化归思想在方程中的应用

化归思想在方程中的应用
化归思想在方程中的应用

化归思想在方程中的应用

【摘要】在数学教育中,化归方法是”问题”的一种重要手段和方法。本文从化归的功能,化归的实质,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,着重归纳了用化归思想方法解题的三个注意点,力求比较全面地体现化归思想在方程解题中的作用和地位。

【关键词】化归方法方程

【中图分类号】g718 【文献标识码】a 【文章编号】

2095-3089(2013)01-0236-02

什么是化归方法,从字面上看,所谓“化归”,可以理解为转化和归结的意思。数学方法论中所论及的“化归方法”,是指数学家把待解决或未解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中去,最终求获原问题之解答的一种手段和方法。化归方法也称为化归原则。

在数学史上,曾有不少数学家从各种不同的角度对化归方法进行过论述。例如,笛卡尔在《指导思想的法则》一书中就曾提出过如下的“万能方法”:

第一,将任何种类的问题化归为数学问题;

第二,将任何种类的数学问题化归为代数问题;

第三,将任何代数问题化归为方程式的求解。

化归思想的实质就是将一个新问题进行变形,使其转化为另一个已经解决的问题,从而使原来的问题得到解决。其一般模式是把所

初中数学教学论文 浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

转化与化归思想方法

转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使 之转化,进而得到解决的一种方法.一般总是将复杂的问题通过变换转化为简单的问题,将 难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归, 如未知向已知的转化、新知识向旧知识的转化、复杂问题向简单问题的转化、不同数学问 题之间的互相转化、实际问题向数学问题转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到所有的数学教学内容和解题过程中. 1.转化与化归的原则 (1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验来解决. (2)简单化原则:将复杂问题化归为简单问题,通过对简单问题的解决,达到解决复杂 问题的目的,或获得某种解题的启示和依据. (3)直观化原则:将比较抽象的问题化为比较直观的问题来解决. (4)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探讨,使问题获解. 2.常见的转化与化归的方法 转化与化归思想方法用在研究、解决数学问题时,思维受阻或寻求简单方法或从一种状况 转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有 效策略,同时也是成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、 不等式问题转化为易于解决的基本问题. (3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. 随着国家经济的发展,科技的发达,人才的需求,中国教育的改革,数学新课标 的出现,在对学生的知识与技能,数学思想及情感与态度等方面的要求,学生在数 学的学习方法也应该要相应改变了,要满足社会的需要.化归与转化思想的实质是揭示联系,实现转化.除极简单的数学问题外,每个数学问题的解决都是通过转 化为已知的问题实现的.从这个意义上讲,解决数学问题就是从未知向已知转化 的过程,同时在生活中许许多多的事情也需要往已知的方面转化,把事情简单化, 这对以后学生的能力与德育方面有很大的帮助.化归与转化的思想是解决数学问 题的根本思想,解题的过程实际上就是一步步转化的过程.数学中的转化比比皆

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

化归思想在初中数学解题中的应用

化归思想在初中数学解题中的应用 向阳乡初级中学 周红林 【摘要】化归思想是中学数学最重要的思想方法之一。本文从化归的功能,化归的原则,化归的思维模式以及中学数学中化归的基本形式,化归的特点等内容出发,力求比较全面地体现化归思想在初中数学解题中的作用和地位。 【关键词】化归思想 化归的原则 教学策略 化归思想要点 新课程标准指出:“数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础。”“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验。”从中我们可以看出新课程标准下的数学教学更加突出培养学生的数学思想的重要性,而数学思想同样离不开数学方法的支持。 数学是一门演绎推理的学科。它的任一分支在其内容展开过程中,都有形或无形地存在着如下的结论链: 从中我们可以发现,在解决某一个具体问题时,不必都从原始概念开始,而只要把待解决的问题转化为结论链中的某一环节即可。所以,初中数学中,化归思想的运用尤为突出,本文结合自己的工作实际对化归思想提出了一些自己的看法。

一、化归思想的涵义和作用 化归思想,又称转换思想或转化思想,是一种把待解决或未解决的问题,通过某种转化过程归结到一类已经能解决或比较容易解决的问题中去,最终求得问题解答的数学思想。化归法和数形结合方法是转化思想在数学方法论上的体现,是数学中普遍适用的重要方法。 二、化归思想的基本原则 数学中的化归有其特定的方向,一般为:化复杂为简单;化抽象为具体;化生疏为熟悉;化难为易;化一般为特殊;化特殊为一般;化“综合”为“单一”;化“高维”为“低维”等。 为更好地把握化归方向,我们必须遵循一些化归的基本原则,化归思想的基本原则主要有熟悉化原则、简单化原则、具体化原则、极端化原则、和谐化原则。 ⒈熟悉化原则 熟悉化就是把我们所遇到的“陌生”问题转化为我们较为“熟悉”的问题,以便利用已有的知识和经验,使问题得到解决。这也是我们常说的通过“旧知”解决“新知”。学习是新旧知识相互联系、相互影响的过程。奥苏伯尔说,影响学习的最重要的因素是学生已知的内容。在教学的应用策略中,他提出了设计“先行组织者”的做法,也就是在学生“已经知道的知识”和“需要知道的知识”之间架起桥梁。这样有利于学生解决问题。 ⒉简单化原则 简单化原则就是把比较复杂的问题转化为比较简单的易于确定

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

化归思想论文

浅谈化归思想在数学解题中的应用 摘要:化归思想在数学解题中应用非常的广泛。化归原则,即化未知为已知,化繁为简,化难为易。在我们的解题过程中,如果能做到对化归思想运用自如,那么我们将会节约许多资源,化归方法有三大基本要素:化归对象、化归目标、化归方法。在使用化归的过程中关键在于要掌握化归的方法。要掌握化归的精髓,就要采取具体问题与活动多次练习体会的方法,逐步形成化归思想,逐步建立化归方法的认知结构。 Abstract: The Reduction of thinking in mathematical problem solving application is very extensive. Naturalization principle, that of the unknown is known, based simplify of Aesthetic. In our problem solving process, if you can do on the Idea with ease, then we will be saving a lot of resources, Naturalization method has three basic elements: Naturalization object, Naturalization goal of Transformation. The key is to master the use of Naturalization Naturalization. To grasp the essence of Naturalization, it is necessary to take specific issues and activities repeatedly practice experience, and gradually form the Idea, and gradually establish the cognitive structure of Transformation. 关键字:化归思想数学解题思维形成化归思想 化归原理其实是很浅显易懂有非常实用的方法,有人曾提出这样一个问题:“假如在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎么做?”有人回答:“用水龙头放出来的水把水壶灌满,再点燃煤气灶,把壶放到煤气灶上。”提问者肯定了这个答案并对问题进行了修改,追问道:“如果其他条件不变,只是壶里已经灌满了水,那你有打算怎么做?”这时那人很有信心的回答:“点燃煤气灶,把壶放到煤气灶上。”可是这一回答并没有使提问者感到满意,因为,在后者看来,更恰当地回答是:“只有物理学家才会这样做,而数学家则会倒去壶中的水,并声称他已经把后一问题化归为先前已经得到解决的问题了。” 华归的一般模式是: 所以说,化归可理解为:由未知到已知,由难到易,又复杂到简单的转化。下面我们来看化归方法在具体数学问题中的应用。 例1由于求解一元一次方程的问题是十分容易的,因此,为了求解二元一次方程组(或n 元一次方程组),我们就可采取消元的方法——这事实上是将求解二元(n元)一次方程组的问题化归为求解一元一次方程的问题,即:

浅谈化归思想方法在数学教学中的应用

浅谈化归思想方法在数学教学中的应用 墨红镇中学李慧连内容摘要:所谓化归法,是指通过数学内部的联系和矛盾运用,在转化中实现问题的规范化,即将待解问题转化为规范问题,从而使原问题得到解决的一种方法.这里的规范问题是指已经具有确定的解决方法和程序的问题,即运用原有知识已能解决的问题.而将一个问题化为规范问题的过程叫做问题的规范化.因此,简而言之,所谓化归就是问题的规范化、模式化。“化归”方法很多,但有一个原则是和原来的问题相比,“化归”后所得出的问题,应是已经解决或是较为容易解决的问题。在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 关键词:化归法简述运用操作实现化归 随着数学课程改革的深入,教师们已经认识到学生学习方法转变的必要性。数学教学是教师按照学生的认识规律和新课标特点,通过最优途径,指导学生掌握科学的学习方法,并获得具有选择和运用恰当有效学习方法的能力。重视方法指导是坚持“以学生为主体”和培养学生创新素养这一现代教育观念的体现,它能使学生主动参与认识过程,既能调动学生的积极性,又能向教师提出改进教法的反馈信息,有效发挥教法和学法的整体功能,最大限度地使用好教材。在数学方法论中有一种重要的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,与中学数学教与学密切相关。 一.化归法简述 在学习数学的各个环节中,解题的训练占有十分重要的地位。它既是掌握所学数学知识的必要手段,也是培养和提高数学能力的重要途径。解题的实质就是把数学的一般原理运用于题目的条件或条件的推论而进行的一系列推理,直到求出题目解答为止的过程。这一过程是一种复杂的思维活动的过程。解决问题的过程,实际是转化的过程,即对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。如抽象转化为具体,未知转化为已知,立体转化为平面,高次转化为低次,多元转化为一元,超越运算转化为代数运算等等。这就是数学方法论中的一种新的思维方法——化归,这种方法与我们常见的分析和综合、抽象和概括、归纳和演绎、比较和类比等思想方法不同,在解决各种数学问题时,化归方法是一种具有普遍适用性的方法,假设有一个数学问题甲,一下子不能直接求解,于是人们将甲问题的求解化为乙问题的求解,然后通过乙问题的求解返回去得出甲问题的求解,这就是化归的基本想法。利用化归法解决问题的过程可以简单地用以下框图表示:

方程思想及应用

目录 摘要 (2) Abstract (3) 引言 (3) 1.方程思想的涵义 (4) 1.1方程.............................................................................. 错误!未定义书签。 1.2方程思想 (5) 1.3方程思想的步骤 (5) 1.4方程思想的两个重要方面 (5) 1.5方程思想是一种源于解决应用问题的思想 (6) 2.方程思想的应用 (6) 2.1方程思想数学学科中的应用 (9) 2.2方程思想在物理学科中的应用 (9) 2.3方程思想在配平化学方程式中的应用 (12) 3.方程思想的学习和教学 (13) 3.1方程思想的学习 (13) 3.2方程思想的教学 (14) 参考文献 (17)

方程思想的应用与教学 摘要:方程思想是一种重要的数学思想,是指在分析问题的数量关系时,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式。重点就是化未知为已知的思想,关键是利用已知条件或公式、定理中的已知结论构造方程(组)。它在多门学科中都有广泛的应用,因此我们要让学生逐步掌握这种数学思想方法,就必须在数学教学中逐步进行有目的的引导和培养。 关键词:方程思想;应用;教学

The Equation of the Application of the Thought and teaching Abstract:Equation thinking is a kind of important mathematical ideas, which means in its analysis of the question of the quantitative relationships, the issue of the known and unknown quantities of the quantitative relationships between the amount established by the appropriate setting element equation or equation group, and then solve the equation (group) so that the problems can be resolved by such a way of thinking. Focus on the translation of the unknown to the known, and the key is to use a known conditions or formula, theorem, known conclusions structure equations (group). It has a wide range of applications in several disciplines, and therefore we want to have the students gradually master this mathematical thinking, it must be in Math Teaching, step-by-step with the aim of the boot and training. Key Words: Equation thinking; Adhibition; Teaching

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

浅谈化归思想在中学数学中的应用

浅谈化归思想在中学数学中的应用 发表时间:2010-11-08T15:05:44.580Z 来源:《中小学教育》2010年第11期供稿作者:苏炳堂 [导读] 数与数之间的转化遵循着一些原则,例如具体化原则、简单化原则、和谐统一化原则等等。 苏炳堂广西柳州市第一中学545007 在中学数学中,化归思想不仅是一种重要的数学思想,也是一种最基本的思维策略。化归思想在中学数学中有着很广泛的应用,其关键就在于把原问题转化和归结。对于具体的数学问题,如何实行化归和选择有效的化归手段并没有固定的模式,中学数学常见的化归基本形式有以下三种: 一、数与数之间的转化 数与数之间的转化是中学数学中最常用的一种化归形式,通过转化可以使得原问题简单化、具体化、熟悉化,从而使问题迎刃而解。在中学数学中很多化归都是数与数之间的转化,例如变形所给出的方程求解,数学解法在于不断将高层次的解法化归为较低层次的解法,这就是我们常说的把问题“初等化”。 例1、关于x的方程cos2x+sinx+a=0在(0,π)内有解,求a的取值范围。 分析:假设由题意把x看作未知数,那么那就是一个复合的方程,很难下手,但若考虑以sinx为未知数,再由1-cos2x=sin2x,则问题转化为常见的一元二次方程了,原问题即可解决。所以由1-cos2x=sin2x,原式可化为:a=sin2x-sinx-1即a=(sinx- )2- 。因为x∈(0,π),所以0

转化与化归思想的应用

转化与化归思想的应用 题型一 特殊与一般的转化 例1 已知函数f (x )=a x a x +a (a >0且a ≠1),则f ????1100+f ????2100+…+f ????99100的值为________. 答案 99 2 解析 思维升华 一般问题特殊化,使问题处理变得直接、简单.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. (1)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a 、b 、c 成等差数列, 则cos A +cos C 1+cos A cos C =________. (2)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+ x )f (x ),则f ???? 52=________. 答案 (1)4 5 (2)0 题型二,常量与变量的转化 例2, 对任意的|m |≤2,函数f (x )=mx 2-2x +1-m 恒为负,则x 的取值范围为________. 变式练习:设f (x )是定义在R 上的单调增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为___________.(-∞,-1]∪[0,+∞) 探究提高 在处理多变元的数学问题时,我们可以选取其中的常数(或参数),将其看做是“主元”,而把其它变元看做是常量,从而达到减少变元简化运算的目的.

题型三 函数、方程、不等式之间的转化 例3 若f (x )是定义在R 上的函数,对任意实数x 都有f (x +3)≤f (x )+3和f (x +2)≥f (x )+2,且f (1)=1,则f (2 014)=________. 答案 2 014 解析 (2)∵f (x +1)≤f (x +3)-2≤f (x )+3-2=f (x )+1, f (x +1)≥f (x +4)-3≥f (x +2)+2-3≥f (x )+4-3=f (x )+1, ∴f (x )+1≤f (x +1)≤f (x )+1. ∴f (x +1)=f (x )+1. ∴数列{f (n )}为等差数列. ∴f (2 014)=f (1)+2 013×1=2 014. (1)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范 围是________. 答案 (1)(-∞,-8] 2.关于x 的方程222(1)10x x k ---+=,给出下列四个命题: ( A ) ①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假. 命题的个数是 A .0 B .1 C .2 D .3 题型四 数与形的转化 例4.(2014·天津)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________. 答案 (0,1)∪(9,+∞) 解析 设y 1=f (x )=|x 2+3x |,y 2=a |x -1|, 在同一直角坐标系中作出y 1=|x 2+3x |,y 2=a |x -1|的图象如图所示.

化归思想方法在解题中的应用

化归思想方法在解题中的应用 汕头金平职业技术学校李顺生 摘要:化归,指的是转化与归结.即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。近几年高考,随着试题由知识立意向能力立意的转变,不断加大化归思想的考查力度。如此,重视化归思想在高中数学教学中的应用显得尤其重要。 关键词:新课程解题渗透化归数学思想 近几年高考试题十分重视数学思想方法的考查,特别是考查能力的试题,其解答过程都蕴含着重要的数学思想方法。“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只能满足于解出来,只有做到对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。 在中学数学中,化归不仅是一种重要的解题思想,也是一种最基本的思维策略。所谓的化归,指的是转化与归结。即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题,从而最终解决原问题的一种思想。 化归应遵循一定的原则:(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利运用熟知的知识、经验和问题来解决。(2)简单化原则:将复杂的问题化归为简单问题,通过以简单问题的解决,达到复杂问题的目的,或获得某种解题的启示和依据。(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。(5)正难则反原则:当问题正面讨论遇到困

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

七年级上册方程思想应用典型例题

七年级上册方程思想应用典型例题 许多问题的解决都需要转化为方程求解。 一、有理数方面的问题 1、绝对值等于8的数是 。分析:依题意得8=x ,即8,8-==x x 或 2、12=-x ,则=x 。分析:依题意得方程:12,12-=-=-x x 或 3、a 与3互为相反数,则a = 。分析:依题意得方程:03=+a 二、整式方面的问题 1、若单项式143+n ab 与() 1239-+-n ab 是同类项,则n 的值是( ) A 、-1 B 、0 C 、7 D 、2 分析:根据同类项的概念:相同字母的指数相同,得到1)23(14-+=+n n 解方程 练习:1、若m y x 32与23y x n -是同类项,则m+n= ,分析:根据同类项的概念,可得到方程: 和 ,从而求出m,n 的值。 2、如果n y x 23与312y x n --是同类项,那么m= ,n= 。 三、一元一次方程方面的问题 1、关于x 的方程()232-=-x a x 的解为1-=x ,则a 的值为( ) A 、5 B 、-1 C 、-5 D 、 3 5- 分析:方程()232-=-x a x 中实际上有两个未知数a x ,,把解1-=x ,代入方程中就得到以a 为未知数的一元一次方程:)21()1(32--=-?-a ,再解方程得到a 的值。 练习:已知2x =-是方程240x m +-=的解,则m 的值是_________ 已知关于x 的方程3a -x= x 2 +3的解是4, 则a=_________

四、图形的初步认识方面的问题 1、一个角的补角是这个角的4倍,求这个角的度数. 分析:前提条件知道补角的定义。设这个角的度数为x,则它的补角为180-x,根据题意,可列出一元一次方程来求解。 解:设这个角是x度,则它的补角是(180-x)度, 根据题意,得180-x=4x,x=36. 练习:1、一个角是它的余角的2倍,这个角的度数是_________ 2、一个角是它的补角的2倍,这个角的度数是_________ 3、一个角的补角是它的余角的3倍,这个角的度数是________ 2、两个角的大小之比是7︰3,他们的差是72°,则这两个角的关系是(). (A)相等(B)互余(C)互补(D)无法确定 分析:根据“他们的差是72°,”得到相等关系:大角-小角=72,设大角为7x,小角为3x,则得到7x-3x=72,求得x,再分别得到7x,3x的度数,确定关系。练习:两个角的大小之比是5︰1,他们的差是120°,则这两个角的关系是______ 两个角的大小之比是2︰1,且互为余角,则这两个角的大小分别是____,____ 两个角的大小之比是3︰1,且互为补角,则这两个角的大小分别是____,____ 3、线段AB上有一点C,使得AC︰CB=3︰2,已知AB=15,则AC、BC各为多少? 4、直线AB上有一点C,使得AC︰CB=3︰2,已知AB=15,则AC、BC各为多少? 五、各类典型的应用题(专题复习)

浅谈中学数学中的化归思想(精)

浅谈中学数学中的化归思想 作者:中原中学刘继华 不断地变换你的问题,我们必须一再地变化它,重新叙述它,变换它,直到最后成 功地找到某些有用的东西为止。 ————波利亚 化归是解决数学问题的一种重要思想方法.化归的思想贯穿于整个数学中,掌握这一思想方法,并学会用它分析问题、处理问题,有着十分重要的意义.匈牙利著名数学家路莎˙彼得以生动的比喻对这种思维方式作了如下风趣的描述:有人提出了这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。”但是,提问者指出,这一回答并不能使他满意,因为,更好的回答应当是:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我把后一问题化归为前面所说的问题了。” 路莎˙彼得在这里说的就是化归方法。在数学教育中,化归思想是“问题解决”的一种重要手段和方法。 —、化归方法的基本思想 1、化归方法的含义:把待解决和未解决的问题,通过转化,或再转化,将原问题归结为一个已经能解决的问题,或者归结为一个比较容

易解决的问题甚至为人们所熟知的具有既定解决方法和程序的问题,最终求得原问题的解决.我们就把这种将未知转化归结为已知的解决数学问题的基本方法称之为化归方法. 2、化归方法是辨证思维在方法论上的反映 数学中充满着矛盾,有着极其丰富的辨证内容,例如,数学概念中一与多、正与负、常量与变量、有限与无限以及数学运算中的加与减、乘与除、乘方与开方、微分与积分等都表现为矛盾的对立统一的形式. 化归方法正是根据客观事物是普遍联系、永恒发展和矛盾的对立统一及其相互转化的观点,来实现问题解决的,它着眼于揭示联系实现转化.因此说化归方法是辨证思维在方法论上的反映. 3、化归方法的作用 我们知道整个中学数学内容,始终贯穿着数学知识和数学方法这两条线.中学数学问题的解决过程常常表现为不断发现问题、分析问题直到归结转化为熟悉的或已能解决的问题的过程,化归方法是中学数学中的重要数学方法之一. 例如 (1代数中解一般方程(或不等式的基本思路是多元向一元、高次向低次的化归;分式方程向整式方程的化归,无理方程向有理方程的化归.

相关文档
最新文档