热传导

热传导
热传导

《热传导》的教学设计

(教科版五年级下册热单元第六课《热是怎样传递的》)

教学背景分析:

学生对于热传递有很多实际的经验和认识,例如为什么用橡胶或者木质材料来制作金属炊具的把手,对于固体传热的方式——热传导也有很多初步的了解。由于热的传递过程不能直接通过眼睛进行观察,因此通过本课教学引导学生利用实验的方法感知热是由温度高的一端传递到温度较低的一端。

教学目标:

1、热一般情况下会从温度较高的一端(物体)传导到温度较低的一端(物体);通过直接接触,将热从一个物体传递给另一个物体,或者从物体的一部分传递到另一部分的传热方法叫做热传导;热传导的方向是由热源点向周围各个方向的。

2、设计实验观察热传导的过程和方向;用文字或图示记录,交流观察到的关于热是怎样传导的现象。

3、保持积极的观察探究热传递的兴趣;体验通过积极思考和探究所获得的成功喜悦。通过动手实验,观察现象证明热传导的方向和过程。

教学重点:

通过设计实验认识热在固体中的传播方式—热传导。

教学难点:

独立设计实验并进行实验的能力。

教学准备:

小组:铁架台、铜棍、蜡环、蜡烛、火柴、废液缸、木块、湿布、实验记录单

三脚架、金属片、蜡片、蜡烛、火柴、废液、木块、湿布、实验记录单

教师:铁架台、十字夹、试管、金鱼、温度计、水、酒精灯、木块、火柴、废液缸、演示文稿

板书设计:

教学过程

附:实验记录单

“热传导”研究记录

第___组

研究的问题:热在_____中的传递

实验准备:蜡烛、火柴、木块、废液缸、湿布、_______、_______、_______ 实验方案(装置示意图):

实验现象:

我们发现(热在传递时的过程和方向):_____________________________________

学习评价

1、交流各组实验记录单。实验后,在装置图上推测一下热的传递方向。

2、解释:炊具上面装把手的原因。

课后小结:

通过学生主动交流,认真观察,使学生逐步树立与人合作认真细致的科学态度,并初步学会把抽象的或者很难直接观察到的实验现象变得易于观察。通过本课教学,使学生逐步对热的传递及热现象产生兴趣。

导热理论热传导原理

第二节热传导 热传导是由物质内部分子、原子和自由电子等微观粒子的热运动而产生的热量传递现象。 热传导的机理非常复杂, 简而言之,非金属固体内部的热传导是通过相邻分子在碰撞时传递振动 能实现的;金属固体的导热主要通过自由电子的迁移传递热量; 在流体特别是气体中, 热传导则 是由于分子不规则的热运动引起的。 4-2-1 傅里叶定律 一、温度场和等温面 任一瞬间物体或系统内各点温度分布的空间,称为温度场。在同一瞬间,具有相同温度的 各点组成的面称为等温面。因为空间内任一点不可能同时具有一个以上的不同温度, 所以温度不 同 的等温面不能相交。 、温度梯度 4-3所示,因为在等温面上无温度变化,所以无热量传 都有温度变化,在与等温面垂直的方向上温度变化率最 大。将相邻两等温面之间的温度差 △ t 与两等温面之间的垂直距离 其数学定义式为: gradt 温度梯度 —为向量,它的正方向指向温度增加的方向,如图 n 对稳定的一维温度场,温度梯度可表示为: gradt ( 4-2) dx 三、傅里叶定律 导热的机理相当复杂,但其宏观规律可用傅里叶定律来描述,其数学表达式为: 或 dQ dS 丄 (4-3) n 式中 —— 温度梯度,是向量,其方向指向温度增加方向,C /m ; n Q ――导热速率,W ; S ――等温面的面积, m 2 ; 入 比例系数,称为导热系数, W/ ( m ?C) < 式4-3中的负号表示热流方向总是和温度梯度的方向相 反,如图4-3所示。 傅里叶定律表明:在热传导时,其传热速率与温度梯度 及传热面积成正比。 必须注意,入作为导热系数是表示材料导热性能的一个 参数,入越大,表明该材料导热越快。和粘度 卩一样,导热 系数入也是分子微观运动的一种宏观表现。 4-2-2导热系数 从任一点开始,沿等温面移动,如图 递;而沿和等温面相交的任何方向移动, △ n 之比的极限称为温度梯度, (4-1) 4-3所示。 图4-3温度梯度与傅里叶定律

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。

实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的

热传导

《热传导》的教学设计 (教科版五年级下册热单元第六课《热是怎样传递的》) 教学背景分析: 学生对于热传递有很多实际的经验和认识,例如为什么用橡胶或者木质材料来制作金属炊具的把手,对于固体传热的方式——热传导也有很多初步的了解。由于热的传递过程不能直接通过眼睛进行观察,因此通过本课教学引导学生利用实验的方法感知热是由温度高的一端传递到温度较低的一端。 教学目标: 1、热一般情况下会从温度较高的一端(物体)传导到温度较低的一端(物体);通过直接接触,将热从一个物体传递给另一个物体,或者从物体的一部分传递到另一部分的传热方法叫做热传导;热传导的方向是由热源点向周围各个方向的。 2、设计实验观察热传导的过程和方向;用文字或图示记录,交流观察到的关于热是怎样传导的现象。 3、保持积极的观察探究热传递的兴趣;体验通过积极思考和探究所获得的成功喜悦。通过动手实验,观察现象证明热传导的方向和过程。 教学重点: 通过设计实验认识热在固体中的传播方式—热传导。 教学难点: 独立设计实验并进行实验的能力。 教学准备: 小组:铁架台、铜棍、蜡环、蜡烛、火柴、废液缸、木块、湿布、实验记录单 三脚架、金属片、蜡片、蜡烛、火柴、废液、木块、湿布、实验记录单 教师:铁架台、十字夹、试管、金鱼、温度计、水、酒精灯、木块、火柴、废液缸、演示文稿 板书设计: 教学过程

附:实验记录单 “热传导”研究记录 第___组 研究的问题:热在_____中的传递 实验准备:蜡烛、火柴、木块、废液缸、湿布、_______、_______、_______ 实验方案(装置示意图): 实验现象:

我们发现(热在传递时的过程和方向):_____________________________________ 学习评价 1、交流各组实验记录单。实验后,在装置图上推测一下热的传递方向。 2、解释:炊具上面装把手的原因。 课后小结: 通过学生主动交流,认真观察,使学生逐步树立与人合作认真细致的科学态度,并初步学会把抽象的或者很难直接观察到的实验现象变得易于观察。通过本课教学,使学生逐步对热的传递及热现象产生兴趣。

关于热传导问题

本科毕业论文 论文题目:关于热传导问题 学生姓名:姜丽丽 学号:200600910058 专业:物理学 指导教师:李健 学院:物理与电子科学学院 2010年5月20日

毕业论文(设计)内容介绍 论文(设计) 题目 关于热传导问题 选题时间2010.1.10 完成时间2010.05.20 论文(设计) 字数 8000 关键词热传导,热量,温度 论文(设计)题目的来源、理论和实践意义: 题目来源:基础研究。 理论和实践意义:在了解热传导的概念基础之上,通过系统地分析热传导的过程,得出热传导的微分方程,从量上对热传导过程有了一个深刻的认识;并且将热传导微分方程应用于解决各种几何形状的固体材料,得出温度分布的情况,以及简单的应用于气体、液体。热传导是深入学习和研究各种传热现象乃至工程热物理各学科的重要基础之一。 论文(设计)的主要内容及创新点: 主要内容:本文主要通过对热传导过程的理论分析,总结出热量与温度的关系,然后分析各种热传导现象温度的变化规律。 创新点:1、总结了不同传热条件下热传导过程中热量与温度的关系; 2、分析了不同条件下热传导温度的变化规律。 附:论文(设计)本人签名:2010年5月20日

目录 摘要 (1) ABSTRACT (1) 一、引言 (2) 二、热传导理论基础 (2) (一)热传导的概念 (2) (二)温度场与温度梯度 (3) (三)热传导方程 (4) 三、固体、液体、气体热传导及热源的影响 (7) (一)无源热传导温度的变化规律 (8) (二)有源热传导温度的变化规律 (10) 四、影响热传导的因素 (11) 五、热传导的应用 (12) 六、总结 (12) 参考文献 (12)

热传导方程

前言 本文只是针对小白而写,可以使新手对热传导理论由很浅到不浅的认识,如想更深学习热传导知识,请转其它文档。 一、概念与常量 1、温度场: 指某一时刻下,物体内各点的温度分布状态。 在直角坐标系中:; 在柱坐标系中:; 在球坐标系中:。 补充:根据温度场表达式,可分析出导热过程是几维、稳态或非稳态的现象,温度场是几维的、稳态的或非稳态的。 2、等温面与等温线: 三维物体内同一时刻所有温度相同的点的集合称为等温面; 一个平面与三维物体等温面相交所得的的曲线线条即为平面温度场中的等温线。 3、温度梯度: 在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient)。用grad t表示。 定义为: 补充:温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。

在直角坐标系中: 3、导热系数 定义式:单位 导热系数在数值上等于单位温度降度(即1)下,在垂直于热流密度的单位面积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 补充:由物质的种类、性质、温度、压力、密度以及湿度影响。 二、热量传递的三种基本方式 热量传递共有三种基本方式:热传导;热对流;热辐射 三、导热微分方程式(统一形式:) 直角坐标系: 圆柱坐标系: 球坐标系: 其中,称为热扩散系数,单位,为物质密度,为物体比热容,为物体导热系数,为热源的发热率密度,为物体与外界的对流交换系数。 补充: 1处研究的对象为各向同性的、连续的、有内热源、物性参数已知的导热物体。 2稳态温度场,即则有:,此式称为泊松方程。 3无内热源的稳态温度场,则有:,此式称为拉普拉斯方程。 四、单值条件 导热问题的单值条件通常包括以下四项: 1几何条件:表示导热物体的几何形状与大小(一维、二维或三维)

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

人们都知道热传导有三种形式

人们都知道热传导有三种形式:辐射、传导、对流。 ①热传导:热量从系统的一部分传到另一部分或由一个系统传到另一系统的现象叫做热传导。热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质的热传导性能不同,一般金属都是热的良导体,玻璃、木材、棉毛制品、羽毛、毛皮以及液体和气体都是热的不良导体,石棉的热传导性能极差,常作为绝热材料。 热从物体温度较高的一部分沿着物体传到温度较低的部分的方式叫做热传导。 ②对流:液体或气体中较热部分和较冷部分之间通过循环流动使温度趋于均匀的过程。对流是液体和气体中热传递的主要方式,气体的对流现象比液体明显。对流可分自然对流和强迫对流两种。自然对流往往自然发生,是由于温度不均匀而引起的。强迫对流是由于外界的影响对流体搅拌而形成的。 靠气体或液体的流动来传热的方式叫做对流。 ③热辐射:物体因自身的温度而具有向外发射能量的本领,这种热传递的方式叫做热辐射。热辐射虽然也是热传递的一种方式,但它和热传导、对流不同。它能不依靠媒质把热量直接从一个系统传给另一系统。热辐射以电磁辐射的形式发出能量,温度越高,辐射越强。辐射的波长分布情况也随温度而变,如温度较低时,主要以不可见的红外光进行辐射,在500摄氏度以至更高的温度时,则顺次发射可见光以至紫外辐射。热辐射是远距离传热的主要方式,如太阳的热量就是以热辐射的形式,经过宇宙空间再传给地球的。 高温物体直接向外发射热的现象叫做热辐射。 热的导体 各种物体都能够传热,但是不同物质的传热本领不同.容易传热的物体叫做热的良导体,不容易传热的物体叫做热的不良导体。金属都是热的良导体。瓷、木头和竹子、皮革、水都是不良导体。金属中最善于传热的是银,其次是铜和铝.最不善于传热的是羊毛、羽毛、毛皮、棉花,石棉、软木和其他松软的物质。液体,除了水银外,都不善于传热,气体比液体更不善于传热. 散热器材料的选择 散热片的制造材料是影响效能的重要因素,选择时必须加以注意!目前加工散热片所采用的金属材料与常见金属材料的热传导系数: 金 317 W/mK 银429 W/mK 铝401 W/mK 铁237 W/mK 铜 48 W/mK AA6061型铝合金155 W/mK AA6063型铝合金201 W/mK ADC12型铝合金96 W/mK AA1070型铝合金226 W/mK AA1050型铝合金209 W/mK 热传导系数的单位为W/mK,即截面积为1平方米的柱体沿轴向1米距离的温差为1开尔文(1K=1℃)时的热传导功率. 热传导系数自然是越高越好,但同时还需要兼顾到材料的机械性能与价格.热传导系数很高的金、银,由于质地柔软、密度过大、及价格过于昂贵而无法广泛采用;铁则由于热传导率过低,无法满足高热密度场合的性能需要,不适合用于制作计算机空冷散热片.铜的热传导系数同样很高,可碍于硬度不足、密度较大、成本稍高、加工难度大等不利条件,在计算机相关散热片中使用较少,但近两年随着对散热设备性能要求的提高,越来越多的散热器产品部分甚至全部采用了铜质材料.铝作为地壳中含量最高的金属,因热传导系数较高、密度小、价格低而受到青睐;但由于纯铝硬度较小,在各种应用领域中通常会掺加各种配方材料制成铝合金,寄此获得许多纯铝所不具备的特性,而成为了散热片加工材料的理想选择.

材料与热传递

热传递,是热从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的过程。热传递是自然界普遍存在的一种自然现象。只要物体之间或同一物体的不同部分之间存在温度差,就会有热传递现象发生,并且将一直继续到温度相同的时候为止。发生热传递的唯一条件是存在温度差,与物体的状态,物体间是否接触都无关。热传递的结果是温差消失,即发生热传递的物体间或物体的不同部分达到相同的温度。 在热传递过程中,物质并未发生迁移,只是高温物体放出热量,温度降低,内能减少(确切地说是物体里的分子做无规则运动的平均动能减小),低温物体吸收热量,温度升高,内能增加。因此,热传递的实质就是能量从高温物体向低温物体转移的过程,这是能量转移的一种方式。热传递转移的是热能,而不是温度。 编辑本段热传递有三种方式传导、对流和辐射。 1、传导: 它具有依靠物体内部的温度差或两个不同物体直接接触,在不产生相对运动,仅靠物体内部微粒的热运动传递了热量; a.固体与液体:分子碰撞; b.固体与固体间:自由电子运动; c.气体之间:分子热运动; 2、对流: 流体中温度不同的各部分之间发生相对位移时所引起的热量传递的过程; (1)自然对流:靠物体的密度差,引起密度变化的最大因素是温度; (2)受迫对流:(是靠认为作功)受到机械作用或压力差而引起的相对运动;[1] 3、热辐射: 物体通过电磁波传递能量的过程称为辐射,由于热的原因,物体的内能转化为电磁波的能量而进行的辐射过程。 任何物体只要在0K以上,就能发生热辐射,是红外线探测运用的较广,在空分中运用的较 少,板翅式换热器真空钎焊加热是依靠热辐射。 钎焊的目的是破坏铝材表面严密的氧化铝膜,650℃高温,以前是运用盐熔炉,能耗大; 影响换热系数的几个因素: 1、流体的流动状态: a.层流:易产生热边界层; b.紊流:破坏热边界层,多运用紊流; c.过渡层: 2、流体的流速:流速大,大; 3、放热面形状:光滑:大;粗糙:小。 传导热从物体温度较高的部分沿着物体传到温度较低的部分,叫做传导。 热传导是固体中热传递的主要方式。在气体或液体中,热传导过程往往和对流同时发生。各种物质都能够传导热量,但是不同物质的传热本领不同。善于传热的物质叫做热的良导体,不善于传热的物质叫做热的不良导体。各种金属都是热的良导体,其中最善于传热的是银,其次是铜和铝。瓷、纸、木头、玻璃、皮革都是热的不良导体。最不善于传热的是羊毛、羽毛、毛皮、棉花、石棉、软木和其他松软的物质。液体中,除了水银以外,都不善于传热,气体比液体更不善于传热。 对流是靠液体或气体的流动来传热的,是液体和气体中热传递的主要方式,气体的对流现象比液体更明显。 利用对流加热或降温时,必须同时满足两个条件:一是物质可以流动,二是加热方式必须能促使物质流动。 辐射:由物体沿直线向外射出,叫做辐射。用辐射方式传递热,不需要任何介质,因此,辐射可以在真空中进行。地球上得到太阳的热,就是太阳通过辐射的方式传来的。 一般情况下,热传递的三种方式往往是同时进行的。 编辑本段更多信息补充内容: 一、热传递与动量传递、质量传递并列为三种传递过程。 二、热传递与热传导的关系 有许多人在学习物理、解答物理习题时,常把热传递与热传导混为一谈,CPU热传递 认为热传递与热传导描述的是同一物理过程,殊不知它们是两个不同的概念。 由内能与热能一节以及热、热运动与热现象的阐述可知,物体的内能就是组成物体全部分子、原子的动能、势能和内部电子能等总和,物体内能的改变可以通过分子、原子有规则运动的能量交换来达成,也可以通过分子、原子的无规则运动的能量交换来达成(或者是两者兼有)。前者能量交换的方式就是作宏观机械功的方式,后者能量交换的方式就是所谓的热传递。更确切地讲,所谓热传递就是没有作宏观机械功而使内能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分的过程。它通过热传导、对流和热辐射三种方式来实现。实际热传递过程中,这三种方式常常是相伴进行的,重要的是看哪一种方式占主要地位。在热力学中,把除了热传递以外的其他一切能量转移方式都归于作功。所以,热传递和作功是能量转移的两种方式,除此之外没有其他方式。 由以上论述可知,热传递是能量传递的一种方式,它具体又包括热传导、对流和热辐射三种形式。为了帮助大家能把热传递与热传导更好地加以区别,下面我们有必要对热传导、对流和总辐射分别作论述。 编辑本段实质热传导指的是物质系统(气体、液体或固体),由于内部各处温度不均匀而引起的热能(内能)从温度较高处向温度较低处输运的现象。 热传导的实质是由大量分子、原子或电子的相互碰撞,而使热能(内能)从物体温度较高部分传到温度较低部分的过程。热传导是固体中热传递的主要方式,在气体、液体中它往往与对流同时发生。各种物质的热传导性能不同,热传导过程的基本定律是傅里叶定律。 对流作为热传递的一种途径,是流体(气体、液体)中热传递的主要方式。它是指流体中较热部热传递与热传导 分和较冷部分在流体本身的有序的循环流动下的相互搀和,使温度趋于均匀从而达到热能(内能)传递的过程。 对流往往自发产生,这是由于温度不均匀性所引起的压力或密度差异的结果。 至于热辐射,它是指受热物体以电磁辐射的形式向外界发射并传送能量的过程。物体温度越高,辐射越强。与热传导、对流不同,热辐射能把热能以光的速度穿过真空,从一个物体传给另一个物体。任何物体只要温度高于绝对零度,就能辐射电磁波,波长为0.4~40微米范围内的电磁波(即可见光与红外线)能被物体吸收而变成热能,故称为热射线。因电磁波的传播不需要任何媒质,所以热辐射是真空中唯一的热传递方式。例如,太阳传给地球的热能就是以热辐射的方式经过宇宙空间而来的。 由此可见,热传导与热传递是两个从属关系概念,热传递概念的外延明显宽于热传导概念的外延,故热传递是一个属概念,而热传导是一个种概念。 编辑本段热传递的实质用热传递的方式来改变物体内能,就是一个物体的一部分内能转移给另一热传递 个物体,或者是内能从同一物体的高温部分转移给低温部分。(内能转移过程) 颜色深的吸收热量多 两个物体之间或者一个物体的两部分之间能够发生热条件,那就只有一个原因:存在温度差.火焰与水壶之间能发生热传递,就是因为火焰的温度比水壶的温度高.水开始烧后不久,就能看到壶中的水在对流,也就是因为下面的水比上面的水的的温度高了些. 热传递的定义: 热传递,是热从温度高的物体传到温度低的物体,或者从物体的高温部分传到低温部分的过程。热传递是自然界普遍存在的一种自然现象。只要物体之间或同一物体的不同部分之间存在温度差,就会有热传递现象发生,并且将一直继续到温度相同的时候为止。发生热传递的唯一条件是存在温度差,与物体的状态,物体间是否接触都无关。热传递的结果是温差消失,即发生热传递的物体间或物体的不同部分达到相同的温度。 热传递基础知识及各种导热材料应用咨询:简介电子产品热管理过程的目标是从半导体与周围环境的结合部分有效的散热。该过程可以

简单热传导的例子

Simple Conduction Example Introduction This tutorial was created using ANSYS 7.0 to solve a simple conduction problem. The Simple Conduction Example is constrained as shown in the following figure. Thermal conductivity (k) of the material is 10 W/m*C and the block is assumed to be infinitely long. Preprocessing: Defining the Problem 1.Give example a Title 2.Create geometry Preprocessor > Modeling > Create > Areas > Rectangle > By 2 Corners > X=0, Y=0, Width=1, Height=1 BLC4,0,0,1,1 3.Define the Type of Element Preprocessor > Element Type > Add/Edit/Delete... > click 'Add' > Select Thermal Solid, Quad 4Node 55 ET,1,PLANE55

For this example, we will use PLANE55 (Thermal Solid, Quad 4node 55). This element has 4 nodes and a single DOF (temperature) at each node. PLANE55 can only be used for 2 dimensional steady-state or transient thermal analysis. 4.Element Material Properties Preprocessor > Material Props > Material Models > Thermal > Conductivity > Isotropic > KXX = 10 (Thermal conductivity) MP,KXX,1,10 5.Mesh Size Preprocessor > Meshing > Size Cntrls > ManualSize > Areas > All Areas > 0.05 AESIZE,ALL,0.05 6.Mesh Preprocessor > Meshing > Mesh > Areas > Free > Pick All AMESH,ALL Solution Phase: Assigning Loads and Solving 1.Define Analysis Type Solution > Analysis Type > New Analysis > Steady-State ANTYPE,0 2.Apply Constraints For thermal problems, constraints can be in the form of Temperature, Heat Flow, Convection, Heat Flux, Heat Generation, or Radiation. In this example, all 4 sides of the block have fixed temperatures. {Solution > Define Loads > Apply Note that all of the -Structural- options cannot be selected. This is due to the type of element (PLANE55) selected. {Thermal > Temperature > On Nodes {Click the Box option (shown below) and draw a box around the nodes on the top line.

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

热传导公式

第二节传导传热 传导传热也称热传导,简称导热。导热是依靠物质微粒的热振动而实现的。产生导热的必要条件是物体的内部存在温度差,因而热量由高温部分向低温部分传递。热量的传递过程通称热流。发生导热时,沿热流方向上物体各点的温度是不相同的,呈现出一种温度场,对于稳定导热,温度场是稳定温度场,也就是各点的温度不随时间的变化而变化。本课程所讨论的导热,都是在稳定温度场的情况下进行的。 一、传导传热的基本方程式----傅立叶定律 在一质量均匀的平板内,当t1> t2热量以导热方式通过物体,从t1向t2方向传递,如图3-7所示。 图3-7 导热基本关系 取热流方向微分长度dn,在dt的瞬时传递的热量为Q,实验证明,单位时间内通过平板传导的热量与温度梯度和传热面积成正比,即: dQ∝dA·dt/dn 写成等式为: dQ=-λdA·dt/dn (3-2) 式中 Q-----导热速率,w; A------导热面积,m2; dt/dn-----温度梯度,K/m; λ------比例系数,称为导热系数,w/m·K; 由于温度梯度的方向指向温度升高的方向,而热流方向与之相反,故在式(3-2)乘一负号。式(3-2)称为导热基本方程式,也称为傅立叶定

律,对于稳定导热和不稳定导热均适用。 二、导热系数λ 导热系数是物质导热性能的标志,是物质的物理性质之一。导热系数λ的值越大,表示其导热性能越好。物质的导热性能,也就是λ数值的大小与物质的组成、结构、密度、温度以及压力等有关。λ的物理意义为:当温度梯度为1K/m时,每秒钟通过1m2的导热面积而传导的热量,其单位为W/m·K或W/m·℃。 各种物质的λ可用实验的方法测定。一般来说,金属的λ值最大,固体非金属的λ值较小,液体更小,而气体的λ值最小。各种物质的导热系数的大致范围如下: 金属 2.3~420 w/m·K 建筑材料 0.25~3 w/m·K 绝缘材料 0.025~0.25 w/m·K 液体 0.09~0.6 w/m·K 气体 0.006~0.4 w/m·K 固体的导热在导热问题中显得十分重要,本章有关导热的问题大多数都是固体的导热问题。因而将某些固体的导热系数值列于表3-1,由于物质的λ影响因素较多,本课程中采用的为其平均值以使问题简化。 1、单层平面壁 设有一均质的面积很大的单层平面壁,厚度为b,平壁内的温度只沿垂直于壁面的x轴方向变化,如图3-8所示。

第四节材料热传导

第四节材料热传导 一、固体材料热传导的宏观规律 热传导:当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端的现象 稳定传热假如各向同性固体材料x 轴方向的截面积为?S ,材料沿x dT/dx ,在?t 时间内沿x 轴正方向传过?S 截面上的热量为?Q 负号表示热量向低温处传递,常数λ称为热导率(或导热系数热导率:材料传输热量的能力的表征参数。指单位温度梯度下,单位时间内通过单位垂直面积的热量,所以其单位为W/(m?K)或J/(m?s?K) dT dx Q S t λ?=-???(傅利叶导热定律?S

二、固体材料热传导的微观机理 气体:传热是通过分子碰撞来实现的 固体材料:不能象气体那样依靠质点间的直接碰撞来传递热能。固体中的导热主要是由晶格振动的格波(声频支:声频声子 子optic phonons)、自由电子和热射线 金属:一般都有较大的热导率。在金属中由于有大量的自由电子,而且电子的质量很轻,所以能迅速地实现热量的传递。虽然晶格振动对金属导热也有贡献,但是次要的 非金属晶体:一般离子晶体的晶格中,自由电子很少,因此,晶格振动是热传导的主要机制

假设晶格中一质点处于较高的温度下, 它的热振动较强烈,平均振幅也较大。 而其邻近质点所处的温度较低,热振动 较弱 质点间存在相互作用力,振动较弱的质点在振动较强质点的影响下,振动加剧,热运动能量增加。这样,热量就能转移和传递,使整个晶体中热量从温度较高处传向温度较低处,产生热传导现象 假如系统对周围是热绝缘的,振动较强的质点受到邻近振动较弱质点的牵制, 振动减弱下来,使整个晶体最终趋于一平衡态(非稳定导热的情况) 4

热传导现象的宏观规律与微观机理

热传导现象的宏观规律与微观机理 摘要:热传导是个非常重要的物理过程,在生活和生产中有着普遍的应用。本文从宏观和微观上分析了热传导的宏观规律和微观机理,介绍傅里叶定律,最后指出了其在生活生活中的应用。 关键词:热传导;热量;热传导现象;导热系数 The phenomenon of heat conduction of macro-mecha nism and micro-mechanism of the law Abstract:Thermal conductivity is a very important physical processes in the production of life and have widespread application. In this paper, macro-and micro-analysis of the heat conduction of macro-and micro-mechanism of the law to introduce the Fourier's law, concluded that its application to live life. Key words: Thermal conductivity; heat; heat conduction phenomenon; thermal conductivity 前言 热传导是由于分子热运动强弱程度(即温度)不同所产生的能量传递。当气体中存在温度梯度时,做杂乱无章运动的气体分子,在空间交换分子对的同时交换了具有不同热运动平均能量的分子,因而发生能量的迁移。固体和液体中分子热运动的形式为振动。温度高处分子热运动能量较大,因而振动的振幅大;温度低处分子振动的振幅小。因为整个固体或液体都是由化学键把所有分子联结而成的连续介质,一个分子的振动也将导致物体中所有分子的振动,同样局部分子较大幅度的振动也将使其他分子的平均振幅增加。分子热运动的能量就是这样借助于相互联接的分子的频繁的振动逐层的传递下去的。 1.热传导的宏观规律 热从物体温度较高的一部分沿着物体传到温度较低的部分的方式叫做 热传导[1]。 热传导是热传递三种基本方式之一。它是固体中热传递的主要方式,在不流动的液体或气体层中层层传递,在流动情况下往往与对流同时发生。热传导实质是由大量物质的分子热运动互相撞击,而使能量从物体的高温部分传至低温部分,或由高温物体传给低温物体的过程。在固体中,热传

芯片散热的热传导计算

芯片散热的热传导计算(图) 讨论了表征热传导过程的各个物理量,并且通过实例,介绍了通过散热过程的热传导计算来求得芯片实际工作温度的方法 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G奔腾4终极版运行时产生的热量最大可达115W,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的 最高温度以内正常工作。 如图1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温 度的方法。 图1散热器在芯片散热中的应用 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 图2芯片的散热 表征热传导过程的物理量

图3一维热传导模型 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L 为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如 下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 图4芯片的工作温度 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材 料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻。芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2。 实例 下面通过一个实例来计算芯片的工作温度。芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃。导热材料

热传导问题的一些研究

热传导问题的一些研究 吴越 PB06001060 摘 要:对于导热系数随温度变化的非线性热传导问题,采用基尔霍夫 变换方法进行线性化 处理求解。 关键词:非线性,基尔霍夫变换,热传导。 0 引言 在研究分析热传导问题时,通常对物性参数作线性化的假定,因为线性化的假定,可卓有成效地利用数学线性理论中的迭加原理。但是,在工程应用中所遇到的大量实际问题,从根本上来讲都是非线性的。例如,当温度变化很大,或输运性质随温度的变化剧烈时,要正确描述热传导问题,必须考虑输运系数随温度的变化,则热传导微分方程就为非线性的;又如高温下的传热过程,在边界上必然要有服从四次方规则的热辐射因素参与,从而边界条件为非线性的。此时采用基尔霍夫变换方法,来处理热传导中的导热系数随温度变化的非线性问题。 1 基本概念和方程 当物体的导热系数随温度变化时,借助于基尔霍夫变换,改变因变量,可使导热系数k(T) 式中,假定 C p , ρ,k 随温度而变化,而热源项g(r,t)不随温度变化。按照基尔霍夫变换定义一个新的因变量U 如下: 式中T 0是参考温度, k 0是温度为T 0时的k(T) 值。方程式可重新写成:

代入得 式中α=α(T) 是温度的函数。由于 α是温度的函数,式子仍是非线性的。但是,在分析求解时,从形式上来看,它比原式要容易求解得多。如果α (T) 随温度变化甚小,则可假定α为常数,方程可近似看成为 线性方程。 对于稳态问题,由于式(1.5)的左边不存在了,借助于基尔霍夫变 换,非线性热传导微分 方程可转化为线性方程。下面我们介绍对三类边界条件如何进行基尔霍夫变换。 第一类边界条件:令边界上的温度是给定的,并为 根据基尔霍夫变换式(1.2),这个边界条件经过变换后仍是第一类边界 条件。为便于说明,视k( T) 与温度的关系为: 9) 则 且边界条件变换后为 第二类边界条件:第二类边界条件为如下形式: 根据基尔霍夫变换式,这个边界条件经过变换后为第二类线性边界条件,因为,

相关文档
最新文档