现代控制理论实验指导书

现代控制理论实验指导书
现代控制理论实验指导书

实验1 用MATLAB 分析状态空间模型

1、实验设备

PC 计算机1台,MATLAB 软件1套。

2、实验目的

① 学习系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;

② 通过编程、上机调试,掌握系统状态空间表达式与传递函数相互转换方法。

3、实验原理说明

参考教材P56~59“2.7 用MA TLAB 分析状态空间模型”

4、实验步骤

① 根据所给系统的传递函数或A 、B 、C 矩阵,依据系统的传递函数阵和状态空间表达式之间的关系式,采用MATLAB 编程。

② 在MA TLAB 界面下调试程序,并检查是否运行正确。

题1.1 已知SISO 系统的传递函数为

243258()2639

s s g s s s s s ++=++++ (1)将其输入到MATLAB 工作空间;

(2)获得系统的状态空间模型。

题1.2 已知SISO 系统的状态空间表达式为

112233010100134326x x x x u x x ????????????????=+????????????????----????????,[]123100x y x x ????=??????

(1)将其输入到MATLAB 工作空间;

(2)求系统的传递函数。

实验2 利用MATLAB 求解系统的状态方程

1、实验设备

PC 计算机1台,MATLAB 软件1套。

2、实验目的

① 学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; ② 通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制状态响应曲线; ③ 掌握利用MATLAB 导出连续状态空间模型的离散化模型的方法。

3、实验原理说明

参考教材P99~101“3.8 利用MATLAB 求解系统的状态方程”

4、实验步骤

(1)根据所给系统的状态方程,依据系统状态方程的解的表达式,采用MA TLAB 编程。

(2)在MATLAB 界面下调试程序,并检查是否运行正确。

题2.1 已知SISO 系统的状态方程为

[]01323011x x u y x

????=+????--????=

(1)0u =,()101x ??=?

?-??,求当t =0.5时系统的矩阵系数及状态响应; a=[0 1;-2 -3];b=[3;0];

>> expm(a*0.5)

ans =

0.8452 0.2387

-0.4773 0.1292

(2)1()u t =,()000x ??=????

,绘制系统的状态响应及输出响应曲线;

(3)1cos3t

u e t -=+,()000x ??=????,绘制系统的状态响应及输出响应曲线;

(4)0u =,()102x ??

=????

,绘制系统的状态响应及输出响应曲线; (5)在余弦输入信号和初始状态()101x ??=????

下的状态响应曲线。

题2.2 已知一个连续系统的状态方程是 0102541x x u ????=+????--????

若取采样周期0.05T =秒

(1)试求相应的离散化状态空间模型;

(2)分析不同采样周期下,离散化状态空间模型的结果。

实验3 系统的能控性、能观测性分析

1、实验设备

PC 计算机1台,MA TLAB 软件1套。

2、实验目的

① 学习系统状态能控性、能观测性的定义及判别方法;

② 通过用MATLAB 编程、上机调试,掌握系统能控性、能观测性的判别方法,掌握将一般形式的状态空间描述变换成能控标准形、能观标准形。

3、实验原理说明

参考教材P117~118“4.2.4 利用MA TLAB 判定系统能控性”

P124~125“4.3.3 利用MA TLAB 判定系统能观测性”

4、实验步骤

① 根据系统的系数阵A 和输入阵B ,依据能控性判别式,对所给系统采用MA TLAB 编

程;在MA TLAB 界面下调试程序,并检查是否运行正确。

② 根据系统的系数阵A 和输出阵C ,依据能观性判别式,对所给系统采用MATLAB 编

程;在MA TLAB 界面下调试程序,并检查是否运行正确。

③ 构造变换阵,将一般形式的状态空间描述变换成能控标准形、能观标准形。 题3.1 已知系数阵A 和输入阵B 分别如下,判断系统的状态能控性

??????????--=2101013333.06667.10666.6A , ????

??????=110B A=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];

>> B=[0;1;1];

>> uc=[B,A*B,A^2*B];

>> rank(uc)

ans =

3

rank (uc )=3 可控

题3.2 已知系数阵A 和输出阵C 分别如下,判断系统的状态能观性。

????

??????--=2101013333.06667.10666.6A , []201=C a=[6.666,-10.6667,-0.3333;1,0,1;0,1,2];

>> c=[1,0,2];

>> uc=[c;c*a;c*a^2];

>> rank(uc)

ans =

3

rank(uc)=3 可观

题3.3 已知系统状态空间描述如下

[]0

2115

1202

001110x x u y x

-????????=+????????--????=

(1) 判断系统的状态能控性;

(2)判断系统的状态能观测性;

(3)构造变换阵,将其变换成能控标准形;

(4)构造变换阵,将其变换成能观测标准形;

实验4 系统稳定性分析

1、实验设备

PC 计算机1台,MA TLAB 软件1套。

2、实验目的

① 学习系统稳定性的定义及李雅普诺夫稳定性定理;

② 通过用MA TLAB 编程、上机调试,掌握系统稳定性的判别方法。

3、实验原理说明

参考教材P178~181“5.3.4 利用MA TLAB 进行稳定性分析”

4、实验步骤

(1)掌握利用李雅普诺夫第一方法判断系统稳定性;

(2)掌握利用李雅普诺夫第二方法判断系统稳定性。

题4.1 某系统状态空间描述如下

[]0

2115

1202

001110x x u y x

-????????=+????????--????= (1) 利用李雅普诺夫第一方法判断其稳定性;

A=[0 2 -1;5 1 2;-2 0 0];

B=[1;0;-1];

C=[1 1 0];

D=[0];

flag=0;

[z,p,k]=ss2zp(A,B,C,D,1);

disp('system zero-points,pole-points and gain are:');

z

p

k

n=length(A);

for i=1:n

if real(p(i))>0

flag=1;

end

end

if flag==1

disp('system is unstable');

else

disp('system is stable');

end

wdx1

system zero-points,pole-points and gain are:

z =

1.0000

-4.0000

p =

-3.3978

3.5745

0.8234

k =

1

system is unstable

(2)利用李雅普诺夫第二方法判断其稳定性。

A=[0 2 -1;5 1 2;-2 0 0];

%Q=I

Q=eye(3,3);

p=lyap(A,Q);

flag=0;

n=length(A);

for i=1:n

det(p(1:i,1:i))

if(det(p(1:i,1:i))<=0)

flag=1;

end

end

if flag==1

disp('system is unstable');

else

disp('system is stable');

end

wdx2

ans =

-2.1250

ans =

-8.7812

ans =

6.1719

system is unstable

实验5 利用MATLAB 实现极点配置、设计状态观测器

1、实验设备

PC 计算机1台,MA TLAB 软件1套。

2、实验目的

① 学习闭环系统极点配置定理及算法,学习全维状态观测器设计方法;

② 通过用MA TLAB 编程、上机调试,掌握极点配置算法,设计全维状态观测器。

3、实验原理说明

参考教材P204~207 “6.2.5 利用MATLAB 实现极点配置”

P227~230 “6.4.4 利用MATLAB 设计状态观测器”

4、实验步骤

(1)掌握采用直接计算法、采用Ackermann 公式计算法、调用place 函数法分别进行闭环系统极点配置;

(2)掌握利用MA TLAB 设计全维状态观测器。

题5.1 某系统状态方程如下

[]0

1010

0134

326100x x u y x

????????=+????????----????= 理想闭环系统的极点为[]12

3---,试 采用直接计算法进行闭环系统极点配置;

A=[0 1 0;0 0 1;-4 -3 -2];

B=[1;3;6];

p=[-1 -2 -3]; syms k1 k2 k3 s ;

K=[k1 k2 k3];

eg=simple(det(s*diag(diag(ones((size(A)))))-A+B*K))

f=1;

for i=1:3

f=simple(f*(s-p(i)));

end

f=f-eg;

[k1,k2,k3]=solve(subs(f,'s',0),subs((diff(f,'s')),'s'

,0),diff(f,'s',2))

zjf

eg =

s^3+(k1+2+3*k2+6*k3)*s^2+(3-13*k3+12*k2+5*k1)*s+4+15*k1-4*k2-12*k3

k1 =

910/1801

k2 =

1270/1801

k3 =

414/1801

>>

(1)采用Ackermann公式计算法进行闭环系统极点配置;

A=[0 1 0;0 0 1;-4 -3 -2];

B=[1;3;6];

p=[-1 -2 -3];

K=acker(A,B,p)

A-B*K

K=

K =

0.5053 0.7052 0.2299

ans =

-0.5053 0.2948 -0.2299

-1.5158 -2.1155 0.3104

-7.0316 -7.2310 -3.3792

(3)采用调用place函数法进行闭环系统极点配置。A=[0 1 0;0 0 1;-4 -3 -2];

B=[1;3;6];

eig(A)

p=[-1;-2;-3];

K=place(A,B,p)

eig(A-B*K)

A=[0 1 0;0 0 1;-4 -3 -2];

B=[1;3;6];

eig(A)

p=[-1;-2;-3];

K=place(A,B,p)

eig(A-B*K)

ans =

-1.6506

-0.1747 + 1.5469i

-0.1747 - 1.5469i

K =

0.5053 0.7052 0.2299

ans =

-1.0000

-2.0000

-3.0000

>>

状态空间

[]0

1010

0134

326100x x u y x

????????=+????????----????= 设计全维状态观测器,要求状态观测器的极点为[]123---。

a=[0 1 0;0 0 1;-4 -3 -2];

b=[1;3;6];

c=[1 0 0];

p1=[-1 -2 -3];

a1=a;

b1=c;

c1=b;

K=acker(a1,b1,p1);

h=(K)

ahc=a-h*c

说明:上机实验共两次,第一次完成实验一到实验三,第二次完成实验四、实验五。要求按时参加实验,不迟到、不早退,爱护实验室设备,实验完成需关好计算机后方可离开。实验报告需有源程序、有相关运行曲线,双面打印交任课老师。

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

现代控制理论基础考试题A卷及答案

即 112442k g k f M L M ML θθθ??=-+++ ??? && 212 44k k g M M L θθθ??=-+ ??? && (2)定义状态变量 11x θ=,21x θ=&,32 x θ=,42x θ=& 则 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211 cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?-&& 对右边的质量块,有 ()221222 sin sin cos sin 22 L L ML k MgL θθθθθ=?-?-&& 在位移足够小的条件下,近似写成: ()1121 24f kL ML Mg θθθθ=---&& ()2122 4kL ML Mg θθθθ=--&&

2 / 7 1221 334413 44244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? &&&& 或写成 11 223 34401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ???????????=+???? ????? ??????????????????? ????-+?? ? ? ?????? ? &&&& 二.(本题满分10分) 设一个线性定常系统的状态方程为=x Ax &,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得 2212211t t t t t e e e e e ----????=????----?? ??A 求得状态转移矩阵为 1 22221212221111t t t t t t t t t e e e e e e e e e -----------?????? ?? ==????????------???? ????A 22222222t t t t t t t t e e e e e e e e --------?? -+-+=??--??

电脑DIY实验指导书

电脑DIY实验指导书 《电脑DIY》实验指导书 实验一了解计算机的组成3-13 一、实验目的 1、观察计算机系统的组成; 2、通过观察了解计算机系统中各个部件的连接方法; 3、了解各部件在系统中的作用。 二、实验前的准备工作 认真阅读本实验内容,准备打开主机箱的工具并按要求准备做好记录。 三、实验指导 在实验过程中要注意观察,并做好观察记录。 四、实验内容 1、观察系统外部设备的连接状况,记录各外设的名称、型号和与主机连接点情况; 2、在教师的指导下将外设去掉,用准备好的工具将主机箱打开; 3、观察主机的结构,记录主机箱内包含的部件的名称、规格等,如图所示:

电脑DIY 实验指导书 4、了解各部件的作用,看清楚部件的安装位置; 5、将主机箱安装好,并把外设连接好; 6、整理好使用过的用品,实验结束。 五、实验报告要求 1、将在实验过程中观察到的部件或设备按顺序记录在实验报告单上; 2、将你认为没有看明白的部分写出来。 这一次实验认识了计算机的组成,了解了cpu 、主板、内存的分类,认识了主板的南北桥芯片的作用和位置,知道了在以后购买时候应当注意的内容,知道如何选择硬件。了解了各个部位的主要硬件指标。

电脑DIY实验指导书 实验二计算机硬件的组装3-24 一、实验目的 1、在识别各个部件和板卡的基础上,将它们组装在一起; 2、通过对计算机系统的组装,进一步熟悉各部件的功能; 3、掌握安装和拆卸计算机部件的方法与注意事项。 二、实验前的准备工作 准备好必要的工具,认真阅读各部件的使用说明书,并按要求准备做好记录。 三、实验指导 在实验过程中要按安装步骤进行安装,找准各部件的安装位置,注意在拆装的过程中要用力均匀,防止损坏设备。 四、实验内容 1、按要求做好准备工作; 2、可将主板放置在绝缘泡沫板上; 3、将CPU、内存条和CPU风扇等安装在主板上; 4、将主板装入主机箱,拧紧主板的固定螺丝; 5、把电源固定在机箱的相应位置,并接好主板电源线; 6、安装显卡、声卡等内置板卡,并设置好主板跳线; 7、安装好硬盘、软驱和光驱等部件; 8、检查并确认安装正确无误; 9、连接好显示器、键盘和鼠标后可开机试验; 10、能正常启动后,请关机、断电并按相反顺序将各部件拆卸开放回原来位置。

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

硬件基础实验指导书与答案

《计算机硬件基础》课程实验指导书 辽宁工程技术大学软件学院 2017年5月

目录 64位操作系统下使用MASM (3) 实验上机操作范例 (5) 实验一CPU结构 (15) 实验二指令格式 (22) //实验三循环程序设计 (25) 实验四综合程序设计(一) (32) 实验五综合程序设计(二) (36) 实验六高级汇编技术 (42)

64位操作系统下使用MASM 1.安装DOSBox。双击DOSBox0.74-win32-installer.exe。 2.运行DOSBox。双击桌面的DOSBox快捷方式,如图1所示。 图1 运行DOSBOX虚拟机 3.将MASM文件夹里的全部文件拷贝到一个目录下,比如d:\masm下,然后将这个目录挂载为DOSBox的一个盘符下,挂载命令为Mount c d:\masm 。然后切换到挂载的c盘,如图2所示。

图2 挂载masm文件夹3.编译汇编源程序,如图3所示。 图3 汇编源程序4.连接和运行源程序,如图4所示。 图4连接和运行源程序

实验上机操作范例 【范例】完成具有如下功能的分段函数 1 X>0 Y = 0 X=0 -1 X<0 其中:X存放在内存单元中,Y为结果单元。【问题分析】根据题意画出程序流程图,如图1所示。 图1 分段函数的程序流程图 根据程序流程图编写如下程序 DSEG SEGMENT X DW ? Y DW ? DSEG ENDS CSEG SEGMENT ASSUME CS: CSEG, DS: DSEG

START:MOV AX, DSEG MOV DS, AX LEA SI, X MOV AX, [SI] AND AX, AX JNS LP1 MOV Y, 0FFH ; X<0 JMP END1 LP1: JNZ LP2 MOV Y, 00H JMP END1 LP2: MOV Y, 01H END1: MOV AH, 4CH INT 21H CSEG ENDS END START 汇编语言程序的开发分为以下4个部分:编辑(生成.asm文件)—→汇编(生成.obj文件)—→连接(生成.exe文件)—→调试。 下面介绍汇编语言源程序从编辑到生成一个可执行文件(.exe文件)的过程。利用Microsoft公司提供的MASM6.15版本的工具包(包括MASM.EXE、LINK.EXE、ML.EXE、DEBUG32.EXE等),如图2所示。

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系 Uab Ucd

现代控制理论基础试卷及答案.doc

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T 为周期进行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为 __________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义 能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函

数的所有极点具有______。 9. 控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。 10. 所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的 系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11. 实际的物理系统中,控制向量总是受到限制的,只能在r 维控 制空间中某一个控制域内取值,这个控制域称为_______。 12. _________和_________是两个相并行的求解最优控制问题的 重要方法。 二. 判断题(共20分,每空2分) 1. 一个系统,状态变量的数目和选取都是惟一的。 (×) 2. 传递函数矩阵的描述与状态变量选择无关。 (√) 3. 状态方程是矩阵代数方程,输出方程是矩阵微分方程。 (×) 4. 对于任意的初始状态)(0t x 和输入向量)(t u ,系统状态方程的解存在并且 惟 一 。 (√) 5. 传递函数矩阵也能描述系统方程中能控不能观测部分的特性。 (×)

计算机组成原理实验指导书

计算机组成原理 实验报告 学号: 姓名: 提交日期: 成绩: 计算机组成原理实验报告 Computer Organization Lab Reports ______________________________________________________________________________ 班级: ____ 姓名:____学号:_____ 实验日期:____

一.实验目的 1. 熟悉Dais-CMX16+达爱思教仪的各部分功能和使用方法。 2. 掌握十六位机字与字节运算的数据传输格式,验证运算功能发生器及进位控制的组合功能。了解运算器的工作原理。 3. 完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。 ______________________________________________________________________________二.实验环境 Dais-CMX16+达爱思教仪 ______________________________________________________________________________三.实验原理 实验中所用的运算器数据通路如图1-1所示。ALU运算器由CPLD描述。运算器的输出经过2片74LS245三态门与数据总线相连,2个运算寄存器AX、BX的数据输入端分别由4个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。 图1-1 运算器数据通路 图1-1中,AXW、BXW在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW写入操作。 表1-1 ALU运算器编码表 算术运算逻辑运算 M M13 M12 M11 功能M M13 M12 M11 功能 M S2 S1 S0 M S2 S1 S0 0 0 0 0 A+B+C 1 0 0 0 读B 0 0 0 1 A—B —C 1 0 0 1 非A 0 0 1 0 RLC 1 0 1 0 A-1

计算机硬件实验指导书模板

第一部分EL实验系统的结构 EL-l微机实验教学系统由功能实验板、可选的CPU板、二块小面包板三部分构成, 可安装在45*30*10cm的实验箱内。总框图如下: 面包板: 1)通用面包板 2)金属圆孔组成的通用实验板 CPU板: 1)8086 PC总线板 2)8086 CPU板 3)8051 CPU板 4)8098 CPU板 5)80C198 CPU板 功能实验板: 由若干相对独立的功能接口电路组成, 它们是: D/A电路、A/D电路、发光二极管电路、开关量输入电路、RAM/ROM电路、简单I/O电路、8253可编程定时器/计数器电路、8255并行接口电路、总线驱动电路、8279接口电路、单脉冲发生器、LED显示电路、键盘电路、复位电路、8250串行接口电路。 ( 一) 功能实验板结构

1、输出显示电路 1)数码显示电路。 该电路由6位共阴极数码管, 3片75452, 2片74SL07组成, 74LS07为段驱动器, 相应输入插孔为CZ4。75452为位驱动器, 相应输入插控为CZ3(LD1, LD2, LD3, LD4, LD5, LD6)。 2)LED灯显示电路。 该电路由2片74LS04, 12只发光二极管( 红、绿、黄各4只) 组成。12只二极管相应的输人插孔为CZ2(LI1, LI2, LI3, LI4, LI5, LI6, LI7, LI8, LI9, LI10, LIl1, LIl2) 2、信号发生电路 1)开关量输入电路: 该电路由8只开关组成, 每只开关有两个位置, 一个位置代表高电平, 一个位置代表低电平。该电路的输出插孔为CZl(Kl, K2, K3, K4, K5, K6, K7, K8)。 2)时钟输入电路: 该电路由1片74LSl6l组成: ·当CPU为PC总线时, 输入时钟为AT总线的CLK, ·当CPU为805l、8098、80C198时, CLK的输入时钟为晶振频率, ·当CPU为8086时, CLK是2MHz。 输出时钟为该CLK的2分频(CLK0), 4分频(CLKI), 8分频(CLK2), 16分频(CLK3), 相应输出插孔CZ47(CLK0, CLKl, CLK2,

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

计算机组成原理实验指导书

计算机组成原理实验指导书适用TD-CMA实验设备

实验一基本运算器实验 一、实验原理 运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0 CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。ALU中所有模块集成在一片CPLD中。 逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即: (1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。 (2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。 (3) 对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。使用另外的逻辑进行移位总量译码和符号判别。 原理如图1-1-1所示

图1-1-1 运算器原理图 运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0 决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。如果是算术运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。ALU中所有模块集成在一片CPLD(MAXII EPM240)中。 逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 312 11111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

计算机组成原理实验指导书

计算机组成原理 实 验 指 导 书 软件学院 2015.9

实验报告要求 一、该实验为计算机组成原理课程的仿真训练项目,包括实验1-5,每个实验6分,共30分,计入最终考核成绩。 二、每人每个实验写一份实验报告。要求在熟悉仿真软件和相关理论知识的基础上,按照实验步骤,认真观察实验结果数据,做好记录或截图,并对结果进行分析,最后总结实验中遇到的问题和解决方法,写出实验心得体会。 三、每个实验应在相对应的理论知识讲授完毕后进行,实验完成后以答辩形式组织考核打分。实验报告需要同时上交电子版和A4纸打印版,封面参考附件。

附件 计算机组成原理 实验报告 学院(系): 专业: 班级: 学号: 姓名: 年月日

实验1 Cache模拟器的实现 一.实验目的 (1)加深对Cache的基本概念、基本组织结构以及基本工作原理的理解。 (2)掌握Cache容量、相联度、块大小对Cache性能的影响。 (3)掌握降低Cache不命中率的各种方法以及这些方法对提高Cache性能的好处。 (4)理解LRU与随机法的基本思想以及它们对Cache性能的影响。 二、实验内容和步骤 1、启动CacheSim。 2、根据课本上的相关知识,进一步熟悉Cache的概念和工作机制。 3、依次输入以下参数:Cache容量、块容量、映射方式、替换策略和写策略。 4、读取cache-traces.zip中的trace文件。 5、运行程序,观察cache的访问次数、读/写次数、平均命中率、读/写命中率。思考:1、Cache的命中率与其容量大小有何关系? 2、Cache块大小对不命中率有何影响? 3、替换算法和相联度大小对不命中率有何影响? 三.实验结果分析 四.实验心得

现代控制理论实验报告3

实验三 利用MATLAB 导出连续状态空间模型的离散化模型 实验目的: 1、基于对象的一个连续时间状态空间模型,导出其相应的离散化状态空间模型; 2、通过编程、上机调试,掌握离散系统运动分析方法。 实验原理: 给定一个连续时间系统的状态空间模型: ()()()()()() x t Ax t Bu t y t Cx t Du t =+=+ (3.1) 状态空间模型(3.1)的输入信号()u t 具有以下特性: ()(),u t u kT kT t kT T =≤≤+ (3.2) 已知第k 个采样时刻的状态()x kT 和第k 个采样时刻到第1k +个采样时刻间的输入()()u t u kT =,可得第1k +个采样时刻(1)k T +处的状态 (1)((1))((1))()((1))()k T kT x k T k T kT x kT k T Bu d τττ++=Φ+-+Φ+-? (3.3) 其中: ((1))((1))A k T kT AT k T kT e e +-Φ+-== ((1))((1))A k T k T e ττ+-Φ+-= 由于输入信号在两个采样时刻之间都取常值,故对式(3.3)中的积分式进行一个时间变量替换(1)k T στ=+-后,可得 0((1))()()()AT A x k T e x kT e d Bu kT τ σσ+=+? (3.4) 另一方面,以周期T 对输出方程进行采样,得到 ()()()y kT Cx kT Du kT =+ 在周期采样的情况下,用k 来表示第k 个采样时刻kT 。因此,连续时间状态空间模型

(3.1)的离散化方程可以写成 (1)()()()()()()() x k G T x k H T u k y k Cx k Du k +=+=+ (3.5) 其中: 0()()()AT A G T e H T e d B τσσ==? (3.6) 已知系统的连续时间状态空间模型,MATLAB 提供了计算离散化状态空间模型中状态矩阵和输入矩阵的函数: [G ,H]=c2d(A,B,T) 其中的T 是离散化模型的采样周期。 实验步骤 1、导出连续状态空间模型的离散化模型,采用MA TLAB 的m-文件编程; 2、在MA TLAB 界面下调试程序,并检查是否运行正确。 例3.1 已知一个连续系统的状态方程是 010()()()2541x t x t u t ????=+????--???? 若取采样周期0.05T =秒,试求相应的离散化状态空间模型。 编写和执行以下的m-文件: A=[0 1;-25 –4]; B=[0;1]; [G ,H]=c2d(A,B,0.05) 得到 G= 0.9709 0.0448 -1.1212 0.7915 H= 0.0012 0.0448 因此,所求的离散化状态空间模型是 0.97090.04480.0012(1)()()1.12120.79150.0448x k x k u k ????+=+????-????

现代控制理论实验报告

现代控制理论实验报告 组员: 院系:信息工程学院 专业: 指导老师: 年月日

实验1 系统的传递函数阵和状态空间表达式的转换 [实验要求] 应用MATLAB 对系统仿照[例]编程,求系统的A 、B 、C 、阵;然后再仿照[例]进行验证。并写出实验报告。 [实验目的] 1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容] 1 设系统的模型如式示。 p m n R y R u R x D Cx y Bu Ax x ∈∈∈?? ?+=+=& 其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式示。 D B A SI C s den s num s G +-== -1)() () (()( 式中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤 ① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式,采用MATLA 的编程。注意:ss2tf 和tf2ss 是互为逆转换的指令; ② 在MATLA 界面下调试程序,并检查是否运行正确。 ③ [] 已知SISO 系统的状态空间表达式为,求系统的传递函数。

, 2010050010000100001 0432143 21u x x x x x x x x ? ? ??? ? ??????-+????????????????????????-=????????????&&&&[]??? ? ? ???????=43210001x x x x y 程序: A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0; [num,den]=ss2tf(A,B,C,D,1) 程序运行结果: num = 0 den = 0 0 0 从程序运行结果得到:系统的传递函数为: 2 4253 )(s s s S G --= ④ [] 从系统的传递函数式求状态空间表达式。 程序: num =[0 0 1 0 -3]; den =[1 0 -5 0 0]; [A,B,C,D]=tf2ss(num,den) 程序运行结果: A = 0 5 0 0 1 0 0 0 0 1 0 0

利用MATLAB设计状态观测器—现代控制理论实验报告

实验六利用MATLAB设计状态观测器 ******* 学号 1121*****

实验目的: 1、学习观测器设计算法; 2、通过编程、上机调试,掌握基于观测器的输出反馈控制系统设计方法。 实验原理: 1、全阶观测器模型: () ()x Ax Bu L y Cx A LC x Bu Ly =++-=-++ 由极点配置和观测器设计问题的对偶关系,也可以应用MATLAB 中极点配置的函数来确定所需要的观测器增益矩阵。例如,对于单输入单输出系统,观测器的增益矩阵可以由函数 L=(acker(A ’,C ’,V))’ 得到。其中的V 是由期望的观测器极点所构成的向量。类似的,也可以用 L=(place(A ’,C ’,V))’ 来确定一般系统的观测器矩阵,但这里要求V 不包含相同的极点。 2、降阶观测器模型: ???w Aw By Fu =++ b x w Ly =+ 基于降阶观测器的输出反馈控制器是: ????()[()]()b a b b a b w A FK w B F K K L y u K w K K L y =-+-+=--+ 对于降阶观测器的设计,使用MATLAB 软件中的函数 L=(acker(Abb’,Aab’,V))’ 或 L=(place(Abb’,Aab’,V))’ 可以得到观测器的增益矩阵L 。其中的V 是由降阶观测器的期望极点所组成的向量。 实验要求 1.在运行以上例程序的基础上,考虑图6.3所示的调节器系统,试针对被控对象设计基于全阶观测器和降 阶观测器的输出反馈控制器。设极点配置部分希望的闭环极点是1,22j λ=-± (a ) 对于全阶观测器,1 8μ=-和 28μ=-; (b ) 对于降阶观测器,8μ=-。 比较系统对下列指定初始条件的响应: (a ) 对于全阶观测器: 1212(0)1,(0)0,(0)1,(0)0x x e e ==== (b ) 对于降阶观测器: 121(0)1,(0)0,(0)1x x e === 进一步比较两个系统的带宽。

计算机网络实验指导书(6个实验)

实验一交换机的基本配置 一.实验原理 1.1以太网交换机基础 以太网的最初形态就是在一段同轴电缆上连接多台计算机,所有计算机都共享这段电缆。所以每当某台计算机占有电缆时,其他计算机都只能等待。这种传统的共享以太网极大的受到计算机数量的影响。为了解决上述问题,我们可以做到的是减少冲突域类的主机数量,这就是以太网交换机采用的有效措施。 以太网交换机在数据链路层进行数据转发时需要确认数据帧应该发送到哪一端口,而不是简单的向所有端口转发,这就是交换机MAC地址表的功能。 以太网交换机包含很多重要的硬件组成部分:业务接口、主板、CPU内存、Flash、电源系统。以太网交换机 的软件主要包括引导程序和核心操作系统两部分。 1.2以太网交换机配置方式 以太网交换机的配置方式很多,如本地Console 口配置,Telnet远程登陆配置,FTP TFTP配置和哑终端方式 配置。其中最为常用的配置方式就是Console 口配置和Telnet远程配置。 1.3以太网交换机基本配置方法 1.3.1交换机的用户界面交换机有以下几个常见命令视图: (1)用户视图:交换机开机直接进入用户视图,此时交换机在超级终端的标识符为。 (2)系统视图:在用户视图下输入实system-view命令后回车,即进入系统视图。在此视图下交换机的标识符 为:。](3)以太网端口视图:在系统视图下输入interface命令即可进入以太网端口视图。在此视图下交换 机的标识符为:。 (4)VLAN配置视图:在系统视图下输入vlan vlan —number即可进入VLAN配置视图。在此视图下交换机的标识符为:。 (5)VTY用户界面视图:在系统视图下输入user-interface vty number 即可进入VTY用户界面视图。在此视图下交 换机的标识符为:。 进行配置时,需要注意配置视图的变化,特定的命令只能在特定的配置视图下进行。 1.3.2交换机的常用帮助在使用命令进行配置的时候,可以借助交换机提供的帮助功能快速完成命令的查找和配置。 (1)完全帮助:在任何视图下,输入?”获取该视图下的所有命令及其简单描述。 (2)部分帮助:输入一命令,后接以空格分隔的?”,如果该位置为关键字,则列岀全部关键字及其描述;如果该位置为参数,则列岀有关的参数描述。 在部分帮助里面,还有其他形式的帮助,如键入一字符串其后紧接?”,交换机将列岀所有以该字符串开头的命令; 或者键入一命令后接一字符串,紧接?”,列岀命令以该字府串开头的所有关键字。 实验内容:交换机配置方法

相关文档
最新文档