空间光调制器的应用

空间光调制器的应用
空间光调制器的应用

DOI 10.1007/s11141-015-9547-8

Radiophysics and Quantum Electronics,Vol.57,Nos.8–9,January,2015

(Russian Original Vol.57,Nos.8–9,August–September,2014)

APPLICATION OF THE PHASE LIGHT MODULATOR IN THE IMAGE OPTICAL ENCRYPTION SCHEME WITH SPATIALLY INCOHERENT ILLUMINATION

A.P.Bondareva,N.N.Evtikhiev,V.V.Krasnov,?

and S.N.Starikov UDC004.932.4+004.942

+535.42+535.8

We describe application of the phase liquid-crystal spatial light modulator HoloEyePLUTOVIS

as an encoding element in the image optical encryption scheme with spatially incoherent illumi-

nation.Optical encryption and numerical decryption of test images were conducted.The results

of experiments demonstrate the e?ciency of the constructed optical encryption scheme.

1.INTRODUCTION

Currently,we are witnessing the existence and intense development of the optical encryption meth-ods characterized by a high speed,simultaneous multichannel processing,and the absence of concomitant radiation in the radio-frequency band.Encryption systems in spatially coherent monochromatic light are widespread.One of the best-known systems uses the double random-phase encryption[1–5].In this case, encryption is performed in monochromatic spatially coherent light using two random phase masks.Appli-cation of random phase masks as two-dimensional encoding keys leads to the fact that such systems have a high cryptographic strength.However,because of the need to record phase,such systems require holo-graphic methods of recording and,correspondingly,complex optical schemes.Moreover,the use of random phase masks leads to a poor-quality encryption of images.

To simplify the encryption schemes and improve the decryption quality,one can pass from spatially coherent to spatially incoherent radiation.In this case,recording of the encrypted image is no longer required and the holographic recording scheme becomes unnecessary.The encryption is performed by transmission of monochromatic spatially incoherent radiation from the encrypted object through a di?ractive optical element,resulting in the formation of an intensity distribution described by the object image convolution with a point spread function,namely,an impulse response of the di?ractive optical element in intensity[6, 7].This intensity distribution is the encrypted image recorded by a matrix photosensor.

The fundamental possibility of optical encryption in incoherent light was demonstrated in[8],but using a random phase mask as the encoding di?ractive optical element precluded the achievement of an acceptable decryption quality.This is because the point spread function of a random phase mask is virtually unlimited in space and signi?cantly exceeds the size of the encrypted image.As a result,the photosensor records only the central part of the encrypted image,which leads to distortions of the decrypted image.To solve this problem,we suggest that the encoding element is not used as a random phase mask,but as a di?ractive optical element having a given spatially limited point spread function,with length smaller than the size of the encrypted image.

?vitally.krasnov@mail.ru

National Nuclear Research University(NNRU),Moscow,Russia.Translated from Izvestiya Vysshikh Ucheb-nykh Zavedenii,Radio?zika,Vol.57,No.8–9,pp.693–701,August–September2014.Original article submitted November11,2013;accepted March31,2014.

0033-8443/15/5708-0619c 2015Springer Science+Business Media New York619

Fig.1.Block diagram of optical encryption using a di?ractive optical element.

The scheme of the encryption process is given in Fig.1.The object is illuminated by spatially inco-herent monochromatic light.When the radiation passes through a di?ractive optical element,an intensity distribution g,which corresponds to the colvolution of the image of object f and the point spread function h of the di?ractive optical element,is formed in the photosensor plane.The recorded image g is the encrypted image of object f and the point spread function h is the encoding key.

As a di?ractive optical element,the Fourier holograms are often used.However,the fact that the holograms have several di?raction orders impedes using them in optical numerical systems since the required encoding point spread function can be formed only in one di?raction order.An alternative application of holograms is the use of such synthesized phase di?ractive elements as phase-only synthetic holograms[9], which form a single di?raction order that contains the required point spread function[10].

Since the encryption is performed through a convolution,a bound is imposed on the distribution h of the Fourier spectrum amplitude of the encoding key.The spectrum of the key should overlap the spectrum of the encrypted image f;otherwise,losses of information of the encrypted image at the spatial frequencies not covered by the spectrum of the key are unavoidable in the encryption.The Fourier spectrum of a perfect key should not contain small amplitudes compared with the average level to avoid losses of information in the encryption.

The main requirement for the encoding systems is that the encoding key can be changed for each portion of encrypted information.This limits the possibility of using statistical encoding elements.To implement the encryption system with a dynamically varied encoding key,for mapping of the di?ractive optical element it is expedient to use spatio-temporal light modulators[11]by which the element can be changed at a rate of tens of hertz or more.

This encryption scheme was proposed and tested by us in[12].The experimental results obtained in that paper demonstrated the insu?cient degree of hiding of information in the encrypted images.In this regard,the present work aims at determining the reasons,their elimination,and performing experiments on optical encryption in spatially incoherent light by using a liquid-crystal spatial light modulator to form the encoding point spread function.

The paper is organized as follows.In Sec.2,we describe the experimental setup.In Sec.3,we give the results of seeking and eliminating the reasons for the insu?cient degree of hiding of information.In Sec.4,we give a description and the results of the experiments.The main?ndings are formulated in the Conclusions.

620

Fig.2.Scheme of the experimental setup for optical encryption of images in spatially incoherent light based in a phase liquid-crystal spatial light modulator.

2.EXPERIMENTAL SETUP FOR OPTICAL ENCRYPTION WITH SPATIALLY INCOHERENT

ILLUMINATION AND THE ABILITY TO DYNAMICALLY CHANGE THE ENCODING KEY

The optical encryption scheme capable of dynamically changing the key was experimentally imple-mented by the temporal integration method[12,13],which was employed in,e.g.,incoherent acousto-optical correlators[14–16].The idea of the method is as follows.We record an image of the object moving along some encoding trajectory,which gives rise to an image described by the convolution of the image of the object and the encoding trajectory.Mathematically,this process of encoding of the image f by the discrete trajectory h can be described as follows:

g(i,j)=

i

k=1

j

l=1

f(k,l)h(i?k,j?l).(1)

Here,g(i,j)is the brightness of an image pixel at the point with the coordinates i and j,h(i?k,j?l)is the value of the element(i?k,j?l)of the matrix of a trajectory with the coordinates i?k and j?l; the quantity h characterizes the time of?nding the image at this point on the trajectory.The trajectory h forms the encoding point spread function of the optical system by analogy with the point spread function of the di?ractive optical element and the encoding key.

The scheme of the experimental setup for optical image encryption in spatially incoherent light based on a phase liquid-crystal spatial light modulator(SLM),which we proposed in[12],is shown in Fig.2.The radiation of a He–Ne laser(wavelength0.63μm)is collimated by lenses L1and L2.Rotating opal di?user (ROD)breaks the spatial coherence of the radiation.The encoded scene is located in the front focal plane of lens L3.The liquid-crystal spatial light modulator HoloEyePLUTOVIS,which consists of1920×1080pixels with sizes8×8μm,is able to output256levels of the phase and is located in the rear focal plane of lens L3. Polarizers P and A are oriented so as to ensure the correct operation of the phase modulator.Lens L4forms an image of the encoded scene on the photosencor of the monochrome camera MegaPlus II ES11000with a 4008×2672pixel resolution,a10-bit analogue-to-digital converter,and the maximum signal-to-noise ratio equal to140.The modulator generates a sequence of alternating phase gratings with a sawtooth pro?le. Changing the modulator-mapped grating(changing their period and orientation)during the frame record

621

Fig.3.Image encryption:before(a)and after(b)the decrease in temporal?uctuations of the modulator phase shift.

leads to the movement of the scene image on the camera photosensor.As a result,the image recorded by the camera corresponds to the convolution of the scene image and the encoding trajectory.

3.ANALYSIS AND ELIMINATION OF THE REASONS FOR THE INSUFFICIENT

DEGREE OF HIDING OF INFORMATION ON ENCRYPTED IMAGES

The analysis has shown that the insu?cient degree of hiding of information in the encrypted images was due to signi?cant temporal?uctuations of the phase shift during the frame mapping in the light mod-ulator[17,18].As a result of these?uctuations,besides the desired?rst di?raction order,the undesirable zero order was observed during the formation of each point of the point spread function.According to the measurement results,the intensity of the latter made up one-fourth of the intensity of the?rst order. Correspondingly,in the encoding point spread function used in the experiments and composed of30points, the total intensity of the zero order was about a factor of eight greater than the intensity of the other points. As a result,the recorded image can be represented as the sum of the encrypted image proper,formed by the design point spread function without the zero order,and the original non-encrypted image with brightness a factor of eight greater than the brightness of the?rst term.This is exactly the reason for the insu?cient degree of hiding of information in the resulting encrypted image.The result of encryption in described conditions is given in Fig.3a.The original image stands up against the background of the encrypted one.

To decrease the temporal?uctuations of the phase shift,we replaced the standard address con?gu-ration of the control voltage in the light modulator by the con?guration we received from the producer by request.According to the measurements,changing the con?guration reduced the maximum amplitude of ?uctuations almost fourfold,from0.48πto0.13π.

As a result,we managed to increase two times the intensity ratio of the?rst and the zero di?raction orders,from4.0to8.0.This made it possible to improve fundamentally the quality of hiding of information in the encrypted images.This was demonstrated in Fig.3:while previously the original text stood up against the background of the encrypted one(see Fig.3a),only a small number of individual characters are identi?ed after the decrease in temporal?uctuations of the phase shift of the liquid-crystal spatial light modulator in the encrypted image(see Fig.3b).The further decrease in?uctuations can be achieved by using synchronization tools[18].

622

Fig.4.Optical encryption of the grayscale scene

image:image of the scene to be encrypted (a ),

encoding point spread function (b )and encrypted

scene image (c ).

4.EXPERIMENTS ON OPTICAL ENCRYPTION AND NUMERICAL DECRYPTION OF IMAGES

To demonstrate encryption by the implemented setup,we used two types of images,namely,grayscale and binary line images.In the experiments we used images with linear sizes in a range of 700to 1500pixels of the photosensor.The linear size of the encoding point spread function made up one-third of the size of the encrypted images and was chosen to hide information and provide the subsequent decryption.

An example of optical encryption of the grayscale scene image by the implemented setup is shown in Fig.4.The encrypted grayscale image occupied a region of 800×780pixels on the camera photosensor.The encoding point spread function comprised 30points located on a ?eld of 251×296samples and occupied a region of 342×403pixels.Correspondingly,the encrypted image occupied a region of 1141×1382pixels.The information content in the encrypted image was visually lost,as was expected.

Image decryption was performed numerically by the inverse ?ltering method with Tikhonov’s reg-ularization [19].The result of numerical decryption of the grayscale scene image presented in Fig.4c is given in Fig.5a .This image,decrypted with regularization parameter equal to 10?2,is visually the best in the group of images decrypted with di?erent parameters of the image regularization.Normalized standard deviation of decrypted image from the original can serve as the measure of quality of decrypted image [20].

623

Fig.5.Numerical decryption of the grayscale scene image (Fig.3c ):(a )is the image decrypted with regulariza-tion parameter equal to 10?2and (b )is the dependence of the normalized standard deviation δon Tikhonov’s regularization parameter α.

Fig.6.Optical encryption of a fragment of text:

(a )is the image of the text,(b )is the encoding

point spread function,and (c )is the encrypted im-

age of the text.

The dependence of the normalized standard deviation of decrypted images on Tikhonov’s regularization parameter is given in Fig.5b .Despite the noisiness,the decrypted image is con?dently identi?ed.

An example of optical encryption of the image of a fragment of text is given in Fig.6.The encrypted 624

Fig.7.Numerical encryption of the image of a fragment of text:(a)is the decrypted image with the minimum normalized standard deviation from the original and(b)is the dependence of the normalized standard deviation δon Tikhonov’s regularization parameterα.

image of a fragment of text occupied a region of1104×864pixels on the camera photosensor.We used the same encoding point spread function as in the previous case.Correspondingly,the encrypted image occupied a region of1445×1266pixels.Although a small number of individual characters are identi?ed in the encrypted image,the encrypted text can de?nitely not be read.

The result of numerical decryption of the image of a fragment of text(Fig.6c)is given in Fig.7a. This image,decrypted with regularization parameter equal to10?4,has the minimum normalized standard deviation on the original and is visually the best in the group of images decrypted with di?erent regularization parameters.The dependence of the normalized standard deviation on Tikhonov’s regularization parameter is presented in Fig.7b.The decrypted image of a fragment of text is con?dently read.

The quality of encryption was determined by the number of nonzero points of the encoding point spread function.Due to the limited exposure of the camera,the number of points of the encoding trajectory was limited to30,which not always was su?cient for a complete hiding of encrypted information.The noise observed in the decrypted images was stipulated,?rst of all,by notable temporal?uctuations of the phase shift and residual nonlinear dependence of the phase shift on the level of the signal supplied.This has led to the appearance of higher di?raction orders going beyond the region of record of encrypted image.

5.CONCLUSIONS

The scheme of optical decryption of images in spatially incoherent light based on a phase liquid-crystal spatial light modulator capable of dynamically changing the encoding key has been experimentally implemented.The temporal integration technique was employed to generate the encoding point spread function.Due to a fourfold decrease in the temporal?uctuations of the phase shift in the modulator(from 0.48πto0.13π),we reduced by two times the intensity of the zero di?raction order in the encoding point spread function.This ensured a su?cient degree of hiding of information in the optically encrypted images. In the optical encryption experiments,the linear size of the encoding point transfer function made up about one-third of the size of the encrypted images and was chosen to provide hiding of information and enable the subsequent numerical decryption.The decrypted text images are identi?ed with the corresponding originals. The results of the experiments con?rm the e?ciency of the implemented encryption scheme with spatially incoherent illumination and the ability to dynamically change the encrypting key.

The noise observed in the decrypted images are stipulated,?rst of all,by notable temporal?uctuations of the phase shift in the light modulator.For the further decrease in?uctuations and,therefore,improvement

625

of the encryption quality one should use synchronization of the modulator and radiation source or the recording camera.

This work was supported by the Russian Foundation for Basic Research(project No.13–07–00395). REFERENCES

1.P.R′e fr′e gier and B.Javidi,Opt.Lett.,20,767(1995).

2. B.Javidi,A.Sergent,G.S.Zhang,and L.Guibert,Opt.Eng.,36,No.4,992(1997).

3.G.T.Unnikrishnan,J.Joseph,and K.Singh,Opt.Lett.,25,No.12,887(2000).

4. B.Javidi,N.Towghi,N.Naghzi,and S.C.Verall,Appl.Opt.,39,No.14,2313(2000).

5. B.M.Hennelly and J.T.Sheridan,Opt.Eng.,43,No.10,2239(2004).

6.R.Henao,E.Rueda,J.F.Barrera,and R.Torroba,Opt.Lett.,35,No.3,333(2010).

7.M.V.Konnik and S.N.Starikov,https://www.360docs.net/doc/007730913.html,mun.,282,No.21,4210(2009).

8. B.Javidi,E.Tajahuerce,https://www.360docs.net/doc/007730913.html,ncis,and P.Andr′e s,Opt.Lett.,26,No.10,678(2001).

9.L.B.Lesem,P.M.Hirsch,and J.A.Jordan,Jr.,IBM J.Res.Dev.,No.13,150(1969).

10.S.N.Starikov,V.G.Rodin,E.A.Shapkarina,et al.,Proc.SPIE,5437,301(2004).

11.P.C.Mogensen and J.Gluckstad,Opt.Lett.,25,No.8,566(2000).

12.N.N.Evtikhiev,V.V.Krasnov,S.N.Starikov,et al.,Proc.SPIE,8429,84291P(2012).

13.V.V.Krasnov,S.N.Starikov,and P.A.Cheremkhin,Vestnik RUDN,Ser.Matem.,Inform.,Fiz.,No4,

124(2011).

14.H.J.Caul?eld,Handbook of Optical Holography[Russian translation],Mir,Moscow,Vol.2(1984),

p.584.

15.N.V.Masalsky,Proc.SPIE,5066,292(2003).

16.S.Kim and K.Wagner,Opt.Engineering,44,No.10,108202(2005).

17. A.Hermerschmidt,S.Osten,S.Kr¨u ger,et al.,Proc.SPIE,6584,65840E(2007).

18. A.P.Bondareva,V.V.Krasnov,and P.A.Cheremkhin,in:Proc.VIII Int.Conf.of Scientists and

Specialists“Optics2013,”St.Petersburg(2013),p.207.

19.V.Ya.Arsenin and A.N.Tikhonov,Solutions of Ill-Posed Problems[in Russian],Nauka,Moscow(1979).

20.J.R.Fienup,Appl.Opt.,36,No.32,8352(1997).

626

空间光调制器的应用

DOI 10.1007/s11141-015-9547-8 Radiophysics and Quantum Electronics,Vol.57,Nos.8–9,January,2015 (Russian Original Vol.57,Nos.8–9,August–September,2014) APPLICATION OF THE PHASE LIGHT MODULATOR IN THE IMAGE OPTICAL ENCRYPTION SCHEME WITH SPATIALLY INCOHERENT ILLUMINATION A.P.Bondareva,N.N.Evtikhiev,V.V.Krasnov,? and S.N.Starikov UDC004.932.4+004.942 +535.42+535.8 We describe application of the phase liquid-crystal spatial light modulator HoloEyePLUTOVIS as an encoding element in the image optical encryption scheme with spatially incoherent illumi- nation.Optical encryption and numerical decryption of test images were conducted.The results of experiments demonstrate the e?ciency of the constructed optical encryption scheme. 1.INTRODUCTION Currently,we are witnessing the existence and intense development of the optical encryption meth-ods characterized by a high speed,simultaneous multichannel processing,and the absence of concomitant radiation in the radio-frequency band.Encryption systems in spatially coherent monochromatic light are widespread.One of the best-known systems uses the double random-phase encryption[1–5].In this case, encryption is performed in monochromatic spatially coherent light using two random phase masks.Appli-cation of random phase masks as two-dimensional encoding keys leads to the fact that such systems have a high cryptographic strength.However,because of the need to record phase,such systems require holo-graphic methods of recording and,correspondingly,complex optical schemes.Moreover,the use of random phase masks leads to a poor-quality encryption of images. To simplify the encryption schemes and improve the decryption quality,one can pass from spatially coherent to spatially incoherent radiation.In this case,recording of the encrypted image is no longer required and the holographic recording scheme becomes unnecessary.The encryption is performed by transmission of monochromatic spatially incoherent radiation from the encrypted object through a di?ractive optical element,resulting in the formation of an intensity distribution described by the object image convolution with a point spread function,namely,an impulse response of the di?ractive optical element in intensity[6, 7].This intensity distribution is the encrypted image recorded by a matrix photosensor. The fundamental possibility of optical encryption in incoherent light was demonstrated in[8],but using a random phase mask as the encoding di?ractive optical element precluded the achievement of an acceptable decryption quality.This is because the point spread function of a random phase mask is virtually unlimited in space and signi?cantly exceeds the size of the encrypted image.As a result,the photosensor records only the central part of the encrypted image,which leads to distortions of the decrypted image.To solve this problem,we suggest that the encoding element is not used as a random phase mask,but as a di?ractive optical element having a given spatially limited point spread function,with length smaller than the size of the encrypted image. ?vitally.krasnov@mail.ru National Nuclear Research University(NNRU),Moscow,Russia.Translated from Izvestiya Vysshikh Ucheb-nykh Zavedenii,Radio?zika,Vol.57,No.8–9,pp.693–701,August–September2014.Original article submitted November11,2013;accepted March31,2014. 0033-8443/15/5708-0619c 2015Springer Science+Business Media New York619

光寻址空间光调制器电寻址空间光调制器实验(浙大)

.. . .. . . 实验报告 课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____ 实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生: 一、实验目的和要求 二、实验容和原理 三、主要仪器设备、操作方法和实验步骤 四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和建议 一、 实验目的和要求 1、了解液晶光阀的工作原理和使用方法; 2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法; 3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 二、 实验容和原理 1. 液晶特性 (1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。 (2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意 1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关 3. 液晶光阀工作原理 (1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。 (2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光 E 1 8 1 5 4 6 7 6 2 3 K 2 写入光 读出光 偏振分光镜 输出光 专业: 姓名: 学号: 日期: 地点: 玉泉教三209-211

光寻址空间光调制器电寻址空间光调制器实验(浙大)

实验报告 课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____ 实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生姓名: 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备、操作方法和实验步骤 四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和 建议 一、实验目的和要求 1、了解液晶光阀的工作原理和使用方法; 2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法; 3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 二、实验内容和原理 1. 液晶特性 (1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。 (2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意 1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关 3. 液晶光阀工作原理 (1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。 (2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光电导层上。控制液晶电光效应的实际电压值就由光电导层与液晶层的实际阻抗之比来决定,即取决于光电导层上的光照情况。 E 1 8 1 5 4 6 7 6 2 3 K 2 写入光 读出光 偏振分光镜 输出光 专业: 姓名: 学号: 日期: 地点: 玉泉教三209-211

空间光调制器参数测量与创新应用实验实验讲义

空间光调制器参数测量与创新应用实验 实验讲义 大恒新纪元科技股份有限公司 所有不得翻印

前言 空间光调制器是一类能将信息加载于一维或两维的光学数据场上,以便有效的利用光的固有速度、并行性和互连能力的器件。这类器件可在随时间变化的电驱动信号或其他信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态以及波长,或者把非相干光转化成相干光。由于它的这种性质,可作为实时光学信息处理、光计算等系统中构造单元或关键的器件。空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件,很大程度上,空间光调制器的性能决定了这些领域的实用价值和发展前景。 空间光调制器一般按照读出光的读出方式不同,可以分为反射式和透射式;而按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM) 。最常见的空间光调制器是液晶空间光调制器,应用光-光直接转换,效率高、能耗低、速度快、质量好。可广泛应用到光计算、模式识别、信息处理、显示等领域,具有广阔的应用前景。 本实验是传统光信息处理实验与计算机等先进技术手段相结合的现代光学实验,旨在让学生了解空间光调制器的广泛应用和科研价值。本实验注重学生对光信息处理中关键器件的理解,同时利用SLM解决实际科研与产业应用问题的能力,实验直观且有很强的指导性,可作为相关专业学生的研究型实验。

实验一SLM 液晶取向测量实验 一、 实验目的 1. 了解空间光调制器的基础知识。 2. 理解空间光调制器的透光原理。 3. 测量空间光调制器的前后表面液晶分子取向,计算液晶扭曲角。 二、 实验原理 根据液晶分子的空间排列不同,可将液晶分为向列型、近晶型、胆甾型3类。其中扭曲向列液晶 (Twisted Nematic Liquld Crystal ,TNLC)是液晶屏的主要材料之一,它是一种各向异性的媒质,可以看作是同轴晶体,它的光轴与液晶分子的长轴平行。TNLC 分子自然状态下扭曲排列,在电场作用下会沿电场方向倾斜,过程中对空间光的强度和相位都会产生调制。 想定量分析液晶屏对光的调制特性,需要将调制过程用数学方法来模拟,液晶盒里的扭曲向列液晶可沿光的透过方向分层,每一层可看作是单轴晶体,它的光学轴与液晶分子的取向平行。由于分子的扭曲结构,分子在各层间按螺旋方式逐渐旋转,各层单轴晶体的光学轴沿光的传输方向也螺旋式旋转。如图1.1所示。 图1.1 TNLC 分层模型 在空间光调制器液晶屏的使用中,光线依次通过起偏器P 1、液晶分子、检偏器P 2,如图1.2所示。光路中要求偏振片和液晶屏表面都在x-y 平面上,图中已经分别标出了液晶屏前后表面分子的取向,两者相差90°。偏振片角度的定义是,逆着光的方向看,1φ为液晶屏前表面分子的方向顺时针到P l 偏振方向的角度,2φ为液晶屏后表面分子的方向逆时针到P 2偏振方向的角度。偏振光沿z 轴传输,各层分子可以看作具有相同性质的单轴晶体,它的Jones 矩阵表达式与液晶分子的寻常折射率n o 和非常折射率n e ,以及液晶盒的厚度d 和扭曲角α有关。除此之外,Jones 矩阵还与两个偏振片的转角1φ,2φ有关。因此光波强度和相位的信息可简单表示为()12,,T T βφφ=;()12,,δδβφφ=,其中 ()e o d n n βπθλ=-????又称为双折射,它其实为隐含电场的量,因为β为非常折射率e n 的 函数,非常折射率e n 随液晶分子的倾角θ改变,θ又随外加电压而变化。

光寻址空间光调制器电寻址空间光调制器实验(浙大)

. 实验报告 课程名称: 2011-2012光信息综合实验 指导老师: 成绩:___ ____ 实验名称: 液晶光阀用于光学图像实时处理 实验类型:综合型 同组学生姓名: 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备、操作方法和实验步骤 四、实验结果记录、数据处理分析 五、思考题 六、实验中遇到的问题,心得体会,意见和建议 一、实验目的和要求 1、了解液晶光阀的工作原理和使用方法; 2、掌握采用液晶光阀实现非相干光——相干光图像转换和图像反转的工作原理和方法; 3、掌握应用液晶光阀进行光学图像实时相减和实时微分的方法,加深对光学图像实时处理的理解。 二、实验内容和原理 1. 液晶特性 (1) 液晶是一种有机高分子化合物,既有晶体的取向特性,又有液体的流动性。 (2) 当液晶分子有序排列时表现出光学各项异性:光矢量沿分子长轴方向时具有较大的非常光折射率ne ;而垂直分子长轴方向位寻常光折射率no(针对p 型液晶材料)。 (3) 晶轴方向即为分子长轴方向。在组成液晶盒的两玻璃间加一电压,其中的液晶分子在电场作用下会沿着电场方向排列,即光轴方向沿电场方向偏转。电场控制了双折射效应的变化。 (4) 液晶光阀正是利用此特点而制成的器件。 2. 液晶光阀结构示意 1--玻璃基片 2--透明电极 3--光导层 4--挡光层 5--介质反射膜 6--定向层 7--液晶层 8--衬垫 E--低压音频电源 K--开关 3. 液晶光阀工作原理 (1) 如液晶光阀结构图所示,工作时将待处理的非相干图像从右侧成像在光电导层上,把它作为写入光。读出光束从左侧入射,经起偏器使其偏振方向与液晶左侧分子指向方向一致。经透明电极、液晶盒之后,在右侧的介质反射膜处返回,再次穿过液晶层经偏振分光镜后,通过一个透光轴方向与起偏器偏振方向垂直的检偏器,成为输出光束。 (2) 由于光阻挡层和反射膜都很薄,交流阻抗很小,因而加在两透明电极之间的外电压主要落在液晶层和光电导层上。控制液晶电光效应的实际电压值就由光电导层与液晶层的实际阻抗之比来决定,即取决于光电导层上的光照情况。 (3) 对写入光图像上的暗区:光电导层上的光照很少,电阻很大,外电压主要分配在光电导层上,而液晶层上 E 1 8 1 5 4 6 7 6 2 3 K 2 写入光 读出光 偏振分光镜 输出光 专业: 姓名: 学号: 日期: 地点: 玉泉教三209-211

11空间光调制器

4. 声光扫描 声光扫描器的结构与布拉格声光调制器基本相同,所不同之处在于调制器是改变衍射光的强度,而扫描器则是利用改变声波频率来改变衍射光的方向。 ⑴声光扫描原理 从前面的声光布拉格衍射理论分析可知,光束以θi 角入射产生衍射极值应满足布喇格条件:s B n λλθ2sin =,B d i θθθ==。布喇格角一般很小,可写为 s s s B f v n 22λλλθ=≈ (3.6-5) 故衍射光与入射光间的夹角(偏转角)等于布拉格角θB 的2倍,即 s s B d i f nv λ θθθθ==+=2 (3.6-6) 可以看出:改变超声波的频率f s ,就可以改变其偏转角θ,从而达到控制光束传播方向的目的。超声频率改变?f s 引起光束偏转角的变化为 s s f nv ?=?λ θ (3.6-7) 这可用图1及声光波矢关系予以说明。 ⑵声光扫描器的主要性能参量 声光扫描器的主要性能参量有三个: 可分辨点数,它决定描器的容量。 偏转时间τ,其倒数决定扫描器的速度。 衍射效率ηs ,它决定偏转器的效率。 衍射效率前面已经讨论过。下面主要讨论可分辨点数、扫描速度和工作带宽的衍射光 声频为f s 的衍射光 k s s 图1 声光描器原理图

问题。 可分辨点数N 定义为偏转角?θ和入射光束本身发散角?φ之比,即 )(w R N λφ?φ?θ ?== (3.6-8) 式中w 为入射光束的宽度;R 为常数,其值决定于所用光束的性质(均匀光束或高斯光束)和可分辨判据(瑞利判据或可分辨判据)。 上式可以写成 s f R N ?=11τ (3.6-10) τ 1N 称为声光扫描器的容量-速度积,它表征单位时间内光束可以指向的可分辨位置的数目。 声光扫描器带宽受两种因素的限制,即受换能器带宽和布喇格带宽的限制。因为声频改变时,相应的布喇格角也要改变,其变化量为 s s B f nv ?=?2λ θ (3.6-11) 因此要求声束和光束具有匹配的发散角。声光扫描器一般采用准直的平行光束,其发散角很小,所以要求声波的发散角B δθδφ≥。 L n f f s s s λλ2 2≤? (3.6-12) 有效波面 图2 列阵换能器 (a) (b)

空间光调制器怎么用_空间光调制器的功能及应用

空间光调制器怎么用_空间光调制器的功能及应用 空间光调制器它是一种对光波的空间分布进行调制的器件,具有能实时的在空间上调制光束的功能,使其成为构成实时光学信息处理,光计算等系统的关键器件。空间光调制器的原理空间光调制器含有许多独立单元,它们在空间上排列成一维或二维阵列。每个单元都可以独立地接受光学信号或电学信号的控制,利用各种物理效应(泡克尔斯效应、克尔效应、声光效应、磁光效应、半导体的自电光效应、光折变效应等)改变自身的光学特性,从而对照明在其上的光波进行调制。 一般把这些独立的小单元称为空间光调制器的像素,把控制像素的信号称为写入光,把照明整个器件并被调制的输入光波称为读出光,经过空间光调制器后出射的光波称为输出光。形象的说,空间光调制器可以看作一块透射率或其它光学参数分布能够按照需要进行快速调节的透明片。显然,写入信号应该含有控制调制器各个像素的信息。把这些信息分别传送到相应像素位置上去的过程,称为寻址。 空间光调制器一般按照读出光的读出方式不同,可以分为反射型和透射型; 按照输入控制信号的方式不同又可分为光寻址(OA-SLM)和电寻址(EA-SLM)。 空间光调制器的基本功能,就是提供实时或准实时的一维或二维光学传感器件和运算器件。在光信息处理系统中,它是系统和外界信息交换的接口。 它可以作为系统的输入器件,也可在系统中用作变换或运算器件。作为输入器件时,其功能主要是将待处理的原始信息处理成系统所要求的输入形式。此时,空间光调制器作为输入传器,可以实现电-光转换、串行-并行转换、非相干光-相干光转换、波长转换等。 作为处理和运算器件时,可以实现光放大、矢量-矩阵或矩阵-矩阵间乘法、对比反转、波面形状控制等。除此还有模拟图像存储的功能。 空间光调制器是一种对光波的光场分布进行调制的元件,广泛地应用于成像投影、光束分束、激光束整形、相干波前调制、相位调制、光学镊子、全息投影、激光脉冲整形等诸多应用领域。

空间光调制器

空间光调制器 一.引言 人们已经认识到,光波作为信息的载体具有特别明显的优点。这是因为:(1)光波的频率高达1014Hz以上,比现有的信息载波(无线电波,微波)的频率要高出几个数量级,因此它有极大的带宽。(2)光波有并行性,这是因为光是独立传播的。原有的以串行输入/输出为基础的各种光调制器已经不能满足光互连,光学信息大容量和并行性的要求,能实时的或者快速的二维输入或者输出的传感器以及具有运算功能的二维期间便应运而生,这就是空间光调制器。 二.概述 1.空间光调制器的基本结构和分类 空间光调制器的基本结构特点在于,它由可以独立接收光学或者电学输入信号,并利用各种物理效应改变自身光学特性,从而实现对输入光波或变换的小单元(像素)组成。而我们把控制像素的光电信号称为:“写入光”,把照明整个器件并被调制的输入光波称为:“读出光”,经过空间调制器后出射的光波叫做“输出光”。 写入光或者写入电信号含有控制调制器各个像素的信息。而这些信息分别传送到相应像素上去的过程叫做“寻址”。 目前国际上报道的已经投入实际运用的光电调制器不下40余种,但对这些空间光调制器还没一个统一的分类的办法。目前比较常见的分类方法有:(1)按寻址方式和读出方式分(2)按用于调制的物理效应分(电光效应,磁光效应,声光效应等等)。 2.功能 一般来说,空间光调制器的主要功能有以下两大类: (1)输入器件—将待处理的信息转换成光学处理系统所要求的输入形式。 A.光--电转换和串行--并行转换 B.非相干光—相干光的转换 C.波长转换 (2)处理运算功能器件 A.放大器----增加光波的光强。 B.乘法器和算术运算功能----所谓的乘法器就是指输出光在空间光调制器的表面上的光强分布等于读出光信号和写入光信号的乘积。如果同时输入 两个相干光图象,空间光调制器还可以实现图象的相加或者相减。 C.对比度反转----在减法运算或者逻辑非运算中,需要将二维图象的对比度反转,就是把写入光的亮区在输出光中变成暗区,反之,写入光中的暗区 在输出光中变为亮区。 D.量化操作和阕值操作----所谓的量化操作就是把连续变化的模拟信号按大小分成若干个分立的等级值,转为数字信号。这就需要设定一个值,当 大于此值时,输出一个值,小于时输出另一个,这个设定的值就叫做阙值。 3.空间光调制器的基本性能参数 A 输入—输出特性曲线-----空间光调制器的透过率随写入信号变化的曲线。 B 灵敏度 C 对比度 公式:r=I max/I min D 灰阶数---透过率的另外一种表示方式

基于空间光调制器的光学图像识别研究.

基于空间光调制器的光学图像识别研究 摘要光学图像识别技术[1]是在傅里叶光学的原理上,作频域处理的技术,它已广泛应用于指纹瞳孔识辨、字符识辨、医学细胞计数以及军用目标识别等任务中。光学图像识别运算速度快,信息处理量大,可并行处理,但精度不高;而计算机模式识别存储灵活、易控制、精度高和易于分析及可编程性,但是速度慢、实时性差。通过电寻址液晶空间光调制器(LC-SLM)和光电藕合器件(CCD)可以结合两者的优点,开发出光电混合模式识别系统,以实现图像识别的实用化方案。 光学图像识别系统的基本结构是光学相关器,光学相关模式识别是一种通过傅里叶光学的手段,运用光学相关的图像识别处理方法,从给定的目标信息中提取检测所需要的光频信息。光学相关器有匹配滤波相关器和联合傅里叶变换相关器(Joint Fourier Transform Correlator,JTC)。 本论文中,首先介绍了光学图像识别技术的原理、分类、特性、应用及其发展动态。其次用SLM及CCD等光电设备以及一些常用光学元器件,通过实验建立JTC 图像识辨实验装置,并进行了实际调试以及实验成品的检测与鉴定,实现了光学数据的电子信息化。实现了对相同和不同字符等简单目标的识别,获得它们的联合功率谱和相关峰分布。最后,利用MATLAB程序模拟实验相关峰分布图,使之与实验结果进行比较分析。 关键词光学图像识别;联合傅里叶变换;空间光调制器;光学相关; ABSTRACT Optical pattern recognition technology is in theory the Fourier optics for frequency domain processing, which has been extensively used fingerprint identified, characters identified, cell count in medical and target recognition military task. Optical image recognition has advantages of high computing speed, large information processing, parallel processing, but not the high accuracy. While the computer recognition with advantages of flexible storage, easy to control, high precision, easy to analyze and programable but not instantaneity. By electrically Addressed

相关文档
最新文档