基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析
基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析

摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。

关键词:分形几何迭代函数系统分形图绘制渐变

1 分形几何学

现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。

2 分形的定义

目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义:

(1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数

(2)局部与整体以某种方式自相似的形,称为分形。

然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。

(ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。

(ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。

(ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。

(ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。

(ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。

3 分形研究的对象

几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

次曲线与二次曲线;微分几何的研究对象是光滑的曲线与曲面;代数几何的研究对象则是复空间中的代数曲线,等等。

把凹凸不平的地球表面看成是绝对光滑的球面或椭球面。虽然在许多情况下,这样做并不妨碍我们得到非常符合实际的结论,但是,随着人类对客观世界的认识的逐步深入以及科学技术的不断进步,这种把不规则的物体形状加以规则化,然后进行处理的做法已经不另人满意了。在70年代中期,一门新型的几何学脱颖而出——分形几何学,就是用来深刻地描述大自然本身的几何学,它能深刻地刻划大千世界充满奇异而神秘的各种极不规则极不光滑的对象,这是数学发展史上的一个新世界。事实上,可以把分形看作是自然形态的几何抽象。

4 分形图绘制与分析

4.1 基于l系统的分形图绘制

l系统是生物学家lindenmayer于1968年从植物形态学角度提出的一套用以描述植物树木的方法,开始时只着重于植物的拓扑结构,即植物组件之间的相邻关系,后来才把几何解释加进描述过程,形成后来的l系统。这个系统的高度简洁性和多级结构,为描述植物树木生长和繁殖过程的形态和结构特征,提供了行之有效的理论和方法。l系统不但能描述植物,而且其构图方法也可用来绘制各类有规则分形曲线及其它形状。

l系统是基于符号重写系统。即用一个重写规则逐次地置换初始对象的各个部分来确定一个复杂的对象。分形l系统可以模拟各种植

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形几何的数学基础

课程名称(中文):分形几何的数学基础 课程名称(英文):Mathematical foundation of Fractal geometry 一)课程目的和任务: 分形几何的概念是由B.Mandelbrot 1975年首先提出的,数十年来它已迅速发展成为一门新兴的数学分支,它的应用几乎涉及到自然科学的各个领域。本课程为分形几何研究方向研究生的专业必修课程。主要内容包括:抽象空间,拓扑空间及度量空间中的测度理论基础、分形的(Hausdorff,packing及box-counting)维数理论及其计算技巧、分形的局部结构、分形的射影及分形的乘积等。其目的是使学生基本理解并掌握分形几何学基本概貌和基本研究方法及技巧,从而使他们能够阅读并理解本专业的文献资料。 二)预备知识:测度论,概率论 三)教材及参考书目: 教材:分形几何――数学基础及其应用肯尼思.法尔科内著东北大学出版社 参考书目:1)Rogers C.A. Hausdorff measures, Cambridge University Press, Cambridge, 1970. 2)文志英,分形几何的数学基础,上海科技教育出版社,上海,2000. 3)周作领,瞿成勤,朱智伟,自相似集的结构---Hausdorff测度与上凸密度(第二版),科学出版社,2010。 四)讲授大纲(中英文) 第一章数学基础 1)集合论基础 2)函数和极限 3)测度和质量分布 4)有关概率论的注记 第二章豪斯道夫测度和维数 1)豪斯道夫测度 2)豪斯道夫维数 3)豪斯道夫维数的计算――简单的例子 4)豪斯道夫维数的等价定义 5)维数的更精细定义 第三章维数的其它定义 1)计盒维数 2)计盒维数的性质与问题 3)修改的计盒维数 4)填充测度与维数 5)维数的一些其它定义 第四章计算维数的技巧 1)基本方法 2)有限测度子集 3)位势理论方法 4)傅立叶变换法 第五章分形的局部结构

分形几何学

2 分形几何学的基本概念 本章讨论分形几何学的一些基本内容,其中:第1节讨论自相似性与分形几何学的创立;第2节讨论分形几何学的数学量度,即三种不同的维数计算方法;第3节讨论应用分形几何方法所实现的对自然有机体的模拟。 2.1自相似性与分形几何学 无论人们通过怎样的方式把欧几里得几何学的形体与自然界关联起来,欧氏几何在表达自然的本性时总是会遇到一个难题:即它无法表现自然在不同尺度层次上的无穷无尽的细节。欧氏几何形体在局部放大后呈现为直线或光滑的曲线,而自然界的形体(如山脉、河流、云朵等)则在局部放大后仍呈现出与整体特征相关的丰富的细节(图版2-1图1),这种细节特征与整体特征的相关性就是我们现在所说的自相似性。

自相似性是隐含在自然界的不同尺度层次之间的一种广义的对称性,它使自然造化的微小局部能够体现较大局部的特征,进而也能体现其整体的特征。它也是自然界能够实现多样性和秩序性的有机统一的基础。一根树枝的形状看起来和一棵大树的形状差不多;一朵白云在放大若干倍以后,也可以代表它所处的云团的形象;而一段苏格兰的海岸线在经过数次局部放大后,竟与放大前的形状惊人地相似(图版2-1图2)。这些形象原本都是自然界不可琢磨的形状,但在自相似性这一规律被发现后,它们都成为可以通过理性来认识和控制的了。显然,欧氏几何学在表达自相似性方面是无能为力了,为此,我们需要一种新的几何学来更明确地揭示自然的这一规律。这就是分形几何学产生的基础。

1977年,曼德布罗特(Benoit Mandelbrot)出版了《自然的分形几何学》(The Fractal Geometry of Nature)一书,自此分形几何学得以建立,并动摇了欧氏几何学在人们形态思维方面的统治地位。分形几何学的研究对象是具有如下特性的几何形体:它们能够在不断的放大过程中,不停地展现出自相似的、不规则变化着的细节(图2-1图3)。这些几何形状不同于欧氏几何形体的一维、二维或三维形状,它们的维数不是简单的1、2或3,而是处于它们之间或之外的分数。 科赫曲线(Koch Curve)是分形几何学基本形体中的一个典型实例,它是由这样一种规律逐次形成的:用一根线段做为操作对象,对其三等分,把中间一段向侧面旋转60度,并增加另一段与之长度相同的线段把原来的三条线段连接为一体,这四条线段组成的形状就是第一代的科赫曲线;分别对它的每一条线段重复上述的操作,将形成第二代科赫曲线;再对其每一条线段进行上述操作,可得第三代,等等;如此迭代下去(图版2-1图4)。显然,对每一代的构成元素的同样操作决定了自相似性的代代传递,使形成的科赫曲线已经明确地具有了自然的特征。如果再进一步在操作中增加一点随机成分的话,那么所得的随机科赫曲线的自然性就更强列了。[回本章页首] 2.2维数计算:分形几何学的数学量度 既然分形几何学是一种严格的数学,那么它一定有自身的数学量度。分形几何学的数学量度是分形几何形体的维数。如前所述,分形几何形体的维数不是整数而是分数,它的计算是分形几何的创立者们在总结归纳的基础上产生的。 分形几何体的维数计算的数学推导是复杂的,也不是我们所关心的内容。但维数计算所代表的形象意义却值得我们关注。如前所述,分形几何形体的本质属性是自相似性,而这一自相似性一定是在同一形体的不同层次之间(不论是对自然形体的不同程度的放大,还是对人工形体迭代操作所得到的不同代)得以体现的。因而,分形几何形的维数正是在形状的不同层次的比较之间所反映出来的规律。这一规律所代表的是分形几何形状在空间中的扩张趋势。维数越大,就表明它在空间的扩张趋势越强,形状本身的变化可能性也越丰富。

分形几何与斐波那契数列的对比

摘 要 分形是美籍法国应用数学家蒙德布罗特所提出的,它和英文中的 fracture(断裂)和fraction (分数)有一定联系,体现出蒙德布罗特创立这 个新的几何思想。分形几何作为一门新兴的交义学科,正在被越来越多的人 所认识和学习。据美国科学家情报所调查,八十年代,全世界有1257种重要 学术刊物所发表的论文中,有37.5%与分形有关。美国著名的物理学家Wheeler 说:“可以相信,明天谁不熟悉分形,谁就不能被认为是科学上的文化人”】16【。 传统的欧式几何主要研究对象是规则图形和光滑曲线,对自然景物的描述却 显得无能为力。而分形几何的创立,就是用来描述那些欧式几何无法描述的 几何现象和事物的,被誉为“大自然本身的几何学”,使自然景物的描绘得以 实现,这也是分形几何得到高度重视的原因之一。 斐波那契数列产生于一个关于兔子繁殖后代的问题:某人有一对兔子饲 养在围墙中,如果它们每个月生一对兔子,且新生的兔子在第二个月后也是 每个月生一对兔子,问一年后围墙中共有多少对兔子?斐波那契数列从问世 到现在,不断显示出它在数学理论和应用上的重要作用。如今,斐波那契数 列渗透到了数学的各个分支中。同时,在自然界和现实生活中斐波那契数列 也得到了广泛的应用。如一些花草长出的枝条会出现斐波那契数列现象,大 多数植物的花的花瓣数都恰是斐波那契数列等等。 斐波那契数列又被称为是黄金分割数列,而黄金分割本身就是一种分形 的例子。二者都可以解决一些传统数学所不能解决的问题,所不同的是分形 几何是通过几何的角度来解决问题,而斐波那契数列则是通过代数的角度来 解决实际问题。 作为一门新兴的对现实生活有重要影响的两个定义,研究两者的对比关 系,探讨如何更好地运用这两个定义来解决现实中的一些实际问题,具有重要 意义。 关键字:斐波那契数列;分形几何;应用;对比 ABSTRACT Fractal is first put forward by French-American applied mathematician Mandelbrot. It relates to the words “fracture” and “fraction”, reflecting Mandelbrot’s opinion on creating the new definition. As a rising interdiscipline subject, Fractal is being understood and learned by more and more people. According to the survey of

分形几何与分形艺术

分形几何与分形艺术 Revised as of 23 November 2020

分形几何与分形艺术 作者: 我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特()于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

中学数学中的分形几何.

中学数学中的分形几何 广西桂林市恭城瑶族自治县栗木中学数学组何桂荣(542502) 桂林市第十八中学数学组蒋雪祥(541004) 内容提要:本文论述了规则图形的容量维,对容量维的计算作了说明,同时还对4个较为著名的与中学有关的,或是可以用于启发学生思维的分形问题进行了分析。 关键字:容量维 Sierpinski三角毯 Koch曲线 Koch岛 Sierpinski-Menger海绵 1973年,曼德勃罗(B.B.Mandelbrot)在法兰西学院讲课时,首次提出了分维和分形几何的设想。分形(Fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。数千年来,几何学的发展从来没有二十世纪诞生的分形几何那样对物理学和数学发展产生如此巨大的影响。分形几何对我们大多数人来说是陌生的,因为它看起来离我们太远。其实分形就在我们身边,在近年的竞赛与高考中,分形的影子已经出现。中学数学中的分形与数学研究中的分形所看的角度与研究目标都不同,可以说是羊头狗肉之分吧。笔者试对此进行一点探讨,以抛砖引玉尔。 一、规则图形的容量维 为了描述混沌学中奇怪吸引子的这种奇特结构,曼德尔布罗特(Mandelbrot)最早(1975年)引进了分形(既其维数是非整数的对象)的概念。维数是描述客体的重要几何参量。也可以说,维数是为了确定几何对象中一个点的位置所需的独立坐标数目。已经知道:点是零维,线是一维,平面是二维,而立方体是三维的。这种维数称为拓扑维,用字母"d"表示。维数也可以这样来考虑:比如,取一线段,将该线段的长度乘2,就得到另一个线段,长度为n=2个原线段长度。

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。 一、分形几何与分形艺术 什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。 "分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就

第6讲分形几何学

实用标准文案 第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分

论分形几何学在首饰设计中的应用

论分形几何学在首饰设计中的应用 论分形几何学在首饰设计中的应用作者:来源:浏览次数:5909标签:分形设计饰设 随着人们生活水平的提高和消费观念的改变,珠宝首饰在人们心目中的地位越来越高。传统的首饰是由设计人员先在头脑中构思,再通过图纸和计算机表现出来。设计者往往在阅读大量资料的基础上,对传统的图形进行修改和变换,设计思路受到较大的限制,越来越难以满足人们求新、求美、求异的要求。 针对目前首饰设计领域的“瓶颈”,亟待在艺术构思、图案设计、制作工艺等方面进行创新。如果将分形图形与首饰设计结合起来,把抽象的分形理论应用到实际的首饰设计中去,可以给首饰设计人员提供新的创作灵感。 1 分形几何学理论及应用 分形几何学简称分形,分形一词由法国数学家B. B. Mandelbrot在1967年的“英国的海岸线有多长———统计自相似性与分数维数”论文中首次提出。作为分形,其最显著的特征就是自相似性,即在分形上任选一个局部,无论是将其放大或缩小,其形态、复杂程度、不规则性等均不会发生变化,所得到的图形仍显示原图的特征。这种自相似性可以是近似的,也可以是统计意义的。 分形大致可分为两类:一类是几何分形,它不断地重复同一种图案;另一类是随机分形,它抽象地描述了大自然的许多不规则形态。应用分形理论既可以产生由直线、圆、多边形等构成的较为规则的图形,体现出传统美学中的平衡与对称,还可以产生奇妙的非线性图形,超越标准的新的表现形式。分形图案作为技术与美学的结合,对首饰设计具有特别重要的意义,把它引入首饰设计领域,将挑战传统的设计理念,使设计者的思路和视野得到更广泛的拓展。作为研究和处理不规则图形的强有力工具, 目前分形几何学已在物理学、化学、地质学、生物学、材料学等领域取得了较大的进展。近年来,随着对准晶体物质的深入研究,分形理论在微观领域的应用也逐渐引起了人们的重视。分形理论在计算机仿真、艺术设计、室内装饰等领域也逐渐显示出其极高的应用价值,特别是分形几何学在服装设计领域取得了突破性进展,为分形理论在首饰设计领域的应用奠定了基石。 2 在首饰设计中的应用 首饰设计一般分为手绘和电脑设计,前者主要是用手工绘制的方法将设计思想在图纸上表现出来,后者则是借助计算机辅助设计软件得以实现。无论采用哪种方式,设计者在整个设计过程中都必须遵循对比与调和或者对立与统一的原则,因为首饰设计作为一种艺术创作,它不单是造型元素的简单叠加,更多的是通过对不同材质与色彩的有机组合,营造整体的和谐与统一,从而真正体现首饰的艺术价值。 2.1 作为构成元素参与首饰设计 传统首饰设计的构成元素主要是欧氏几何中描述的具有整数维数的规则图形,设计出的首饰往往比较单一、朴素。而分形作为大自然的几何抽象,能给设计者提供一种新的设计思路。把分形中自相似性的某一重复单元作为一种新的构成要素参与首饰设计。当经过与传统几何要素相同的拉伸、旋转、变形后,新的首饰将呈现出一个更加复杂、精美的分形式造型,从而实现首饰设计的创造性和新颖性。和传统的首饰设计相比,分形首饰的特点[5 ] 在于: (1) 和谐性分形表现最多的是形状的重复,应用到首饰设计中就是造型元素的重复。这就打破了完全对称产生的呆板,给人和谐统一的视觉感。当然,仅仅借助单一结构不能达到对比的效果,

分形几何中的数列问题

分形几何中的数列问题 发表时间:2011-02-22T10:43:53.960Z 来源:《中学课程辅导●教学研究》2011年第3期供稿作者:李玲 [导读] 本文借助简单分形几何图形总结求数列通项公式的常用方法,从而培养学生观察、发现、归纳、总结的能力 李玲 摘要:本文借助简单分形几何图形总结求数列通项公式的常用方法,从而培养学生观察、发现、归纳、总结的能力。 关键词:分形几何;欧氏几何;数列 作者简介:李玲,任教于甘肃兰州兰炼三中。 通俗一点说,分形几何就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学,与欧氏几何学在研究对象等诸多方面迥然不同。数列与分形的结合,就是把抽象的符号语言转换为直观的图形语言,把数量关系问题转化为图形性质去讨论,形成“以形助数,数形结合”的数学思想。分形与数列的结合,不仅为我们解决数列问题提供了一种新的思路,而且对发展学生的实践能力,拓展学生的几何思维有很大帮助。 在一些综合性比较强的数列问题中,通项公式的求解往往是解决数列难题的瓶颈,如何让学生熟练掌握常用的求通项公式的方法如累积法、累加法等,是教学中必须思考的问题。下面通过几个例题对简单分形几何图形中的数列问题展开研究。 1. 曲线“生长”过程中有哪些数量特征可以研究? 边数、边长、周长、顶点数、尖角的个数、面积等变化规律。 2. 应用的知识与方法: (1)公式法(适合于等差、等比数列); (2)差项法; (3)观察、归纳、猜想、证明(数学归纳法) 例1、下列四个图形中,小三角形(小正方形)的个数依次构成一个数列的前四项,则这个数列的一个通项公式是什么? 例2、Cantor集—— Cantor在1883年构造了如下一类集合:取一段欧式长度为1的直线段,将该线段三等分,去掉中间的一段,剩下两段。再将剩下的两段分别三等分,各去掉中间的一段,剩下四段。将这个操作进行下去,直至无穷,可得到一个离散的点集,点数趋于无穷多,而长度趋于零。经无限次操作所得到的离散点集称为Cantor集。在这个操作中,可以形成哪些数列,并找出它们的通项公式。 例4、Koch雪花曲线 设等边三角形的边长为1,经过n次分形后,曲线的边数、边长、尖角、周长,依次构成如下数列。 曲线的边数由3开始增加,各边每次增加为4条边,以此类推,直至无穷;边长由1开始减少,后面的边长都是前面边长的三分?之一;尖角数等于边数加前一次的尖角数,由3开始递增;周长等于边数乘以边长,递增至无穷大。

分形几何与传统几何相比有什么特点

分形几何与传统几何相比有什么特点: ⑴从整体上看,分形几何图形是处处不规则的。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。 ⑵在不同尺度上,图形的规则性又是相同的。上述的海岸线和山川形状,从近距离观察,其局部形状又和整体形态相似,它们从整体到局部,都是自相似的。当然,也有一些分形几何图形,它们并不完全是自相似的。其中一些是用来描述一般随机现象的,还有一些是用来描述混沌和非线性系统的。曼德勃罗是想用此词来描述自然界中传统欧几里德几何学所不能描述的一大类复杂无规的几何对象。例如,弯弯曲曲的海岸线、起伏不平的山脉,粗糙不堪的断面,变幻无常的浮云,九曲回肠的河流,纵横交错的血管,令人眼花僚乱的满天繁星等。它们的特点是,极不规则或极不光滑。直观而粗略地说,这些对象都是分形。部分与整体以某种形式相似的形,称为分形。分形一般有以下特质: 在任意小的尺度上都能有精细的结构;太不规则,以至难以用传统欧氏几何的语言描述;(至少是大略或任意地)自相似豪斯多夫维数会大於拓扑维数(但在空间填充曲线如希尔伯特曲线中为例外);有著简单的递归定义。 (i)分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。 (ii)分形集不能用传统的几何语言来描述,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (iii)分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (iv)一般,分形集的“分形维数”,严格大于它相应的拓扑维数。 (v)在大多数令人感兴趣的情形下,分形集由非常简单的方法定义,可能以变换的迭代产生。分形的特点是整体与局部具有自相似特性,而全息则是整体的特征包含在局部之中,每一个局部都可以上升为相似性的整体,所以,分形可以看作是全息的一部分。 分形的自相似在概括分形的特性上似乎有局限性,但已经将分形具有的特征表达出来了。严格的说,这种自相似是一种层次化的自相似,而分形的概念就可以表达为:物体存在形式上的有序层次化的自相似特征。

分形几何中一些经典图形的Matlab画法

分形几何中一些经典图形的Ma tlab画法

————————————————————————————————作者: ————————————————————————————————日期:

分形几何中一些经典图形的Matlab画法 (1)Koch曲线程序koch.m functionkoch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中[A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n forj=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) holdon axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3; ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if(ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by];

数学分支之分形几何

数学分支之分形几何 普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。 分形几何的产生 客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。 客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特鞒ざ取;褂械氖挛锩挥刑卣鞒叨龋?捅匦胪?笨悸谴有〉酱蟮男硇矶喽喑叨龋ɑ蛘呓斜甓龋??饨 凶?SPANlang=EN-US“无标度性”的问题。 如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。

在二十世纪七十年代,法国数学家曼德尔勃罗特在他的著作中探讨了英国的海岸线有多长?这个问题这依赖于测量时 所使用的尺度。 如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。 数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。 这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。电子计算机图形显示协助了人们推开分形几何的大门。这座

分形拓扑几何学

欧几里德几何学、分形拓扑几何学与设计 经典几何学对自然界形体的描述是概括的,不近似的,不精确的。它把复杂的山型近似为圆锥,把复杂的树冠近似为圆锥,把复杂的人头近似为球形等等。然后以这些基本形(方、圆、锥、柱、环等)为基础,通过它们的叠加与组合,来描述更复杂的自然界形体。 这种描述在不需要精确的领域是可以接受的,如果要求被描述的形体足够精确,采用这种方法就不能很好的满足要求了。另外,对于一些非常复杂的形状,如云形,雪花等,这种方法显得力不从心。 为了能够对复杂的自然形体进行比较精确的描述,Mandelbrote提出了分形的概念。分形的方法可以对自然形体比经典几何学进行更精确的描述。这种描述是动态的,是建立在自然形体是自相似原理基础上的。当然,分形的描述也不是与自然形体100%的符合。任何描述都具有概括或抽象的概念。 比较经典几何学与分形,发祥它们对自然形体描述的差别在于:经典几何学是以静态的方式来描述形态,这种描述方法具有数据量大的特点;分形几何学是以动态、生成的方式来描述形态,这种方式具有可以根据要求来不断提高被描述形态的精确度,数据量比较小。 事实上,这两种对自然界形态描述的方式背后存在着基本观念的差异。经典几何学认为世界是构成的,因此可以将世界分解成很多基本

几何要素,然后根据一定的规律建构起来;分形几何学认为世界是生成的,复杂的世界形态是在时间的流逝中不断演化生成的。 建立在构成论的基础上的数学,是静态的描述数学;建立在生成论的基础上的数学,是动态的描述数学。 静态的数学中,没有时间变量;动态的数学中,存在时间变量,尽管有时它不是以时间的含义出现(比如迭代的次数,在本质上,就是时间变量)。 分形对形态的描述精度,是通过单位面积中留下的间隙或密度来衡量的。如果留下的间隙越小或密度越大,则描述的精确度越高。 经典几何学是通过距离来描述精确度的。距离越小,精确度越高。 在经典几何学下,艺术家创造形体的方式是描绘式的,不论是通过一点透视,还是通过多点透视的方法来画出的画面,本质上都是描述式的。不论再现式的绘画(以对自然的如实描写为主,通过具体的形象来表达艺术家内心的情感),还是表现式的绘画(不是以对自然的如实描写为主,而是以表现内心情感的为主,通过抽象的、随意的形象来表达),都是一种建构画面的表达方式。在分形几何学下,艺术家

分形几何中一些经典图形的Matlab画法

分形几何中一些经典图形的Matlab画法 (1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中[A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)] =sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3; ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by];

第6讲分形几何学

第6讲分形几何学 主要内容: 一、概述 二、分维的测定方法(重点内容) 三、分维应用实例(重点内容) 四、问题讨论 一、概述 分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。分形理论与动力系统的混沌理论交叉结合,相辅相成。分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。 1、基本概念 (1)整数维与分数维 “维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。 在拓朴学和欧几里得几何学中,维数只能是整数。如直线是一维的,平面是二维的,普通空间是三维的。如果在三维空间中引入直角坐标,就可用三个实数

(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。可见时空空间的维数也是整数。 然而,欧氏空间只是对现实空间的一个最简单的近似描述。正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。 例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。研究表明,凡是可用分数维描述的几何对象,都具有自相似性。 (2)自相似性与无标度区 所谓自相似性(self-similarity),是指事物或现象中局部与整体在形态、功能和信息等方面具有统计意义上的相似性。自然界中的许多客体,如云朵、山脉、海岸线、树、肺脏,甚至描述经济现象的图形,都具有“自相似性”,即局部与整体的形状相似,局部的局部也与整体相似。例如,一段用放大的比例尺画出来的海岸线与整条海岸线形状是相似的;一棵树干分为二支,每支又分为二支——这棵树的局部与整体的形状相似。事实上,地质体大多具有自相似性,一条断层可能以不同比例尺存在,而其外表却十分相像。因此,地质学家长期以来凭直觉认识到了这一基本事实,从而形成了一个不言而喻却是不可改变的原则,即任何地质体的照片必须附上一个比例尺参照物,在野外拍摄的地质照片中通常附上已知尺寸的某种普通物品,例如铅笔、地质锤或人体。 自然界事物自相似性只在一定尺度范围内才能出现,这个具有自相似性的范围叫做无标度区。在无标度区内,放大或缩小几何对象的尺寸,整个结构并不改变,即其形状与标度无关。在无标度区外,自相似现象不存在。

分形几何及其应用简介(精)

分形几何及其应用简介 课程号:06191280 课程名称:分形几何及其应用英文名称:Fractal Geometry and its Applications 周学时:3-0 学分:3 预修要求:实变函数,概率论 内容简介: 分形几何学是由法国数学家B.B.Mandelbrot在20世纪70 年代创立的。“分形(fractal)”一词,也是由他提出,它来源于拉丁语“fractus”,含有“不规则”或“破碎”之意。与描述规则形状的欧几里德几何不同,分形几何研究一类非规则的几何对象,并为研究这些对象提供了思想、方法、技巧等。作为应用,它可以构造从植物到星系的物理结构的精确模型,而这是传统几何无法做到的。可以说,分形几何是一种“新”的几何语言。 选用教材或参考书: 教材:《分形几何---数学基础与应用》,谢和平等编(重庆大学出版社) 参考书:K.J.Falconer, The Geometry of fractal sets, Cambridge Univ. Press, (1985) 《分形与图象压缩》,陈守吉等编(上海科技教育出版社)

《分形几何及其应用》教学大纲 一、课程的教学目的和基本要求 《分形几何及其应用》课程主要是面向数学系学生开设的一门选修课,总学时数为48,一个学期完成,学分3分。 通过本课程的教学,使学生掌握分形几何中的基本概念、基本方法并熟识基本理论;会应用基本理论考察自然现象的分形本质,计算分形维数,在图象压缩方面有初步的应用。 二、相关教学环节安排 1,每周布置作业,作业量2---3小时。 2,每章结束安排习题课,讲解习题。 三、课程主要内容及学时分配 每周3学时,上课时间共16周。 主要内容: (一)预备知识(3学时) 1,基本集合和测度理论 2,概率论知识 3,质量分布 (二)Hausdorff 测度与维数(6学时) 1,Hausdorff 测度 2,Hausdorff 维数 3,Hausdorff 维数计算的例子 4,Hausdorff 维数的等价定义 5,习题课 (三)维数的其他定义(6学时) 1,盒计数维数 2,盒计数维数的性质和问题 3,修正盒计数维数 4,另外一些维数定义 5,习题课 (四)维数计算方法(9学时) 1,基本方法 2,有限测度子集 3,位势理论方法 4,Fourier变换方法 5,习题课 (五)分形集的局部结构(6学时) 1,密度 2,1-集的结构 3,s-集的切线 4,习题课

相关文档
最新文档