路基工后沉降分析

路基工后沉降分析
路基工后沉降分析

路基工后沉降标准资料分析

随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。

法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。

德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。

日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。

韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道)

台湾高速铁路考虑路基工后沉降标准是采用法国标准。

目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。

对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。

着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。

二、路基沉降的概念

1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。

2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。

3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。

4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。

5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。

三、路基沉降的组成

路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。

1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

2、基床底层:通常采用容易碾压密实的A、B组填料或采用改良的C组填料。

3、基床以下路堤:其变形量大小主要取决于土体的物理特性和土体自身的压密特性以及压实时的含水量;其变形调整和稳定时间取决于土体自身特性、含水量大小、压实功大小和上覆土体的压实过程,当填料为化学改良土(掺加石灰、水泥)时,由于压实功以及改良剂的作用,路基本体变形逐渐减小并趋于稳定。当填料为砂砾土或碎石土时,其变形量大小和稳定时间可认为是确定的,一般在路基施工完成后一年趋于稳定。

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

浅谈铁路路基沉降的控制办法

浅谈铁路路基沉降的控制办法 摘要: 随着我国铁路建设事业的蓬勃发展,建设高等级铁路的规模不断加大, 提升铁路建设的科技含量是铁路建设工作者义不容辞的责任。本文从路基沉降观测,路基沉降的原因进行了分析,并针对易发生路基沉降的部位提出了一些预防方法。 关键词:路基沉降控制 为满足铁路运输需要, 保证运输安全, 提高铁路路基质量, 铁道部建设公司近十几年先后几次对铁路路基设计规范进行了修订, 在我国铁路跨越式发展时提出了“强本简末”的要求, 设计标准有了很大提高。随着国家铁路的第六次大提速的完成, 快速铁路对路基的基床承载力与沉降变形要求更高, 仅局限于选线时尽量绕避不良地质地段, 避免高填深挖是不够的, 铁路路基的填料选择、沉降控制与观测、提高路基的防排水能力、加强过渡段设计及加强路基支挡防护设计显得更加重要。其中, 铁路路基的填料种类、压实标准与铁路路基的沉降控制有着密切的联系, 因此,本文就铁路路基的填料选择与沉降控制这两方面谈一下自己的看法及建议。 1、路基填料 1.1 路基填料适用性判别 高等级铁路的路基填筑标准及对路基工后沉降的要求均远高于普通铁路。因此必须特别重视对路基填料的勘察、鉴定、分类工作, 慎重对待取土场的选择。对填料需严格把关, 在勘察设计阶段就应当作为一项专门的工作来进行, 对其工程特性,适用性进行必要的试验工作后作出专门的评价, 以确定该取土场的填料用作路基本体或基床底层是否合格, 否则需考虑改良土方案或变更取土场。 由于地区不同, 路基填料也千差万别根据《铁路路基设计规范》相关规定, 对于巨粒土、粗粒土填料根据颗粒组成, 颗粒形状, 颗粒级配、细粒含量、抗风化能力等来分为A、B、C 、D组, 细粒土填料根据液限含水量ωL进行填料分组, 当ωL<40%时为粉土, 为C组,当ωL≥40%时为黏性土,为D组, 有机土为E组。 1.2 特殊填料在路基中的应用 在比较平坦的地区, 铁路路基取土较困难, 传统做法是在考虑经济成本与可行性的同时, 采取部分填料外运与集中挖坑取土或者薄取相结合, 在集中挖坑取土后, 再对取土场进行生态恢复, 如将取土坑留给当地百姓进行养鱼等经济生产。或者沿线与排水沟相结合, 挖深拓宽排水沟。这两种传统方法由于简单便于实施,得到了人们广泛的认同, 并在很多类似线路中得以应用。

高填方路基预防工后沉降施工方案

高填方路基预防工后沉降施工方案 一、工程概况 本项目为×标段,K×+×××-K×+×××段长约4公里,公路等级为二级,设计时速为40公里/小时,水泥混凝土路面,一般路段路基宽10米,路面宽9米。 高填方路基的沉降控制要求为: ①为减少高填路基沉降,在填筑过程中应清除换填路基基底的覆盖层,应加强施工控制与沉降观测(每铺筑4~8m高度进行一次),待已有路基稳定后再行铺筑,应充分保证路堤的自然沉降时间,如因工期需要,应采用强夯或冲击碾压等辅助措施。 ②施工过程中按照《公路路基施工技术规范》中有关要求观测路基填筑过程中或运营过程中的地基变形动态,对路基施工实行动态监测、观测。 二、高填方路基沉降预防与治理措施 高填方路段出现较大沉降后会致使路面开裂,基层断裂,加速路面的损坏,严重危及路面的正常使用,如果高填方路段的沉降进一步发展,可致使路基整体沉陷,横向挤压路基失稳崩塌造成道路的损毁,所以对于高填方路基的沉降必须作出必要的预防与治理措施。 (一)预防措施与治理措施: (1)做好施工组织设计,合理安排各工段的施工顺序。 (2)认真清除地表不良土质,提高地表压实质量。 (3)填筑路基前,疏通路基纵横两侧排水系统,避免路基受水浸泡。 (4)严格选取路基填料用土。 (5)路基填筑方式应选取水平分层填筑。 (6)合理确定路基填筑厚度,分层松铺厚度一般控制在30cm。 (7)控制路基填料含水量。 (8)选择合适的压实机具,重型轮胎压路机和振动压路机比较好。 (9)认真做好台背,路桥过渡段及填挖结合部的压实工作。 (10)做好压实度的检测工作。 (11)对于挖填结合部,应彻底清除结合部的松散软弱土质,做好换土排水和填前碾压工作,按设计要求从上到下挖出台阶,清除松方后逐层碾压,确保填挖结合部的整体施工质量。 (12)高填方路段的沉降的治理方法有:换填土法,固化剂法,粉喷桩法(二)进度计划 高填方是本项目施工控制重点,施工进度的快慢直接影响到项目总施工进度,为此项目部在考虑不影响总工期的前提下计划于2015年8月1日

工后沉降报告01

泉州市滨江路(39号路~南环路)新建道路工程(第一合同段:K11+600~K12+250)软土路基预压 工后沉降预估报告 福建省建专岩土工程有限公司 2011年9月30日

目录 1 工程概况 (2) 1.1、道路概况 (2) 1.2、处理方案 (2) 1.3、施工工况 (2) 2 监测成果 (3) 2.1监测点的布设 (3) 2.2 监测时间及成果 (3) 3 工后沉降计算 (6) 3.1双曲线法估算 (6) 3.2AsaoKA法估算 (7) 3.3路面结构荷载沉降估算 (7) 3.4工后沉降值 (7) 4 结语 (8)

1 工程概况 1.1道路概况: 泉州市滨江路(39号路~南环路)新建道路工程属于滨江路(324国道~南环路段)的一部分,位于泉州市城东片区,沿洛阳江西岸布置,总体线型基本为南北走向,沿岸主要地貌有冲海积平原,山前冲洪积扇,坡地,滨海漫滩等,地势相对平坦,地面高程一般为3~20m。设计路线全长4.099814km。 1.2处理方案: 本道路软基加固处理路段里程桩号为:K11+600~K12+250,其中K11+600~K12+240采用了塑料排水板-堆载预压配合反压,K12+240~K12+250采用抛石挤淤处理。 塑料排水板采用B型,粘合式结构,厚度4mm,宽度10cm。采用正方形布置,路堤范围内间距1.10m,反压坡道范围内间距为1.30m,塑料排水板应插入粉质粘土或残积砾质粘土不小于0.50m,深度距中砂层顶面不大于1.50m, 路堤采用“薄层轮加法”进行填筑,即由监测控制加载速率的分层加载法,每层加载厚度按0.50m控制,每级荷载加载间歇期为7~10d,填土一般按每月不超过1.50m等速加载进行。 填土速率控制标准为:路堤中心沉降速率小于15mm/d,测斜管侧向位移速率小于3mm/d,位移边桩侧向位移速率小于5mm/d,加载期间单级孔压系数小于0.6,综合孔压系数小于1.0,当单级孔压系数0.4或单级孔压系数增量消散大于50%时可加下一级荷载。观测结果应结合沉降和

路基变形监测及工后沉降观测方案

路基变形监测及工后沉降观测方案 1.变形监测 ⑴沉降观测的组织准备 ①建立沉降观测管理体系。成员单位应包括建设、设计、施工、监理单位,各单位应确定工作组织(人员)、指定工作负责人(联系人)。 ②建立沟通联系工作制度,保证沉降观测工作协调、有序开展。 ③沉降观测工作启动前,对有关人员进行必要的技术培训或交底。 ④施工单位按沉降观测设计方案要求布设沉降观测点及观测断面,埋设观测元器件,配备适应测量要求的有关仪器设备。观测工作启动前,施工单位应报请监理单位对测点布置、元器件埋设、测量仪器等准备工作进行检查验收,以确保观测测量工作具备合格的工作基础。 ⑵沉降监测网的建立 沉降监测网的建立方式是在在全线二等精密高程控制测量布设的基岩点、深埋水准点及一般水准点的基础上,按照国家二等水准测量的技术要求进一步加密水准点或设置工作基点以满足工点垂直位移监测需要。 ⑶路基沉降观测 路基填筑完成后应有不少于设计要求的观测和调整期。观测数据不足以评估或工后沉降评估不能满足设计要求时,应延长观测或采取必要的加速或控制沉降的措施。 路基沉降观测以路基面沉降观测和地基沉降观测为主。 沉降观测分为三阶段进行,每个阶段的沉降观测的频次应根据沉降的发生与发展规律及沉降大小确定,一般应按照如下观测频度进行: 第一阶段:路基填筑施工期间的观测,主要观测路基填土施工期间地基与堤身的沉降变形以及路堤坡脚边桩位移与沉降。本阶段沉降观测应与施工配合,每填筑一层应观测一次,同时应保证不超过3天观测1次。 第二阶段:路基填筑施工完成,自然沉落期的沉降观测,该阶段应对路基顶面的沉降及路基基底沉降进行系统的观测,直到工后沉降评估可满足路面施工的要求为止。 实际工作进行时,观测时间的间隔还要看地基的沉降值和沉降速率,两次连续

路基的沉降控制标准[综述]

路基的沉降控制标准[综述] 1、沉降问题的提出 我国的高速公路有相当部分达不到设计使用年限,与国外相比有很大的差距。造成这种现象的原因很多,路基的差异沉降是其中之一。 我国路面设计仅考虑路基的模量,在路面基层弯拉应力的计算中不考虑因路基的差异沉降变形所引起的附加应力,这种计算方法与国外基本相同,但我国的路基与国外差别很大。我国农村人口占全国的2/3,在高速公路密集的中东部地区,为方便高速路两侧村庄的通行,必须留有一定高度的通道,间距往往只有数百米,为满足纵坡要求,路基高度很难降低,高速公路路基高度一般在2~3M。在南非、欧洲等高速公路发达地区,公路的视线很好,道路基本上是顺着地形贴着地表走,路基的沉降几乎为零,虽然这可能导致道路的纵坡较大,但国外良好的车况抵消了这种影响,这在南非最典型。在意大利北部与奥地利等多山国家,多采用架桥或分离式路基,很少有高填方路基。另外国外以柔性路面居多,柔性路面对路基差异沉降的承受能力明显要高于半刚性基层。因此在国外不必考虑的因素在我国可能必须加以考虑。因路基差异沉降引起路面开裂的例子较多,预想性路面对路基模量值很高,但过大的工后沉降引起了路面十多处开裂,所以说强度与变形是路基的两个同样重要的控制指标。我国传统的观念往往将路基视为简单的土石方工程,这在低级路面时代问题不大,但对高速公路这种观念将带来严重的后果,路基是路面的基础,服务于路面,可以说是路面的一个组成部分。

2、我国路基的沉降控制标准 路基的沉降指标主要有:总沉降量、沉降速率、差异沉降率。所谓差异沉降率是指道路任意两点间在单位时间内的沉降差值与这两点间的距离之比。 我国路基设计规范对软土地区路基变形的控制是彩工后总沉降量(对高速公路则是通车后15年内的总沉降量),即对一般路段的工后沉降量不大于30cm,涵洞、箱涵、通道处不大于20cm,桥台与路堤相邻不大于10cm。从已建高速公路的调查分析,彩总沉降量指标并不能完全消除路面的开裂,在一些鸡爪沟地形的山区,路基的总沉降量也许不大,但其差异沉降率较大引起了路面的开裂,在软土地区也因路基的差异沉降率过大而引起路面开裂与波浪起伏,因此对于路基的变开控制除采用总沉降量外还应考虑采用差异沉降率控制。总沉降量、沉降速率、差异沉降率这三者之间有一定的相关性,但并不完全呈对应关系,总沉降量小并不意味着沉降速率或差异沉降率小,反之亦然。 3、沉降控制标准的确定 对于路基的沉降控制标准,主要从如下3个方面进行探索。 3.1工程经验的总结 交通部公路科研所对太旧路进行全面调查后认为两点间的差异沉降率应控制在0.6%以内,超过此值则有可能引起路面开裂。我国东部沿海地区的许多高速公路存在软土地基,软基深,路基沉降量大,时间长。为了确保新铺筑的路面不因路基沉降而引起开裂,我国各条

路基沉降观测方法

路基沉降观测方法集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

目录 目录 路基沉降观测实施方法 1.编制依据 根据铁道部京沪高速铁路建设总指挥部2008年5月《京沪高速铁路线下工程沉降变形观测及评估实施方案》,结合本工班管段路基工程的具体情况制定实施细则。 2.任务范围及工作内容 2.1任务范围: 商合杭一分部管段路基总长614.11米,分为三段如下表: 第一段:DK674+162.92-DK674+433.98路基全长271.08。 第二段:DK680+980.19-DK681+101.27路基全长121.08。

2.1工作内容: 路基工程沉降变形观测。 3.参照执行的标准及规范 (1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号); (2)《客运专线铁路无砟轨道测量技术暂行规定》(铁建设[2006]189号); (3)《国家一、二等水准测量规范》(GB12897—2006); (4)《建筑沉降变形测量规程》(JGJ/T8-2007); (5)《铁路客运专线竣工验收暂行办法》(铁建设[2007]183号); (6)《客运专线无砟轨道铁路施工技术指南》(TZ216-2007); (7)《工程测量规范》(GB0026-93); (8)《全球定位系统(GPS)铁路测量规程》(TB10054-97); (9)《客运专线无砟轨道铁路设计指南》(铁建设函[2005]754号); (10)路基工程设计图纸 沉降变形监测网建立及测量技术要求 沉降监测网的建立、精度要求等符合《客运专线无碴轨道铁路工程测量暂行规定》的要求;根据《商杭合铁路线下工程沉降变形观测及评估实施方案》规定,沉降变形测量点分为基准点、工作基点和沉降变形观测点。其布设按下列要求: (1)每段路基均建立独立的监测网,设置1个稳固可靠的基准点。基准点设在沉降变形 影响范围以外便于长期保存的稳定位置,与相邻桥梁共用。 (2)工作基点选在比较稳定的位置。工作点除使用普通水准点外,按照国家二等水准测 量的技术要求进一步加密水准基点或设置工作基点至满足工点垂直位移监测需要。加密后的水准基点(含工作基点)间距200m左右时,可基本保证线下工程垂直位移监测需要。(3)沉降变形观测点设立在沉降变形体上能反映沉降变形特征的位置,具体点位布设详 见5.2。 4.1沉降变形监测测量工作基本要求 水准基点使用时首先作稳定性检验,并以稳定或相对稳定的点作为沉降变形的参考点。

为达到路基工后沉降及不均匀沉降标准所采取的工艺措施

为达到路基工后沉降及不均匀沉降标准所采取的工艺措施 结合本标段特点,路基工程的工后沉降及不均匀沉降通过地基条件评估分析和沉降预测、评估,达到较准确推算沉降、判断并控制工后沉降及不均匀沉降的目的。地基处理前,先对沿线路基地基情况进行全面地质普查,验证设计地质资料;路基地基处理后经检测满足设计要求后,选用合格填料,再严格按设计质量标准分层填筑、验收。基床表层作为路基顶面标高控制层,对所有路基进行不少于6个月的沉降观测,在沉降基本稳定、经评估能满足工后沉降要求后,计算填筑顶面标高并根据沉降稳定期的沉降推算成果,准确预测轨道工程施工期间的沉降(在基床表层填筑标高控制时考虑),用摊铺机摊铺并碾压成型A、B、C组填料。 ⑴地基条件评价 路堤施工前,结合初步的地质勘察资料进行详细的补充地质勘查,准确评价路基地基条件。 路堤施工前,在进行地基处理和路基填筑前,根据施工图设计提供的地质资料进行现场复核,根据线路路基的不同地质情况,选用N10轻型动力触探、N63.5重型动力触探、标准贯入、静力触探原位测试方法进行现场勘测,并结合室内土工试验进行地基条件评价,有疑问时进行地质补钻,重新评价地基条件、确定地基处理措施。 ⑵地基处理措施控制 原地面松、软表土及腐植土清除干净,无草皮、树根等杂物和积水,清除后的基底碾压密实、平整,地基表面基本承载力满足设计要求后,方可进行路基填筑施工。 地基处理施工前,选择具有代表性地段进行各项地基处理措施的工艺试验,复核地质资料以及检验设备配置、施工工艺是否适宜,确定各项地基处理措施的施工工艺参数。待工艺试验段经检验满足设计和质量要求后,方可进行大面积施工。 ⑶填料质量控制 选用合格填料料源,通过二次解小、破碎和筛分,严格控制最大粒径,以获得颗粒级配稳定的A、B、C组填料,为全标段统一供应优质的A、B、C组填

路基沉降观测方法

目录 目录 1.编制依据 (1) 2.任务范围及工作内容 (1) 2.1.1任务范围: (1) 2.1.2工作内容: (1) 3.参照执行的标准及规范 (1) 4.沉降变形监测网建立及测量技术要求 (2) 4.1.1沉降变形监测测量工作基本要求 (2) 4.1.1每次沉降变形观测时遵循以下要求: (3) 4.1.2沉降变形监测观测(二等水准测量)技术要求 (3) 5.沉降观测实施方案 (5) 5.1.1(一)一般规定 (5) 5.1.2(三)沉降观测断面和观测点的布置 (5) 5.1.4.观测方法.精度及要求 (7) 5.1.5.(五)沉降观测频度 (9) 5.1.6.(六)沉降评估 (10) 6.2.(二)过渡段的沉降评估 (13) 6.2.1沉降评估所需资料 (13)

路基沉降观测实施方法 1.编制依据 根据铁道部京沪高速铁路建设总指挥部2008年5月《京沪高速铁路线下工程沉降变形观测及评估实施方案》,结合本工班管段路基工程的具体情况制定实施细则。 2.任务范围及工作内容 2.1任务范围: 商合杭一分部管段路基总长614.11米,分为三段如下表: 第一段:DK674+162.92-DK674+433.98 路基全长271.08。 第二段: DK680+980.19-DK681+101.27路基全长121.08。 第三段: DK681+237.65-DK681+459.60路基全长221.95。 2.1工作内容: 路基工程沉降变形观测。 3.参照执行的标准及规范 (1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号); (2)《客运专线铁路无砟轨道测量技术暂行规定》(铁建设[2006]189号);

土方路基工后沉降

文章编号:1009-6825(2012)33-0172-02 土方路基工后沉降分析 收稿日期:2012-09-03 作者简介:刘探勤(1985-),男,助理工程师刘探勤 (山西省交通建设工程监理总公司,山西太原030012) 摘要:从施工方面分析路基工后沉降原因,针对由施工方面可能造成路基工后沉降的几种可能性进行了分析,并对各种不同的原因选择最佳的施工方法,以减小或消除路基工后沉降,确保道路使用安全。 关键词:路基,工后沉降,方法 中图分类号:U416.1文献标识码:A 0引言 路基在公路建设里程中的比例远远大于桥涵隧道,尤其是城市道路路基所占比例会更高。路基施工建造线长、面广、地质情况复杂,施工情况复杂,施工不当很容易造成路基工后沉降发展结果有不同的形式,有的形成反射裂缝拉裂路面、有的形成大坑突然塌陷、有的整体沉降影响路面车辙,不管哪种形式破坏结果,都会给公路造成巨大损失,影响使用功能,造成安全隐患,影响行车舒适性。现从以下几方面探讨土方路基工后沉降防治。 1设计与施工不符 由于公路路基建设从勘察设计到施工有很长的间隔时间,中间进行施工监理招投标、征地拆迁等工作,在这段时间人们生产生活及自然环境都可能导致路基工程开工前与勘察设计时发生变化。如果仍按原设计进行施工,就会给工程质量留下安全质量隐患。 1)如附近矿产企业在勘察设计完施工前正好进行地下开采作业,导致地下形成空洞、空穴。雨水冲开的暗沟、暗渠,施工前未能探明,仍按原设计施工,导致路基工后沉降或塌陷。在施工过程中或者通车后,由于荷载的长年累月不断扰动,就会出现沉降或者塌陷。在开工前施工现场有矿区的应进行一定深度的二次钻探,以探明地质情况有无变化。根据地质情况采取一定措施如注浆、开挖并分层回填。 2)施工时原地面标高与勘察设计时的标高不一样,导致路床填筑超出路基外地面规定的高度,引起土中毛细水上升至路床,经冻融循环改变和破坏土体结构,而引起路基工后沉降。施工时应严格保证路床高出路基外或者排水沟顶规定的高度,以保证路基不受毛细水上升改变路基结构而引起路基沉降。 2施工监理人员质量责任意识差,参建人员数量多,素质参差不齐 1)《路基施工技术规范》规定每层填土最小和最大厚度,具体根据试验段确定,而施工过程中有的层次填筑过厚有的过薄,同一层及不同层厚度不均匀。而检测到的压实度数据偏差大、离散大、没有代表性,不能准确反映路基压实度。 2)对平整度不重视,很多施工人员和监理人员认为平整度只是面子工程,而忽视了对平整度的控制。平整度差,在当层压实度检测中能达到合格,但高低不平,层层累加,低的地方就会影响上一层下部的压实度。 3)现在检测压实度时,灌砂法检测大都只检测填筑层上部或中部,而对填筑层下部检测的少之又少,很可能上部和中部压实度刚合格,而填筑层下部却不合格,也给路基质量留下了安全隐患。 以上三种情况在公路建成通车后,由路基本身自重的静载和路面传来的动载不断的扰动作用下,压实薄弱环节的土结构重新排列,导致路基下沉。路基施工中施工人员应尽量使路基每一层厚度一样。重视路基平整度,严格按规范标准要求控制。检测压实度时严格按规程操作,选取有代表性的,薄弱环节进行检测。以避免压实度不均匀,导致路基工后沉降。 3施工技术人员知识水平存在薄弱地方 如土质发生变化而施工技术人员未能准确及时地发现并判别土的种类,将特殊土未经改良直接进行路基填筑施工。 1)膨胀土含有丰富的亲水性矿物蒙脱石、伊利石土、高岭土,它是一种有较高承载力的高塑性黏质土,具有吸水膨胀、失水收缩、反复胀缩、浸水承载力衰减、干缩裂隙发育等特性,性质极不稳定。 由以上性质可以看出膨胀土的破坏主要来自含水量变化所引起。含水量不变的环境使用膨胀土则不会产生破坏,而路基工后内部土体的湿度不是保持不变的,这样就使含水量大的膨胀土,会因为失去水分产生收缩,含水量小的膨胀土,则会吸水后产生膨胀,且反复胀缩,最后破坏路基稳定性、整体性。膨胀产生裂缝,流进雨水加快路基内土体干湿变化,加大了土体的膨胀潜势和膨胀力,加重加快路基破坏,使路基发生沉降。 没有条件必须使用膨胀土时,应从外因和内因两个方面着手。外因方面主要是减水路基内土体干湿变化,路堤部分应使用不透水材料封闭膨胀土或使用加筋纤维。路堑部分完工后及时做防护工程封闭,做好路面防水排水工程。内因方面主要是改良土质的稳定性,如添加石灰、水泥、粉煤灰、表面活性剂或其他添加剂。 2)湿陷性黄土呈黄色、黄褐色。根据浸水湿陷时是否有外力,分为自重湿陷性黄土和非自重湿陷性黄土。受水浸湿后,在上部饱和土重力作用下湿陷的称为自重湿陷,需要外力作用而湿陷的称为非自重湿陷。湿陷性黄土为第四纪大陆松散堆积物,含有大量的矿物质,以碎屑矿物质为主,结构体系为骨架颗料,在形成时是极散的,靠少数水分和颗粒间的摩擦形成连接,在经过反复干燥和雨水的作用下,大部分形成了骨架空隙结构。除少数老黄土外,当湿陷性黄土受水浸湿时,结合水膜增厚连接性消失,土中的盐溶于水中等,致使骨架强度降低,土在结构自重应力和外在应力作用下,土颗粒向孔隙大的地方移动,内部结构重新排列,最后路基内土结构被破坏,路基下沉。所以在干燥时具有较高的强度,遇水时湿陷。 · 271 ·第38卷第33期 2012年11月 山西建筑 SHANXI ARCHITECTURE Vol.38No.33 Nov.2012

(整理)工后沉降的数值分析

郑西高速客运专线填料改良及地基处理 工程试验研究 报告3 路基工后沉降的数值分析

兰州交通大学 铁道第二勘察设计院二OO五年元月

目录 1 计算模型 (1) 2 计算参数 (2) 3 计算荷载 (2) 4 工后沉降计算标准 (3) 5计算内容 (3) 6计算结果 (3) 6.1路基本体沉降量 (3) 6.2天然黄土地基总沉降量及工后沉降量 (4) 7强夯地基沉降量计算 (10) 8灰土挤密桩和CFG桩地基沉降量计算 (16) 9按工后沉降3cm控制的情况 (23) 10结论 (26)

湿陷性黄土属于非饱和的欠压密土,具有较大的孔隙率和偏低的干密度,是其产生湿陷性的根本原因,湿陷性黄土的最大特点是:在土的自重压力和土的附加压力与自重压力共同作用下受水浸湿时将发生急剧而大量的附加下沉现象。新建铁路郑州至西安客运专线三门峡市辖区段处于低山丘陵区,沿线大部分地段通过黄土堆积地貌单元。黄土地区占线路总长约85%。该线为时速200km/h以上的一次双线客运专线铁路。对路基填料(含基床底层)的压实度和工后沉降要求将会十分严格。 根据日本和法国及德国的经验,满足高速铁路的轨道平顺性除要严格控制路基的均匀沉降外,不均匀沉降控制更为关键。因此,本报告采用分层总和法和平面有限元方法对黄土地段的几种地基处理措施进行了分析研究,得出了一些有益的结论,为工程设计和施工提供参考。 1 计算模型 采用平面有限元方法对其进行分析,并采用弹塑性本构模型(Drucker-Prager)。选取的计算区域为:黄土地基竖向尺寸取为黄土层的厚度,根据不同情况分别选取8m、12m、15m,横向分析长度取为路堤宽度以外20m。其边界条件如下:顶面为自由表面,两边为横向约束,底面为固定约束。 采用ANSYS有限元分析软件,计算路基总沉降量。 图1为双线路堤标准横断面;图2为有限元分析模型。 图1 双线路堤标准横断面

公路道路设计与工后沉降控制

公路道路设计与工后沉降控制 摘要:随着经济社会的发展,我国公路道路建设工程越来越多。在公路道路的建设中,保证道路的安全十分重要。工后路基的沉降作为影响公路道路安全的重要因素之一,成为公路建筑行界以及相关行业思考的重要问题。本文主要通过对公路道路设计、工后沉降的测算,来探讨如何公路沉降的控制措施。 关键词:公路道路;工后沉降;控制 建国后,随着国民经济水平的提高,我国公路建设逐渐进入日益蓬勃发展的阶段,尤其是20世纪90年代以后,更是取得了飞跃性的前进。据相关统计,到本世纪头一个十年底,包括高速公路在内,我国的公路道路通车总里程数已经达到了398万公里。在这众多的里程中,软土地区占了相当的一部分。而软土地区由于其自身的特点,比如含水量高、承载力低等等,极易引起道路的沉降变形。道路一旦沉降变形就会对道路的通车甚至是使用安全造成影响。因此,控制公路道路的沉降成为软土地区公路建设面临的重要问题。 公路道路软土路基的特征 软土,一般来说是指呈现软塑状态甚至流塑状态的一种粘性的土质。之所以呈现这种状态,是因为其本身含水量高、具有极强的可压缩性以及较差的承载能力。淤泥或者淤泥质的土系都属于软土的范畴。在公路建设工程的分类体系中,黏性土中细粒土的中塑性与高塑性土质的塑性指数比较大,凝结、固定强度较低,触变性以及流变性极其显著。除此之外,渗透性差、压缩固结过程所需时间长、路基抗剪的强度较低、工程固定、凝结之后,路基排水性较差也是软土所具有的特点。 总体而言,对于公路道路建设来说,软土路基因为主要是由含有众多黏粒的松软土以及土系空隙较大的有机质土、松散砂和泥炭等等其他土层构成,所以极易发生沉降现象,故是一种不稳定的、不良的路基。其众多特点,包括渗透性差、流变性高、含水量大、车辆承载能力较低在内,都使得软土路基在进行公路道路的建设时,由于自身的过高的地下水位,填方以及路基的构成物极差的稳定性,容易发生沉降甚至变形。 为了解决公路道路软土地区建设中,所发生的路基沉降问题,必须对路基本身进行一定的加固处理。 公路软土路基沉降特点分析 公路道路的建设在遇到软土路基时,容易发生沉降变形,这种沉降变形,很大一部分原因是由于对于软土路基的处理不够恰当所造成的。然而当路基由于外部承载力过大而发生沉降变形时,总会对道路的使用以及安全产生一定的影响。

路基沉降观测及工后沉降评估阐述

路基沉降观测及工后沉降评估阐述 要】本文介绍了客运专线路基沉降变形观测的内容、观测断面和观测点的布设、变形观测元件的选取及埋设、变形观测的具体实施过程以及测量精度和测量频率的要求,对路基沉降评估的方法进行了详细阐述。 关键词】客运专线;路基;沉降变形;观测;评估 1.1 沉降观测的必要性和目的 1.1.1 在勘察设计阶段,设计人员根据地质条件、土层物理力学参数、填土高度、地基加固措施、工期等计算总沉降量及工后沉降量,选择地基加固措施。但由于黄土地基本身的复杂性、参数选取的精度、计算方法的局限性,以及施工过程的影响等因素,设计中沉降计算只能是一种估算,其精度难以满足客运专线的高标准要求。因此客运专线沉降控制必须根据施工期间的实测沉降数据,采用数学方法对最终沉降量、沉降速率、工后沉降量进行推算。借此确定铺轨时机。实测沉降数据及分析还可作为预测运营期间可能的维修工作量和周期依据之一。 1.1.2 客运专线路基施工过程的沉降观测以及利用观测资料进行沉降沉降推算,是确保客运专线路基,尤其是软弱地基上的路基工后沉降得到有效控制的必须措施。此外,路基沉降观测也是路基施工过程控制的必须手段。如:控制填土速率以确保路基的稳定,预测还需预压的时间以指导下步施工计划的安排,以及,及时评价地基加固措施的有效性等。 1.2 沉降观测设置原则及观测内容 1.2.1 路基变形观测的范围:

1 接近或超过临界高度的路堤; 2 采用砂垫层、排水砂井加固的路堤; 3 必须进行预压的桥头路堤及采用加固措施的较高路堤; 4 超过设计允许填土速度施工的路堤; 5 对路基工后沉降要求较高的路基; 6 对全面施工具有指导意义的代表性路堤。 所有土质地基均需进行工后沉降分析,对不满足工后沉降控制标准的地基需进行处理,且要求路基填筑完成或施加预压荷载后,保证6~18个月的沉降观测和调整期,经工后沉降评估分析满足要求时方可铺设无碴轨道。 1.2.2 软土路基观测桩设置原则 路基两侧设置边桩用来观测土的侧向位移值及其发展趋势,从而判断地基的稳定性。边桩设置原则:视加固地段的地形地貌情况,顺线路方向在路堤两侧或一侧坡脚外2m、10m布置二排,线路纵向桩间距以10~20m为宜。边桩多用100mm100mm 1000mm的硬木制成。硬底横坡大的软土路堤,视加固地段的地形地貌,坡脚两侧或一侧反压护道顶及坡脚外2m、20m(根据填土高度或滑弧影响范围确定)设永久性观测桩。应设置在最危险断面上,且每个工点应不少于2个监测断面,路堤填筑及通车运营过程中必须进行观测。 1.2.3 沉降观测设置原则:采用地基沉降观测与路基面沉降观测相结合的观测系统。 ①路堤基底沉降观测:应根据地基工程地质条件并结合工程情况确定,

相关文档
最新文档