的PV值和电压表值)

T(℃)49 51 53 55 57

U1(V) 0.68 1.00 1.38 1.72 2.09

U2(V) 0.63 0.93 1.34 1.67 2.04

T(℃)59 61 63 65

U1(V) 2.47 2.81 3.16 3.49

U2(V) 2.41 2.74 3.05 3.49

热敏电阻特性实验

0.5

1

1.5

22.53

3.5

4

495153555759

616365温度T(℃)电压U (V )系列1系列2

非线性误差δ,ΔL=

灵敏度S 。K=Δy/Δx K ≈(3.49-0.68)/(65-49)=0.175625

【结论】(结果)

由所记录的数据和数据分析,不难看出,热敏电阻传感器的线性度和灵敏度都是比较好的,当温度发生变化时,传感器的输出量都会发生相应的变化,能够检测出温度较小的变化量。

【小结】

做一总结对本次实验的心得体会、思考和建议

格式:小四号字体、楷体、加粗

指导教师评语及成绩:

评语:

成绩: 指导教师签名:

批阅日期:

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

热敏电阻实践报告

黑龙江科技学院 综合性、设计性实验报告 实验项目名称热敏电阻特性实验 所属课程名称传感器工程实践 实验日期2011年3月x日 班级 学号 姓名 成绩 电气与信息工程学院实验室

实验概述: 【实验目的及要求】 【实验目的】 1通过实验使学生掌握各种传感器的工作原理; 2掌握热敏电阻传感器的特性测试方法; 3掌握传感器的特性实验数据处理方法; 4培养和提高学生传感器特性测试系统设计和分析的能力; 5通过该课程的学习扩大学生知识面,为今后的研究和技术工作打下坚实的基础。 【设计要求】 1掌握热敏电阻传感器的工作原理、测量电路的原理; 2通过传感器特性系统的设计,多方面知识综合应用,全面提高能力; 3为今后从事传感器工程方面的工作打下基础。 【实验原理】 传感器特性测试系统框图: 传感器测量电路图: 热敏电阻温度传感器工作原理: 热敏电阻是利用某种半导体材料的电阻率随温度变化而变化的性质制成的。 热敏电阻用于测温是利用了半导体电阻率随温度变化这一特性,对于热敏电阻要求其材料电阻温度系数大、稳定性好、电阻率高,电阻与温度之间最好有线性关系。 热敏电阻采用二线或三线连接法,其中一端接二根引线(三线连接法),主要为了消除引线电阻对测量的影响 【实验环境】(使用的软件) 工具:工程实践台、热敏电阻式传感器、导线、Pt100标准温度传感器、恒温箱。 实验内容: 【实验方案设计】 设计要点: 1)数显电压表分辨率为:1/1999,即:0.5/1000,并存在“〒1”个字的量化误差,在系统精度范围外的数字跳动属正常现象。 2)通用放大器(Ⅰ)调零时数显电压表需从20V档逐步逐步减小。 3)实验中其他单元的电源应关闭,否则有干扰。 4)温度源具有升温快、降温慢的特点,所以在取初始设定值时,应比PV 值略高。 5)插传感器接头时注意对正小方形口。 6)在实验前应先对测量电路进行调零。 7)记录数据时应在温度稳定在某一数值后再记录。 设计方案 (1)由于测量处理电路中存在零位电势,所以在开始实验前先将测量处理

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

温度传感器报告

温度传感器报告

温度传感器是指能感受温度并能转换成可用输出信号的传感器。温度是和人类生活环境有着密切关系的一个物理量,是工业过程三大参量(流量、压力、温度)之一,也是国际单位制(SI)中七个基本物理量之一。温度测量是一个经典而又古老的话题,很久以来,这方面己有多种测温元件和传感器得到普及,但是直到今天,为了适应各工业部门、科学研究、医疗、家用电器等方面的广泛要求,仍在不断研发新型测温元件和传感器、新的测温方法、新的测温材料、新的市场应用。要准确地测量温度也非易事,如测温元件选择不当、测量方法不宜,均不能得到满意结果。 据有关部门统计,2009年我国传感器的销售额为327亿元人民币,其中温度传感器占整个传感器市场的14%,主要应用于通信电子产品、家用电器、楼宇自动化、医疗设备、仪器仪表、汽车电子等领域。 温度传感器的特点 作为一个理想的温度传感器,应该具备以下要求:测量范围广、精度高、可靠性好、时漂小、重量轻、响应快、价格低、能批量生产等。但同时满足上述条件的温度传感器是不存在的,应根据应用现场灵活使用各种温度传感器。这是因为不同的温度传感器具有不同的特点。 ● 不同的温度传感器测量范围和特点是不同的。 几种重要类型的温度传感器的温度测量范围和特点,如表1所示。 ● 测温的准确度与测量方法有关。 根据温度传感器的使用方法,通常分为接触测量和非接触测量两类,两种测量方法的特点如 ● 不同的测温元件应采用不同的测量电路。 通常采用的测量电路有三种。“电阻式测温元件测量电路”,该测量电路要考虑消除非线性误差和热电阻导线对测量准确度的影响。“电势型测温元件测量电路”,该电路需考虑线性化和冷端补偿,信号处理电路较热电阻的复杂。“电流型测温元件测量电路”,半导体集成温度传感器是最典型的电流型温度测量元件,当电源电压变化、外接导线变化时,该电路输出电流基本不受影响,非常适合远距离测温。 温度测量的最新进展 ● 研制适应各种工业应用的测温元件和温度传感器。 铂薄膜温度传感器膜厚1μm,可置于极小的测量空间,作温度场分布测量,响应时间不超过1ms,偶丝最小直径25μm,热偶体积小于1×10-4mm3,质量小于1μg。 多色比色温度传感器能实时求出被测物体发射率的近似值,提高辐射测温的精

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

【大学物理实验】 热敏电阻温度计的设计 实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 姓 名 学号 实验台号 实验时间 年 11 月 25 日,第14周,星期 二 第 5-6 节 实验名称 热敏电阻温度计的设计 教师评语 实验目的与要求: (1) 掌握电阻温度计测量温度的基本原理和方法。 (2) 设计和组装一个热敏电阻温度计。 主要仪器设备: 稳压电源, 自制电桥盒(如右下图所示), 直流单臂电桥箱和热敏电阻感温原件等。 实验原理和内容: 热敏电阻温度计的工作原理 由于热敏电阻的阻值具有随温度变化而变化的性质, 我们可以将热敏电阻作为一个感温原件, 以阻值的变化来体现环境温度的变化。 但是阻值的变化量以直接测量的方式获得可能存在较大的误差, 因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流, 通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。 电桥的结构如右图所示, R1、R2、R3为可调节电阻, Rt 为热敏电阻。 当四个电阻值选择适当时, 可以使电桥达到平衡, 即AB 之间(微安表头)没有电流流过, 微安表指零; 当Rt 发生变化时, 电桥不平衡, AB 间有电流流过, 可以通过微安表读出电流大小, 从而进一步表征温度的变化。 成 绩 教师签字

当电桥不平衡时, 可以描绘成如右侧的电路图。 根据基尔霍夫定律和R1=R2的条件, 能够求得微安表在非平衡状态下的电流表达式: t t g t t cd g R R R R R R R R R U I ++++- =33132 2)21( 式中, Ucd 为加载在电桥两端的电压, Rg 为微安表头的内阻值。 可以见到, 为使Ig 为相关于Rt 的单值函数, R1、R2、R3和Ucd 必须为定值, 而其定制的大小则决定于以下两个因素: 1) 热敏电阻的电阻-温度特性。 2) 所设计的温度计的测温上限t1和测温下限t2。 步骤与操作方法: 1. 温度计的设计 (1) 测出所选择的热敏电阻Rt-t 曲线(或由实验室给出)。 (2) 确定R1、R2、R3的阻值。 具体方法如下: 该实验中, t1=20℃,t2=70℃, 对应R t -t 曲线可以得到R t1和R t2; Rg 由实验室给出, U cd 取值为1.3V , 由微安表面板上可读出I gm =50μA 。 根据电桥关系, 有R 1=R 2, R 3= R t1, R t = R t2, I g =I gm ; 再将以上量代入关系式:)(2)21(2 12121221t t t t g t t t gm cd R R R R R R R R I U R R ++-+-==, 计算得到R1和R2的值。 2. 温度计的调试 (1) 将面板上的开关扳向下方, 将R1和R2调节到方才的计算值之后, 保持不变。 (2) 将微安表接入电路, Rt 先用一个四位旋钮式的电阻箱代替接入E 、D 两点, 并链接其 余电路和电源。 (3) 将电阻箱调至R t1的计算值, 打开电源,调节R3使微安表指零,此时R3调节完毕, 有 R3= R t1。

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

打印版热敏电阻改装成温度计

评分:大学物理实验设计性实验实验报告 实验题目:热敏电阻改装温度计 班级: 姓名:学号: 指导教师: **学院物理系大学物理实验室 实验日期:2010年12 月10 日 实验6 《用热敏电阻改装温度计》实验提要

实验课题及任务 热敏电阻是阻值对温度变化非常敏感的一种半导体。不同于导体的阻值——温度特性(温度升高,阻值增大),半导体热敏电阻的阻值——温度特性是当温度升高,阻值降低。产生这种现象的原因是由于半导体中的载流子数目随着温度升高而按数激烈地增加,载流子的数目越多,导电能力越强,电阻率就越小。热敏电阻温度计是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。用半导体热敏电阻作为传感器,设计制作一台测温围为40℃~90℃的半导体温度计。 《用热敏电阻改装温度计》实验课题任务是:根据所学的知识,设计实验把所给的热敏电阻改装成热敏温度计。 学生根据自己所学的知识,并在图书馆或互联网上查找资料,设计出《用热敏电阻改装温度计》的整体方案,容包括:(写出实验原理和理论计算公式,研究测量方法,写出实验容和步骤。),然后根据自己设计的方案,进行实验操作,记录数据,做好数据处理,得出实验结果,按书写科学论文的要求写出完整的实验报告。 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等 实验所改装的温度计的要求 (1)要求测量围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 评分参考(10分) ⑴正确写出实验原理和计算公式,2分。 ⑵正确的写出测量方法,1分。 ⑶写出实验容及步骤,1分。

热电阻温度计的结构和原理

热电阻温度计的结构和原理 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。 热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、 体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有

负的电阻温度特性,当温度升高时,电阻值减小热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数k,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就 是把热敏电阻两端电压值经a/d转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1、热电阻测温原

理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加 这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温 2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击; ③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于bla--b3c级区内具有爆炸危险场所的温度测量。铠

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

半导体温度计的设计与制作(已批阅)

实验题目:半导体温度计的设计与制作 实验目的:测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好 的测温电路)来设计一半导体温度计。进一步理解热敏电阻的伏安特性和惠斯通电桥测电阻的原理,学习非电学量的电测法,了解实验中的替代原理的应用。 实验原理:(1)半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏 电阻为传感器,通过测量其电阻值来确定温度的仪器。这种测量方法为非电量的电测法。 (2)由于金属氧化物半导体的电阻值对温度的反应很灵敏(参见实验3.5.2),因此可以作为温传感器。 为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值, 还需要了解热敏电阻的伏安特性。由图1可知,在曲线的起始 部分,曲线接近线性,此时,热敏电阻的阻值主要与外界温度 有关,电流的影响可以忽略不计。 (3)半导体温度计测温电路的原理图如图2所示,当电桥平衡时, 表的指示必为零,此时应满足条件T R R R R 321=,若取R 12,则R 3的数值即为的数值。平衡后,若电桥某一臂的电阻又发生改变(如), 则平衡将受到破坏,微安计中将有电流流过,微安计中的电流的 大小直接反映了热敏电阻的阻值的大小。 (4)当热敏电阻的阻值在测温量程的下限1时,要求微安计的 读数为零(即0),此时电桥处于平衡状态,满足平衡条件。若 取R 12,则R 31,即R 3就是热敏电阻处在测温量程的下限温度时的 电阻值,由此也就决定了R 3的电阻值。 (5)当温度增加时,热敏电阻的电阻值就会减小,电桥出现不平衡,在微安计中就有电流流过。当热敏电阻处在测温量程的上限温度电阻值2时,要求微安计的读数为满刻度。由于 G T I I >>,则加在电桥两端上的电压近似有:)(3R R I V T CD += (1) 根据图2的电桥电路,由基尔霍夫方程组可以求出

热敏电阻实验报告模板

实验一温度(热敏电阻)传感器实验 一、实验目的:了解热敏电阻测量温度的原理和工作情况。 二、实验内容: 本实验主要学习以下几方面的内容 1. 了解热敏电阻特性曲线; 2.观察采集到的热信号的实时变化情况。 三、实验仪器、设备和材料: 所需单元和部件:ELVIS,nextboard ,nextsense02 注意事项: 1在插拔实验模块时,尽量做到垂直插拔,避免因为插拔不当而引起的接插件插针弯曲,影响模块使用。 2 禁止弯折实验模块表面插针,防止焊锡脱落而影响使用。 3 更换模块或插槽前应关闭电源。 4 开始实验前,认真检查电阻连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 5本实验仪采用的热敏电阻为NTC热敏电阻,负温度系数。 四、实验原理:金属的电阻随温度的升高而增大,但半导体却相反,它的电阻随温度的升高而急剧减少,并呈非线性。在温度变化的同时,热敏电阻阻值变化约为铂热电阻的10倍。热敏电阻正是利用半导体电阻值随温度显著变化这一特性制成的热敏元件。热敏电阻在温度变化时阻值发生变化,将变化接入相应的变换电路中,电阻的变化就产生了电压的变化,测量该电压就可以测得温度。 五、实验步骤: 1关闭平台电源(nextboard或者myboard或者ELVISboard),插上热电偶实验模块。开启平台电源,此时可以看到模块左上角电源指示灯亮。 2运行热敏电阻实验应用程序 3传感器介绍、对热敏电阻的原理、分类以及温度计算公式进行了说明。在实验开始前,请仔细阅读传感器介绍。 4特性曲线、根据温度计算公式描绘了热敏电阻以及温度的关系曲线。 5实验内容、罗列了热敏电阻实验的课程要求,按照要求逐步完成课程。 6实验模拟、包含了电路原理仿真以及真实的手动测量实验。 7恒流源实测面板、显示了恒流源电路的实际测试值。 8分压法实测面板。显示了分压电路的实际测试值。 六、结果及处理 1绘制R_T特性曲线 2绘制恒流源数据图像 3绘制分压法数据图像

PTC热敏电阻实验报告

功能材料—PTC热敏陶瓷制备与性能的综合实验一、实验目的 通过实验,使学生加深对“电子信息材料专业方向”中有关基础理论知识的理解。 1.了解PTC热敏陶瓷制备原理及方法 2.使学生熟练掌握PTC电阻的测试方法 二、实验原理 PTC效应与许多因素有关,PTC热敏电阻(正温度系数热敏电阻)是一种具温度敏感性的半导体电阻,一旦超过一定的温度(居里温度) 时,它的电阻值随着温度的升高几乎是呈阶跃式的增高。也可以说,PTC(positive temperature coefficient) 电阻是指在某一温度下电阻急剧增加、具有正温度系数的热敏电阻或材料。当PTC 陶瓷元件接通电源后,电流将随电压的升高而迅速增加,达到居里温度时,电流达到最大值,这时PTC 陶瓷元件进入PTC 区域,此时当电压继续升高时,由于PTC 陶瓷元件的电阻急剧增大,电流反而减小。 纯BaTiO3陶瓷是良好的绝缘体,是一种优良的陶瓷电容器材料,也是一种典型的钙钛矿型结构的铁电材料。纯的BaTiO3在常温下几乎是绝缘的,电阻率大于1012Ω?cm,通过不等价取代在BaTiO3中掺杂微量的元素后,会使其性能发生变化,出现PTC效应,并且伴随着室温电阻率的大幅度下降。制成的钛酸钡基PTC 陶瓷具有较大的正温度系数和开关阻温特性,通过掺杂,它的居里温度可在很宽的范围内(室温~400 ℃) 任意调节,所以,在航空航天、电子信息通讯、自动控制、家用电器、汽车工业、生物技术、能源及交通等领域,它得到了广泛的应用。 钛酸钡基PTC 陶瓷的组成: (1)移峰剂——添加后能够移动居里点(BaTiO3瓷120o C) 添加物与主晶相形成固溶体使铁电陶瓷的特性在居里温度处出现的峰值发生移动的现象,称为移峰效应。居里温度通常满足以下经验公式: t c =t c1 (1-x)+t c2 x(x-摩尔分数) 该添加物称为移峰剂。PTC 陶瓷中常用钙钛矿型铁电体的移峰剂有两种:钛酸铅、PbTiO3(490℃)、钛酸锶SrTiO3(-250℃)。 (2)半导体化: 施主掺杂:将BaTiO 3 基本组成离子分成三种离子群:其中至少在两个位置上的部分离子,用离子半径相接近,而原子价相差1价的不同离子进行置换。置换可得到低电阻率的陶瓷材料。 1.对于Ba 2+位可用La 3+、Ce3+、Sb3+、Sm3+、Dy3+或K +、Na +等离子;

大学物理实验报告--热敏电阻的电阻温度特性的研究(精)

实验六半导体热敏电阻特性的研究 实验目的 1.研究热敏电阻的温度特性。 2.进一步掌握惠斯通电桥的原理和应用。 实验仪器 箱式惠斯通电桥,控温仪,热敏电阻,直流电稳压电源等。 实验原理 半导体材料做成的热敏电阻是对温度变化表现出非常敏感的电阻元件,它能测量出温度的微小变化,并且体积小,工作稳定,结构简单。因此,它在测温技术、无线电技术、自动化和遥控等方面都有广泛的应用。 半导体热敏电阻的基本特性是它的温度特性,而这种特性又是与半导体材料的导电机制密切相关的。由于半导体中的载流子数目随温度升高而按指数规律迅速增加。温度越高,载流子的数目越多,导电能力越强,电阻率也就越小。因此热敏电阻随着温度的升高,它的电阻将按指数规律迅速减小。 实验表明,在一定温度范围内,半导体材料的电阻R T 和绝对温度T 的关系可表示为 b T ae R = (4-6-1) 其中常数a 不仅与半导体材料的性质而且与它的尺寸均有关系,而常数b 仅与材料的性质有关。常数a 、b 可通过实验方法测得。例如,在温度T 1时测得其电阻为R T 1 11b T ae R = (4-6-2) 在温度T 2时测得其阻值为R T 2

22b T ae R = (4-6-3)将以上两式相除,消去a 得 1 1(212 1T T b T T e R R ?= 再取对数,有 11(ln ln 2 121T T R R b T T ??= (4-6-4) 把由此得出的b 代入(4-6-2)或(4-6-3)式中,又可算出常数a ,由这种方法确定的常数a 和b 误差较大,为减少误差,常利用多个T 和R T 的组合测量值,通过作图的方法(或用回归法最好)来确定常数a 、b ,为此取(4-6-1)式两边的对数。变换成直线方程: T b a R T +=ln ln (4-6-5)或写作 BX A Y += (4-6-6)式中X b B a A R Y T , , ln , ln ====,然后取X 、Y 分别为横、纵坐标,对不同的温度T 测得对应的R T 值,经过变换后作X ~Y 曲线,它应当是一条截距为A 、斜率为B 的直线。根据斜率求出b ,又由截距可求出a =e A 。 确定了半导体材料的常数a 和b 后,便可计算出这种材料的激活能E =bK (K 为玻耳兹曼常数,其值见附录)以及它的电阻温度系数 %10012×?==T b dT dR R T T α (4-6-7)显然,半导体热敏电阻的温度系数是负的,并与温度有关。 热敏电阻在不同温度时的电阻值,可用惠斯通电桥测得。

基于热敏电阻的数字温度计报告

信电学院 电子信息工程专业CDIO二级项目项目设计说明书(2012/2013学年第二学期) 项目名称:基于热敏电阻的数字温度计设计 专业班级: 小组成员: 指导教师:吴开兴马永强 马小进刘会军 设计周数:4月8号—6月15号 设计成绩: 2011年6月15日 项目分工表:

目录 1 概述 (2) 2总体设计方案 (2) 2.1设计目的 (2) 2.2设计任务 (2) 3系统的硬件设计及实现 (3) 3.1系统各模块介绍 (3) 3.2电路系统设计 (11) 4系统软件设计 (11) 5设计总结 (18) 6参考文献 (19)

1、概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2 总体设计方案 2.1 设计目的 通过本次CDIO利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度。 2.2 设计任务 1、根据技术要求和现有开发环境,分析设计题目 2、设计系统实现方案 3、设计并绘制电路原理图 4、画出功能模块的程序流程图 5、使用汇编语言(或C语言)编写实现程序 6、结合硬件调试、修改并完善程序;

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

误差分析-热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法, 并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x = .在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理

图1 非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398

基于热敏电阻的数字温度计课程设计报告书

目录 1 绪论1 2 系统硬件电路设计3 2.1 测温电桥电路3 2.2 信号放大电路 (6) 2.3 AD转换电路 (7) 2.4 控制电路 (9) 2.5 声光报警电路 (10) 2.6 显示电路 (11) 2.7 电源电路 (12) 3 系统软件设计15 4 总结与展望 (16) 参考文献 (17)

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计按测使用的温度计种类繁多,应用围也比较广泛,大致可以包括以下几种方法: 1,利用物体热胀冷缩原理制成的温度计 2,利用热电效应技术制成的温度检测元件 3,利用热阻效应技术制成的温度计 4,利用热辐射原理制成的高温计 5,利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片, 进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 系统硬件原理图如图1—1

图1—1系统框图 系统硬件原理图如图1—1所示,由热电阻传感器测的外界温度,经过信号放大,然后送给模数转换,将原有的模拟信号转换为可以贝单片机识别和运算的数字信号,然后在通过软件编程通过显示电路显示出来当前所测得的温度。 它的各部分电路说明如下: (1).测温模块: 该部分电路主要使用测温电桥,当温度变化时,电桥处于不平衡状态,从而输出不平衡电压,为测温的基础。 (2).信号处理部分: 该部分电路包括电压信号的放大和AD 转换,实现模数变换,以及硬件滤波。

相关文档
最新文档