理论空气量及燃烧生成气量经验计算公式

理论空气量及燃烧生成气量经验计算公式

低发热量Qd

燃料名称 低发热量Q d (KJ/N m 3/Kg) KJ/Nm 3 Kcal/Nm 3 单位理论空气消耗量 L 0(Nm 3/ Nm 3)

单位燃烧生成气量 V a (Nm 3/ Nm 3)

液体燃料 37680-41870 39775 9516 9.955 20.70*a 高炉煤气

3770-4180 3975 951 0.755 1.84 <5230

5230 1251 1.036 2.17 5230-5650 5400 1292 1.08 2.222 发生炉煤气 >5650

5650 1352 1.16 2.31 发生炉水煤气 10500-10700 10600 2536 2.226 4.98*a 混合煤气 <16250 16250 3889 4.225 4.918 焦炉煤气 15900-17600 16750 4007 4.105 4.784 天然气 34500-41870 38185 9135 10.14 11.507 液化气(气态)

80000-90000

85000

20335

28

常用单位换算公式

1KW=3413Btu/hr 1bar=1000mbar 1 kcal=3.97BtU 1mbar=10mm=0.232OSI

=3.41Mbtu/hr =14.5psig =4.18KJ =100Pa =860.4kcal/hr =10m 水柱 1KP=4’W.C.(英寸水柱) =3600kJ/hr 1KP=10 mbar

兰州泰得燃烧设备工程有限公司

钢筋工程量计算例题

1、计算多跨楼层框架梁KL1的钢筋量,如图所示。 柱的截面尺寸为700×700,轴线与柱中线重合 计算条件见表1和表2 表1 混凝土强度等级 梁保 护层厚度 柱保 护层厚度 抗震 等级 连接 方式 钢筋 类型 锚固 长度 C302530 三级 抗震 对焊 普通 钢筋 按 03G101-1 图集及 表2 直径68 1 2 2 2 2 5 单根 钢筋理论 重量(kg/m) 0. 222 0. 395 0. 617 2. 47 2. 98 3 .85 钢筋单根长度值按实际计算值取定,总长值保留两位小数,总重

量值保留三位小数。 2、已知某教学楼钢筋混凝土框架梁KL1的截面尺寸与配筋见图1,共计5根。混凝土强度等级为C25。求各种钢筋下料长度。 图1 钢筋混凝土框架梁KLl平法施工图

3、某6m长钢筋混凝土简支梁(见下图),试计算各型号钢筋下料长度。 4、某抗震框架梁跨中截面尺寸b×h=250mm×500mm,梁内配筋箍筋φ6@150,纵向钢筋的保护层厚度c=25mm,求一根箍筋的下料长度。

5、某框架建筑结构,抗震等级为4级,共有10根框架梁,其配筋如图5.23所示,混凝土等级为C30,钢筋锚固长度LαE为30d。柱截面尺寸为500mm x 500mm。试计算该梁钢筋下料长度并编制配料单(参见混凝土结构平面整体表示方法03G10l-l构造详图)。

6、试编制下图所示5根梁的钢筋配料单。 各种钢筋的线重量如下:10(0.617kg/m);12(0.888kg/m);25(3.853kg/m)。

7、某建筑物第一层楼共有5根L1梁,梁的钢筋如图所示,要求按图计算各钢筋下料长度并编制钢筋配料单。

CEMS数据折算计算公式

Cems环保数据折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于折算系数为; 燃煤锅炉大于折算系数为; 燃气、燃油锅炉折算系数为 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中

SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 )其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

工程量计算习题

工程量清单计价 【任务】某建筑①轴外墙砖基础如下图:中心线长39.3m,高1.00m,具体做法:100mm厚C15砼垫层;防水砂浆防潮层一道;M5水泥砂浆砌砖基础,对此基础工程进行清单报价(按08规范做招标控制价)。 ① 序号 项目编码项目名称项目特征描述计量单位工程量 综合 单价 金额(元) 合价 其中 计费基数暂估价 2.综合单价组价 假定:企业管理费率9%;利润率8%,材料检验试验费率0.2%,仅考虑人工价差11元/工日

工程量清单综合单价分析表(山西省用) 工程名称:共页第页

二、措施项目清单的计价 【任务】假设投标企业为总承包企业。该拟建工程为六层建筑,分部分项工程直接工程费为100000元。根据施工组织设计确定该拟建工程只发生文明施工、安全施工、临时设施、混凝土及钢筋混凝土模板、脚手架、垂直运输等费用。用我省《计价依据》2005年费用定额和建筑工程消耗量定额计价(材料的检验试验费按材料费的0.2%,风险因素按材料费得3.5%,企业管理费按直接费得9%,利润按直接费加企业管理费得8%). 表2.2-25 措施项目费分析 3、填写措施项目清单计价表,见表2-5,表2-6 措施项目清单与计价表(一)

表2-6 措施项目清单与计价表(二) 序号项目编码项目名称项目特征描述计量单位工程量金额(元) 综合单价合价 1 B1201 垫层模板砼基础垫层钢 m2 模板 合计 【任务】某工程直接工程费200万元,其中人工费55万元,材料费135万元,技术措施费50万元,其中人工工资占12.5万元,试按清单计价模式计算其工程造价。(组织措施费率5.17%,企业管理费率9%,规费费率8.59%,利润率8%,税率3.41%) 【任务】求图1.1.24的建筑面积。

压缩空气用气量计算

压缩空气用气量计算 压缩空气用气量计算 压缩空气理论――状态及气量 1、标准状态 标准状态的定义是:空气吸入压力为0.1MPa,温度为15.6℃(国内行业定义是0℃)的状态下提供给用户系统的空气的容积。如果需要用标准状态,来反映考虑实际的操作条件,诸如海拔高度、温度和相对湿度则将应实际吸入状态转换成标准状态。 2、常态空气 规定压力为0.1MPa、温度为20℃、相对湿度为36%状态下的空气为常态空气。常态空气与标准空气不同在于温度并含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。 3、吸入状态 压缩机进口状态下的空气。 4、海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电动机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。EP200 标准机组的最大容许运行海拔高度为2286米。 5、影响排气量的因素: Pj、Tj、海拔高度、n、V余、泄漏等。 6、海拔高度对压缩机的影响: (1)、海拔越高,空气越稀薄,绝压越低,压比越高,Nd越大; (2)、海拔越高,冷却效果越差,电机温升越大; (3)、海拔越高,空气越稀薄,柴油机的油气比越大,N越小。 7、容积流量 容积流量是指在单位时间内压缩机吸入标准状态下空气的流量。用单位:M3/min (立方米/分)表示。标方用N M3/min表示。 1CFM=0.02832 M3/min, 或者1 M3/min=35.311CFM, S--标准状态,A--实际状态 8、余隙容积 余隙容积是指正排量容积式(往复或螺杆)压缩机冲程终端留下的容积,此容积的压缩空气经膨胀后返回到吸入口,并对容积系数产生巨大的影响。 9、负载系数

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考 3.1 城市煤气的燃料计算 3.1.1 燃料成分 表2.2 城市煤气成分(%)[2] 成分 CO 2 CO CH 4 C 2H 6 H 2 O 2 N 2 合计 含量 10 5 22 5 46 2 10 100 3.1.2 城市煤气燃烧的计算 1、助燃空气消耗量[2] (1)理论空气需要量 Lo=21O O 0.5H H 3.5C CH 20.5CO 2 2624-++?+ Nm 3/Nm 3 (3.1) (3.1)式中:CO 、CH 4 、 C 2H 6 、 H 2 、 O 2——每100Nm 3湿气体燃料中各成分的体积含量(Nm 3)。则 Lo=21 2465.055.322255.0-?+?+?+? = 4.143 Nm 3/Nm 3 (2)实际空气需要量 L n =nL 0, Nm 3/Nm 3 (3.2) (1.2)式中:n ——空气消耗系数,气体燃料通常n=1.05 1.1 现在n 取1.05,则 L n =1.05×4.143=4.35 Nm 3/Nm 3 (3)实际湿空气需要量 L n 湿 =(1+0.00124 2H O g 干) L n , Nm 3/Nm 3 (3.3) 则 L n 湿=(1+0.00124×18.9)×4.35=4.452 Nm 3/Nm 3 2、天然气燃烧产物生成量 (1)燃烧产物中单一成分生成量 CO)H 2C CH (CO 0.01 V 6242CO 2+++?=’

(3.4) 2 O V 0.21(=?′0n-1)L (3.5) 2 2n N V (N 79L )0.01=+?′ (3.6) )L 0.124g H H 3C (2CH 0.01V n 干 O H 2624O H 22+++?= (3.7) 式中CO 、CH 4 、 C 2H 6 、 H 2 ——每100Nm 3湿气体燃料中各成分的体积含量。 则 0.475)5222(100.01V 2CO =+?++?= Nm 3/Nm 3 4.4131)(1.050.21V 2O ?-?==0.046 Nm 3/Nm 3 01.0)35.47910(V 2N ??+==3.54 Nm 3/Nm 3 4.35)18.90.124465322(20.01V O H 2??++?+??==1.152 Nm 3/Nm 3 (2)燃烧产物总生成量 实际燃烧产物量 V n = V CO2+V O2+V N2+V H2O Nm 3/Nm 3 (3.8) 则 V n =0.47+0.046+3.54+1.152=5.208 Nm 3/Nm 3 理论燃烧产物量 V 0=V n -(n -1)L O (3.9) V 0=5.208-(1.05-1)×4.143=5.0 Nm 3/Nm 3 (3) 燃料燃烧产物成分[2] %100V V CO n CO 22?= (3.10) %100V V O n O 22?= (3.11) %100V V N n N 22?= (3.12) 100%V V O H n O H 22?= (3.13)

烟气监测系统计算公式

烟气监测系统计算公式: 1. 流量 1.1原烟气流量(湿态) 【未用】 1.2净烟气流量 1.2.1工况下的湿烟气流量s Q : s s V F Q ??=3600 s Q ――工况下的湿烟气流量,h m 3; F ――监测孔处烟道截面积,2m ; s V ――监测孔处湿烟气平均流速,s m /。 1.2.2监测孔处湿烟气平均流速s V : s V = 流速仪输出值 1.2.3标准状态下干烟气流量sn Q : )1(273273101325sw s s a s sn X t P B Q Q -+?+?= sn Q ――标准状态下干烟气流量,m 3; sw X ――烟气湿度。 1.2.4烟气排放量 ∑=?=n i sni h Q n Q 1)1( ∑==24 1i hi d Q Q ∑==31 1i di m Q Q ∑==121i mi y Q Q 式中, Q h ——标准状况下干烟气小时排放量,m 3;

Q d ——标准状况下干烟气天排放量,m 3; Q m ——标准状况下干烟气月排放量,m 3; Q y ——标准状况下干烟气年排放量,m 3; Q sni ——标准状况下,第i 次采样测得的干烟气流量,m 3/h ; Q hi ——标准状况下,第i 个小时的干烟气小时排放量,m 3/h ; Q di ——标准状况下,第i 天的干烟气天排放量,m 3/h ; Q mi ——标准状况下,第i 个月的干烟气月排放量,m 3/h ; n ——每小时内的采样次数。 2.烟气湿度sw X : 222O O O sw X X X X '-'= 2O X ――湿烟气氧量,%; 2O X '――干烟气氧量,%。 3.过量空气系数α': 2 2121O X -='α 4.烟尘 4.1.1标准状态下干烟气的烟尘排放浓度 程截距烟尘方程斜率+烟尘方.dust dust C C ''=' 式中, dust C ''——实测的烟尘排放浓度,mg/m 3; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3。 4.1.2折算的烟尘排放浓度 α α'?'=dust dust C C 式中, dust C ——折算成过量空气系数为α时的烟尘排放浓度; dust C '——标准状态下干烟气烟尘排放浓度,mg/m 3; α' ——实测的过量空气系数;

(完整版)烟气量计算公式

燃料空气需要量及燃烧产物量的计算 所有理论计算均按燃料中可燃物质化学当量反应式,在标准状态下进行,1kmol 反 应物质或生成物质的体积按22.4m 3计,空气中氧和氮的容积比为21:79,空气密度为 1.293kg/m 3。 理论计算中空气量按干空气计算。燃料按单位燃料量计算,即固体、液体燃料以1kg 计算,气体燃料以标准状态下的1m 3计算。 单位燃料燃烧需要理论干空气量表示为L 0 g ,实际燃烧过程中供应干空气量表示为 Ln g ; 单位燃料燃烧理论烟气量表示为V 0,实际燃烧过程中产生烟气量表示为Vn; 单位燃料燃烧理论干烟气量表示为V 0g ,实际燃烧过程中产生干烟气量表示为Vn g ; 一、通过已知燃料成分计算 1. 单位质量固体燃料和液体燃料的理论空气需要量(m 3/kg ) L 0=(8.89C +26.67H +3.33S -3.33O )×10﹣2式中的C 、H 、O 、S ——燃料中收到基 碳、氢、氧、硫的质量分数%。 2. 标态下单位体积气体燃料的理论空气需要量(m 3/m 3) L 0=4.76?? ????-+??? ??+++∑2222342121 O S H?CmHn n m H CO ×10﹣2式中CO 、H 2、H 2O 、H 2S 、CmHn 、O 2——燃料中气体相应成分体积分数(%). 3. 空气过剩系数及单位燃料实际空气供应量 空气消耗系数а=0 L 量单位燃料理论空气需要量单位燃料实际空气需要?L 在理想情况下,а=1即能达到完全燃烧,实际情况下,а必须大于1才能完全燃烧。а<1显然属不完全燃烧。 а值确定后,则单位实际空气需要量L а可由下式求得: L 0g =аgL 0 以上计算未考虑空气中所含水分 4. 燃烧产物量 a.单位质量固体和液体燃料理论燃烧产物量(m 3/kg) 当а=1时, V 0=0.7L 0+0.01(1.867C+11.2H+0.7S+1.244M+0.8N)式中 M ——燃料中水分(%)。 b.单位燃料实际燃烧产物量(m 3/kg ) 当a >1时,按下式计算: 干空气时,V a =V 0+(a-1)L 0 气体燃料 (2)单位燃料生成湿气量 ?V =1+α0L -[0.5H 2+0.5C O -(4 n -1) C m H n ] (标米3/公斤) (2-14) (3)单位干燃料生成气量 g V ?=1+α0L -[1.5H 2+0.5C O -( 4n -1) C m H n +2 n C m H n ) (标米3/公斤) (2-15)

燃烧理论知识点

CH1 1.何谓燃烧?燃烧是一种急速、剧烈的发光发热的氧化反应过程。 2. 化合物的标准生成焓: 化合物的构成元素在标准状态下(25oC,0.1MPa)定温—定容或者定温定压;经化合反应生成一个mol的该化合物的焓的增量(kJ/mol)。 所有元素在标准状态下的标准生成焓均为零。 3. 反应焓: 在定温-定容或定温-定压条件下,反应物与产物之间的焓差,为该反应物的反应焓(kJ)。 4. 反应焓的计算 ?? 5. 燃烧焓: 单位质量的燃料(不包括氧化剂)在定温—定容或定温—定压条件下,燃烧反应时的反应焓之值(kJ/kg)。 6.燃料热值: 燃料热值有高热值与低热值之分,相差一个燃烧产物中的水的气化潜热。 7.化学反应速度、正向反应速度、逆向反应速度、反应速度常数 ?? 8.平衡常数的三种表达方式和相互间的关系 ?? 按浓度定义的反应平衡常数,以分压定义的反应平衡常数,以体积百分比定义的平衡常数?? 平衡常数越大,反应进行得越彻底 9.反应度λ: 表示系统达到平衡时反应物能有效变为产物的程度 反应式: aA+bB→(1-λ)*(aA+bB)+λ(cC+dD) 10. Gibbs函数的定义: 自由焓,为状态参数。g=h-Ts 11. Helmholtz函数自由能f f=u-Ts 12.焓与生成焓仅是温度的单一函数,而自由焓与P、T有关。 13.标准反应自由焓 14.平衡常数kp与反应自由焓的关系 15.过量空气系数: 燃烧1kg燃料,实际提供空气量/ 理论所需空气量。 16.当量比(φ) C-实际浓度,Cst-理论浓度 17.浓度(燃空比): 一定体积混合气中的燃料重量/ 空气重量 18. 化学计量浓度时的浓度时的浓度 19. 绝热燃烧火焰温度的求解方法,尤其是考虑化学平衡时的计算方法 首先分别根据平衡常数kp和能量守恒方程得到反应度λ和绝热火焰温度Tf 的关系,然后采用迭代法计算得到Tf 。 20.绝热燃烧火焰温度计算程序及数据处理 CH2 1. 化学反应动力学是研究化学反应机理和化学反应速率的科学。 2. 燃烧机理研究的核心问题有:燃烧的反应机构、反应速度、反应程度、燃烧产物的生成机理等 3.净反应速度: 消耗速度与生成速度的代数和。 4.反应级数n: 一般碳氢燃料n=1.7~2.2≈2

锅炉燃煤所需理论空气量和烟气中水蒸气量的计算

锅炉燃煤所需理论空气量和烟气中水蒸气量的计算 盛益平 (杭州半山发电有限公司,浙江杭州 310015) 摘要:介绍了锅炉燃煤所需理论空气量和烟气中水蒸气量的计算公式及推导过程,认为按总空气量的水分计算,烟气中的水蒸气更符合实际,精度高。 关键词:燃煤锅炉;烟气;水蒸气量;理论空气量 Calculations of Theoretical Combustion Air Demand and Steam Vapour Amount in Flue-gas of Coal-fired Boiler Abstract:This paper introduces the calculating formulas and their derivation process for theoretical combustion air demand and steam vapour content in flue-gas.The author believes that the calculated steam vapour content in flue-gas based on moisture in total air amount is more realistic and in higher accuracy. Keywords:coal-fired boiler;flue-gas;steam vapour amount;theoretical combustion air demand 烟气是燃料燃烧后的产物,燃料在锅炉内燃烧时,需经过一系列的化学变化,燃烧的实质是燃料与氧气发生化学反应并生成烟气。在现代大型火力发电厂中,煤粉燃烧所用的O 2 直接来源于空气,为保证充分燃烧,进入炉膛的空气都是过 剩的。烟气的主要成分有N 2、O 2 、SO 2 、CO 2 、水蒸气,还有少量的CO,SO 3 、H 2 、 CH 4 和其它碳氢化合物。 N2主要来自于空气,煤中也含有少量的氮;O2来源于过剩空气;CO2、SO2和SO3主要是煤中的碳元素、硫元素与氧化合的生成物。另外,过剩空气中也有少量的 CO 2 。水蒸气,一部分是煤中氢元素与氧反应的生成物,而另一部分是原煤中水 分的蒸发,还有一小部分是随空气带入的。CO、CH 4、H 2 和其它碳氢化合物是由 于煤的不完全燃烧造成的。SO 3 3的生成是很少量的。在锅炉正常燃烧情况下形成 的烟气中,CO、CH 4、H 2 和其它碳氢化合物以及SO 3 的含量很少,在除尘器的一般 工业试验研究中常常被忽略或者只考虑CO。 1火电厂环境统计软件中关于水蒸气的计算公式 在火电厂环境统计软件指标解释一节中,水蒸气的计算公式为: 式中B i ——每台锅炉年平均负荷下1h燃原煤量,t/h; H ar——燃煤收到基氢分; W ar——燃煤收到基水分; α——除尘器出口过剩空气系数;

钢筋工程量计算例题

. 例题1.计算多跨楼层框架梁KL1的钢筋量,如图所示。 ,轴线与柱中线重合700×700柱的截面尺寸为2 和表计算条件见表11 2 表 钢筋单根长度值按实际计算值取定,总长值保留两位小数,总重量值保留三位小数。解:25 2Φ1.上部通常筋长度 +右端下弯长度单根长度L1=Ln+左锚固长度,所以左支25=725mm<LaE=29d=29×(判断是否弯锚:左支座hc-c=700-30)mm =670mm0.4LaE+15d,hc-c+15d)=max (0.4×725+15×座应弯锚。锚固长度=max(25,670+15×25)=max(665,1045)=1045mm=1.045m (见101图集54页) 右端下弯长度:12d=12×25=300mm (见101图集66页) L1=6000+6900+1800-375-25+1045+300=15645mm=1.5645m 由以上计算可见:本题中除构造筋以外的纵筋在支座处只要是弯锚皆取1045mm,因为支座宽度和直径都相同。 2. 一跨左支座负筋第一排 2Φ25 单根长度L2=Ln/3+锚固长度=(6000-350×2)/3+1045=2812mm=2.812m (见101图集54页) 3. 一跨左支座负筋第二排 2Φ25

单根长度L3=Ln/4+锚固长度=(6000-350×2)/4+1045=2370mm=2.37m . 范文. . (见101图集54页) 4. 一跨下部纵筋 6Φ25 单根长度L4=Ln+左端锚固长度+右端锚固长度=6000-700+1045×2=7390mm=7.39m (见101图集54页) 5.侧面构造钢筋 4Ф12 单根长度L5=Ln+15d×2=6000-700+15×12×2=5660mm=5.66m (见101图集24页) 6.一跨右支座附近第一排 2Φ25 单根长度L6=max(5300,6200)/3×2+700=4833mm=4.833m (见101图集54页) 7.一跨右支座负筋第二排 2Φ25 单根长度L7= max(5300,6200)/4×2+700=3800mm=3.8m 8.一跨箍筋Φ10@100/200(2)按外皮长度 单根箍筋的长度L8=[(b-2c+2d)+ (h-2c+2d)]×2+2×[max(10d,75)+1.9d] = [(300-2×25+2×10)+ (700-2×25+2×10)]×2+2×[max(10×10, 75)+1.9×10] =540+1340+38+200 =2118mm=2.118m 箍筋的根数=加密区箍筋的根数+非加密区箍筋的根数 =[(1.5×700-50)/100+1]×2+(6000-700-1.5×700× 2)/200-1 =22+15=37根 (见101图集63页) 9.一跨拉筋Φ10@400(见101图集63页) 单根拉筋的长度L9=(b-2c+4d)+2×[max(10d,75)+1.9d] =(300-2×25+4×10)+ 2×[max(10×10, 75)+1.9×10] =528mm=0.528m 根数=[(5300-50×2)/400+1]×2=28根(两排) 10. 第二跨右支座负筋第二排 2Φ25 单根长度L10= 6200/4+1045=2595mm=2.595m 11.第二跨底部纵筋 6Φ25 单根长度L11=6900-700+1045×2=8920mm=8.92m 12.侧面构造筋 4Ф12 单根长度L12=Ln+15d×2=6900-700+15×12×2=6560mm=6.56m 13.第二跨箍筋Φ10@100/200(2)按外皮长度 单根箍筋的长度L13=2.118m 箍筋的根数=加密区箍筋的根数+非加密区箍筋的根数 =[(1.5×700-50)/100+1]×2+(6900-700-1.5×700×

理论烟气量的计算

理论烟气量的计算方法及常规数据 2007-09-12 13:44 发个环评中实用的一个帖子,也许对专业人员有用! 固体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.2413Q/1000+ 0.5 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg; C、S、N:燃料中碳、硫、氮的含量; L:理论空气量 理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24 固体燃料燃烧产生的烟气量计算 三、实际产生的烟气量计算 V0=V+ (a –1)L V0:干烟气实际排放量,单位是m3/kg a: 空气过剩系数,可查阅有关文献资料选择。 按上述公式计算,1千克标准煤完全燃烧产生7.5 m3,一吨煤碳燃烧产生10500标立方米干烟气量。 液体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.203Q/1000+2.0 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg; C、S、N:燃料中碳、硫、氮的含量; L:理论空气量 理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24 三、燃烧一吨重油产生的烟气量 按上述公式计算,一吨重油完全燃烧产生15000标立方米干烟气量。 天然气燃烧产生的烟气量计算 一、理论空气量计算 L=0.0476[0.5CO+0.5H2+1.5H2S+∑(m+n/4)CmHn-O2]

梁钢筋清单工程量、综合单价计算过程

例题4:梁钢筋的费用计算过程 分析:本工程现浇混凝土梁钢筋:010416001 1.钢筋工程量计算:(受力钢筋保护层厚度25mm) (1)梁上部通长钢筋:25 锚固长度LaE=30d=750mm>500-25=475mm,应弯锚; 平直段长度为500-25=475mm≥0.4LaE,弯段长度取15d可满足要求锚固长度要求。 L单根=7200+2×250-2×25+2×15×25=8400(mm)=8.4m N=2(根) (2)左、右负弯矩钢筋:25,负弯矩筋要求锚入支座并伸出Ln/3。 L单根=(7200-2×250)/3+500-25+15×25=3083(mm)=3.083m N=2×2=4(根) (3)梁下部钢筋:25 L单根=7200+2×250-2×25+2×15×25=8400(mm)=8.4m N=6(根) (4)抗扭纵向钢筋:18 锚固长度LaE=30d=540mm>500-25=475mm,应弯锚; 平直段长度为500-25=475mm≥0.4LaE,弯段长度取15d可满足要求锚固长度要求。 L单根=7200+2×250-2×25+2×15×18=8190(mm)=8.19m N=2(根)

(5)附加吊筋:14(如图) L 单根=250+2×50+2× (700-2×25)×1.414+2×20×14=2748.2(mm )=2.748m N=2(根) (6)箍筋:φ10(按03G101-1) 根据抗震要求,箍筋端头为135°/135°弯钩,且弯钩平直段长度为10d ,所以每个箍筋弯钩增加长度为:10d+0.5D+d =13d L 单根=(300+700)×2-8×25+13×10×2=2117.4(mm )=2.117m 12007005.122502720021100507005.1-??-?-+??? ? ??+-?=箍筋根数 =44(根) 另主次梁相交处应在主梁上沿次梁两边各附加3根箍筋,则: 箍筋根数=44+6=50(根) 钢筋长度汇总: L φ10=2.117×50=105.85(m ) L 14=2.748×2=5.496(m )

废气产生量计算方法

烧一吨煤,产生1600×S%千克SO2,1万立方米废气,产生200千克烟尘。 烧一吨柴油,排放2000×S%千克SO2,万立米废气;排放1千克烟尘。 烧一吨重油,排放2000×S%千克SO2,万立米废气;排放2千克烟尘。 大电厂,烟尘治理好,去除率超98%,烧一吨煤,排放烟尘3-5千克。 普通企业,有治理设施的,烧一吨煤,排放烟尘10-15千克; 砖瓦生产,每万块产品排放40-80 千克烟尘;12-18千克二氧化硫。 规模水泥厂,每吨水泥产品排放3-7千克粉尘;1千克二氧化硫。 乡镇小水泥厂,每吨水泥产品排放12-20千克粉尘;1千克二氧化硫。 物料衡算公式: 1吨煤炭燃烧时产生的SO2量=1600×S千克;S含硫率,一般。若燃煤的含硫率为1%,则烧1吨煤排放16公斤SO2 。 1吨燃油燃烧时产生的SO2量=2000×S千克;S含硫率,一般重油%,柴油。若含硫率为2%,燃烧1吨油排放40公斤SO2 。 ¬排污系数:燃烧一吨煤,排放万标立方米燃烧废气,电厂可取小值,其他小厂可取大值。燃烧一吨油,排放-万标立方米废气,柴油取小值,重油取大值。 【城镇排水折算系数】 ~,即用水量的70-90%。 【生活污水排放系数】采用本地区的实测系数。。 【生活污水中COD产生系数】60g/人.日。也可用本地区的实测系数。 【生活污水中氨氮产生系数】7g/人.日。也可用本地区的实测系数。使用系数进行计算时,人口数一般指城镇人口数;在外来较多的地区,可用常住人口数或加上外来人口数。 【生活及其他烟尘排放量】 按燃用民用型煤和原煤分别采用不同的系数计算: 民用型煤:每吨型煤排放1~2公斤烟尘 原煤:每吨原煤排放8~10公斤烟尘 一、工业废气排放总量计算 1.实测法 当废气排放量有实测值时,采用下式计算:

钢筋工程量计算例题

一、计算多跨楼层框架梁KL1的钢筋量,如图所示。 柱的截面尺寸为700×700,轴线与柱中线重合 计算条件见表1和表2 表1 混凝土强度等级梁保护层 厚度 柱保护层 厚度 抗震等级连接方式钢筋类型锚固长度 C302530三级抗震对焊普通钢筋按 03G101-1图集及 表2 直径6810202225

钢筋单根长度值按实际计算值取定,总长值保留两位小数,总重量值保留三位小数。 解: 1.上部通常筋长度 2Φ25 单根长度L1=Ln+左锚固长度+右端下弯长度 判断是否弯锚:左支座hc-c=(700-30)mm =670mm<LaE=29d=29 ×25=725mm,所以左支座应弯锚。 锚固长度=max(+15d,hc-c+15d,LaE)=max(×725+15×25,670+15×25,725)=max(665,1045,725)=1045mm=1.045m (见101图集54页) 右端下弯长度(悬挑板上部钢筋下弯收头):12d=12×25=300mm (见101图集66页) L1=6000+6900++1045+300=15645mm=1.5645m 由以上计算可见:本题中除构造筋以外的纵筋在支座处只要是弯锚皆取1045mm,因为支座宽度和直径都相同。 2. 一跨左支座负筋第一排 2Φ25 单根长度L2=Ln/3+锚固长度=(6000-350×2) /3+1045=2812mm=2.812m (见101图集54页)

3. 一跨左支座负筋第二排 2Φ25 单根长度L3=Ln/4+锚固长度=(6000-350×2)/4+1045=2370mm=2.37m (见101图集54页) 4. 一跨下部纵筋 6Φ25(未说明,按照非通常计算) 单根长度L4=Ln+左端锚固长度+右端锚固长度=6000-700+1045×2=7390mm=(此处有误,右段锚固长度=max( +5d,LaE)=max(475mm,725mm))后面同类错误相同 (见101图集54页) 5.侧面构造钢筋 4Ф12 单根长度L5=Ln+15d×2=6000-700+15×12×2=5660mm=5.66m (见101图集24页) 6.一跨右支座负筋第一排 2Φ25 单根长度L6=max(5300,6200)/3×2+700=4833mm=4.833m (见101图集54页) 7.一跨右支座负筋第二排 2Φ25 单根长度L7= max(5300,6200)/4×2+700=3800mm=

理论燃烧温度和炉热指数模型1

理论燃烧温度和炉热指数计算模型 一.理论燃烧温度: 理论燃烧温度:2222 ()CO N CO N H H Q Q Q Q Q t C V V C V ?++--= ++?风分碳燃水理 回旋区鼓风深度:65.0*00012.0+=E r …………………………………………………………………………………………………………………………. Q 碳:碳素燃烧生成CO 放出的热量(9791/kJ kg ) Q C t V =???风风风风(鼓风带入的热量) t ?风:风量的温度 V 风=风量/风口数 2H O C C C =?+?风干风干风量含水量 总风量总风量 2 1.5620.000209H O C t =+(空气(干风)的比热容) 1.2640.000092C t =+干风(2H O 气的比热容) Q 燃:燃料带入的物理热(忽略) Q 水:10806m ?水( kJ ,水蒸气水煤气反应所消耗的热量) m 水:风量中的水份量,加湿量和喷煤中的水份量之和 Q C m C m =?+?分重油重油煤粉煤粉(kJ ,喷吹燃料分解热) C 重油:重油的分解热(1880/kJ kg ) C 煤粉:煤粉的分解热(1880/kJ kg )

2222 ()*CO N CO N H H C V V C V ?++ 在风口,燃烧后的气体成分主要为:CO ,2H ,2N ; 933.02?=CO V 2 1.2640.000092CO N C t ?=+ 2 1.260.000084H C t =+ 002 *21.0*)*29.021.0(]*)21.0()1(*79.0[*933.0V a V V a V N )(风-++---= ?? 分子少V 风 02 *21.0*29.021.0*)(*933.02.11*21.0**29.021.0**933.0V a V M H V a V V V H )()()()(风风风-++?+-++=??? 002 *21.0*29.021.0*)(*933.02.11*21.0**29.021.0)0(**933.0V a V M H V a V V V V H )()()()(风风风-++?+-++-=??? (修改分子) 0202*21.0*29.021.0*))0(*18/2)((*933.02.11*21.0**29.021.0)0(**933.0V a V M H H V a V V V V H )()()()(风风风-+++?+ -++-=???加上煤中水的含量 0V :富氧量,m3/h )(H :煤粉中H 元素含氢量% )(2O H :煤粉中水含量% 通常按照1%计算 0M :-喷煤量,t/h ? :鼓风湿度,% a :氧气纯度,%

烟气量计算

理论烟气量的计算方法及常规数据 来源:作者:发布时间:2008-04-05 固体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.2413Q/1000+ 0.5 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg; C、S、N:燃料中碳、硫、氮的含量; L:理论空气量 理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24 固体燃料燃烧产生的烟气量计算 三、实际产生的烟气量计算 V0=V+ (a –1)L V0:干烟气实际排放量,单位是m3/kg a: 空气过剩系数,可查阅有关文献资料选择。 按上述公式计算,1千克标准煤完全燃烧产生7.5 m3,一吨煤碳燃烧产生10500标立方米干烟气量。 液体燃料燃烧产生的烟气量计算 一、理论空气量计算 L=0.203Q/1000+2.0 L:燃料完全燃烧所需的理论空气量,单位是m3/kg; Q:燃料低发热值,单位是kJ/kg; 二、理论烟气量计算 V=0.01(1.867C+0.7S+0.8N)+0.79L V:理论干烟气量,单位是m3/kg; C、S、N:燃料中碳、硫、氮的含量; L:理论空气量 理论湿烟气量计算再加上燃料中的氢及水分含量,系数分别为11.2、1.24 三、燃烧一吨重油产生的烟气量 按上述公式计算,一吨重油完全燃烧产生15000标立方米干烟气量。 天然气燃烧产生的烟气量计算 一、理论空气量计算 L=0.0476[0.5CO+0.5H2+1.5H2S+∑(m+n/4)CmHn-O2] L:燃料完全燃烧所需的理论空气量,单位是m3/ m3; 二、三原子气体容积计算 V1=0.01(CO2+CO+H2S+∑CmHn

燃烧与爆炸理论及分析

目录 燃烧与爆炸理论及分析 (2) 1. 引言 (2) 2. 可燃物的种类及热特性 (2) 2.1 可燃物的种类 (2) 2.2可燃物的热特性 (3) 3. 燃烧理论 (6) 3.1 燃烧的条件 (6) 3.2 着火形式 (6) 3.3 着火理论 (7) 3.4灭火分析 (14) 4. 爆炸理论 (18) 4.1 爆炸种类及影响 (18) 4.2 化学爆炸的条件 (21) 4.3 防控技术 (23) 5. 结论 (24) 1

燃烧与爆炸理论及分析 摘要:本文主要叙述了当前主要的燃烧及爆炸理论。首先介绍了燃烧条件、着火形式以及具体的燃烧理论,然后对四种燃烧理论分别进行了灭火分析。然后阐述了爆炸的种类、爆炸条件过程及防控技术。最后对本文的内容作了总结,并且通过分析提出自己的观点。 关键词:燃烧理论;爆炸理论;防控技术。 1. 引言 火灾是一种特殊形式的燃烧现象。爆炸(化学)是一种快速的燃烧,为了科学合理地预防控制火灾及爆炸(化学),应当对燃烧的基本理论有一定的了解。燃烧是可燃物与氧化剂之间发生的剧烈的化学反应,要使它们发生化学反应需要提供一定的外加能量,反应的结果则会放出大量的热能。燃烧前后的物质与能量变化可以要据物质与能量守恒定律确定。 2. 可燃物的种类及热特性 2.1 可燃物的种类 可燃物是多种多样的。按照形态,可分为气态、液态和固态可燃物,氢气(H2)、一氧化碳(CO)等为常见的可燃气体,汽油、酒精等为常见的可燃液体,煤、高分子聚合物等为常见的可燃固体。可燃物之所以能够燃烧是因为它包含有一定的可燃元素。主要是碳(C)、氢(H)、硫(S)、磷(P)等。碳是大多数可燃物的主要可燃成分,它的多少基本上决定了可燃物发热量的大小。碳的发热量为 3.35×107J/kg,氢的发热量为1.42×108J/kg,是碳的4 倍多。了解可燃元素及由其构成的各类可燃化合物的燃烧特性可定量计算燃烧过程中的物质转换和能量转换。有些元素发生燃烧后可以生成完全燃烧产物,也可生成不完全燃烧产物,不完全 2

在线监测折算值和过量空气系数

关于CEMS 中折算值和过量空气系数的说明 1、什么是折算值 按照GB13271 《锅炉大气污染物排放标准》的规定,实测的锅炉烟尘、二氧化硫、氮氧化物的排放浓度,必须执行国标GB/T16157规定,按下式进行折算: s C C αα?=' 式中: C —折算成过量空气系数为α时的颗粒物或气态污染物排放浓度,mg/m 3; C ’ —标准状态下干烟气中颗粒物或气态污染物浓度,mg/m 3; α—在测点实测的过量空气系数; αs —有关排放标准中规定的过量空气系数。 实测过量空气系数按下式计算: 2 2121 O X -=α 式中:2O X —烟气中氧的体积百分数。 比如对于某锅炉,CEMS 仪表测得的SO2浓度为500mg/m3(C ’=500),O2浓度为8%(2 O X =8),则实测的过量空气系数α=21/(21-8)=1.6, 如果排放标准中规定了该锅炉的理论过量空气系数αs =1.4,则SO2折算后的排放浓度(折算值)为:500*1.6/1.4=571.4 mg/m3。

2、为什么要采用折算值 同样的锅炉,如果人为控制的进风量不同或烟道存在漏风口,则测得的污染物排放浓度将不同,同时氧气含量也是不同的。为避免因进风不同造成的测量值差异,对同种锅炉执行统一的标准,做到客观、公平地评判排污状况,排放浓度使用了折算值,通过过量空气系数对测量浓度进行修正。 比如上面举的例子,虽然仪表测得的SO2浓度为500mg/m3,但该锅炉的氧气超标了,存在漏风或空气过量的问题,浓度不能真实反映锅炉的状况,采用折算后,修正为571.4 mg/m3,漏风或空气过量的影响被消除了。 3、排放标准中规定的过量空气系数 所谓过量空气系数,即燃料燃烧时,实际空气供给量与理论空气需求量的比值。锅炉排放标准中规定的过量空气系数与锅炉类型和功率相关,具体规定为: 对于燃煤锅炉,功率小于等于45.5MW的,过量空气系数采用1.8,功率大于45.5MW的,过量空气系数采用1.4,对于燃气或燃油锅炉,过量空气系数采用1.2。 在实际描述中,有些锅炉的功率以t/h计,它与MW的换算关系为:0.7MW=1t/h,比如45.5MW的锅炉相当于65t/h的锅炉。 锅炉的过量空气系数越高,表明该锅炉的燃烧效率越低,因此燃煤锅炉的系数比燃油燃气锅炉要高,而小的燃煤锅炉的系数

2013年工程量计算题

2013《建设工程计量与计价》练习题1、【习题1】某建筑平面图如图所示。墙体厚度240 ㎜,台阶上部雨篷伸出宽度与阳台一致,阳台为全封闭。按要求平整场地,土壤类别为三类(坚土),大部分场地挖填找平厚度在±30 ㎝以内,就地找平,但局部有23m3挖土,平均厚度为50 ㎝,有5m 弃土运输。计算场地平整工程量,确定定额项目。 【习题2】某工程平面图和断面图,如图所示。基础类型为钢筋混凝土无梁式带形基础和独立基础,招标人提供的资料是无地表水,地面已平整,并达到设计地面标高,施工单位现场勘察,土质为三类土,无需支挡土板和基底钎探。计算基础挖土方工程量,确定定额项目。

【习题3】如图所示,挖掘机大开挖(自卸汽车运输)土方工程,招标人提供的地质资料为三类土,设计放坡系数为0.3,地下水-6.30m,地面已平整,并达到设计地面标高,钎探数量按垫层底面积平均每平方米1个计算,施工现场留下约500m3(自然体积)用做回填土,其余全部用自卸汽车外运,余土运输距离800m。不考虑坡道挖土。计算挖 运土方工程量,确定定额项目。

【习题5】某工程采用钢筋混凝土方桩基础,用柴油打桩机打预制钢筋混凝土方桩74 桩,如图所示。桩长15m,桩断面尺寸为300 ㎜×300 ㎜,混凝土强度等级为C30,现场预制,混凝土场外运输,运距为3km,场外集中搅拌(50m3/h)。计算混凝土工程量,确定定额项目。 【习题6】如图所示,已知夯扩成孔灌注混凝土桩共15 根,设计桩长为9m,直径为500 ㎜,底部扩大球体直径为1000 ㎜,混凝土强度等级为C20,混凝土现场搅拌,机动翻斗车现场运输混凝土。计算工程量,确定定额项目。

相关文档
最新文档