多项式差值方法上机习题报告

多项式差值方法上机习题报告
多项式差值方法上机习题报告

计算方法多项式插值方法上机习题报告

(一)问题:

对Runge函数R(x)=1

1+x

,x∈[-5,5],利用下列条件做插值逼近,并与R(x)的图像进行比较.

(1)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的10次Newton插值多项式的图像;

(2)用节点x i= 5cos(2i+1

42

π), i=0, 1, 2,…,20,绘出它的20次Lagrange插值多项式的图像;

(3)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的分段线性插值函数图像;

(4)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的分段三次Hermite插值函数的图像;

(5)用等距节点x i= -5 + i, i=0, 1, 2,…,10,绘出它的三次自然样条插值函数的图像。(二)解决问题的算法

由于问题中已经明确了被插函数(Runge函数)及所用的插值方法,所以下面简单介绍一下各插值方法。

(1)Newton插值方法

对于被插函数,选取插值点(x1,f x1),…,(x n,f(x n)).

定义k阶插商(k≥1)为:

f x i,x i+1,…,x i+k=f x i+1,x i+2,…,x i+k?f x i,x i+1,…,x i+k?1

i+k i

.

此外,规定f(x)在节点x j上的0阶插商为f[x j]=f(x j).

定义函数:

ωn (x)=(x-x0)(x-x1)…(x-x n).

则牛顿插值多项式为:

N n(x)=f[x0]+f[x0,x1]ω0 (x)+…+f[x0,x1,…,x n]ωn-1 (x).

在具体的计算机实现过程中,可以使用一个二维数组,使得角标为(i, j)(i≤j+1)的位置存储f[x i-1,…,x j],从而得到牛顿插值多项式.

(2)Lagrange插值方法

对于被插函数,选取n+1个插值节点并求出其函数值:(x0,f x0),…,(x n,f(x n)).

定义:

l i x=

x?x0…x?x i?1x?x i+1……(x?x n) x i?x0…x i?x i?1x i?x i+1……(x i?x n)

.

则拉格朗日插值多项式为:

p(x)=f x i?l i(x)

n

i=1

(3)分段线性插值方法

过被插函数上若干点(即插值点)做一条折线以近似一条曲线,就可以得到使用分段线性插值方法得到的插值曲线。其实现方式最为简单,不做过多介绍(即具体的函数形式不在此列出).

(4)分段三次Hermite插值方法

设选取n+1个插值节点:x0,x1,…,x n,记被插函数f(x)在这些点的函数值与导数值

分别为y i,m i. 定义:

α0x=αL x;x0,x1,x?x0,x1, 0, x?x1,x n,

β0x=βL x;x0,x1,x?x0,x1, 0, x?x1,x n,

αi x αR x;x i?1,x i,x?x i?1,x i,

αL x;x i,x i+1,x?x i,x i+1,

0, x?x i?1,x i+1,

1≤i≤n?1

βi x

βR x;x i?1,x i,x?x i?1,x i,

βL x;x i,x i+1,x?x i,x i+1,

0, x?x i?1,x i+1,

1≤i≤n?1αn x=

0, x?[x0,x n?1]

αR x;x n?1,x n,x?[x n?1,x n]

βn x=

0, x?[x0,x n?1]

βR x;x n?1,x n,x?[x n?1,x n]

其中:

αL x;a,b=1+2x?a

b?a

x?b

a?b

2

,

αR x;a,b=1+2x?a

a?b

x?a

b?a

2

,

βL x;a,b=x?a x?b2

,

βR x;a,b=x?b x?a2

.

则分段三次多项式可写为:

H?x= y iαi x+m iβi x.

n

i=0

使用三次Hermite插值方法,可以克服线性插值函数不光滑的缺点。

(5)三次自然样条插值方法

设选取n+1个插值节点:x0,x1,…,x n,记被插函数f(x)在这些点的函数值与导数值分别为y i,m i.(注:此时m i为未知量)设?i=x i+1?x i.

设:

λ0=1,λi=

?i?1

i?1i

,λn=0

μ0=3(y1?y0)

?0

,μi=3

1?λi

?i?1

y i?y i?1+

λi

?i

y i+1?y i,μn=

3(y n?y n?1)

?n?1

在自然边界条件下,可以得到关于m i的封闭的线性代数方程组:

2λ00 1?λ12λ1?00

00

???

00 00?

1?λn?12λn?1

01?λn2

m0

m1

m2

?

m n?1

m n

=

μ0

μ1

μ2

?

μn?1

μn

这个方程组可以用追赶法快速求解,从而求出m i.

利用分段三次Hermite函数插值的基函数αi x和βi x,可以得到样条插值法得到

的插值多项式:

n

S?x= y iαi x+m iβi x.

i=0

三次样条插值也是一种分段三次多项式插值,它在每个插值节点处比分段三次

Hermite插值函数更光滑,具有二阶连续导数,而且不需要被插函数f(x)在节点的

导数的信息。

(三)使用的软件

IDL

(四)数值结果

(1)10次Newton插值多项式的图像(等距节点x i= -5 + i, i=0, 1, 2,…,10)与R(x)函数图像的比较

π), i=0, 1, 2,…,20)与R(x)(2)20次Lagrange插值多项式的图像(节点x i= 5cos(2i+1

42

函数图像的比较

(3)分段线性插值函数图像(等距节点x i= -5 + i, i=0, 1, 2,…,10)与R(x)函数图像的比较

(4)分段三次Hermite插值函数的图像(等距节点x i= -5 + i, i=0, 1, 2,…,10)与R(x)函数图像的比较

(5)三次自然样条插值函数(等距节点x i= -5 + i, i=0, 1, 2,…,10)与R(x)函数图像的比较

(五)数值结果分析

1、使用等距节点对Runge函数进行Newton插值,随着插值节点的增多,生成的插值函数L n(x)在[-5, 5]区间的两端点附近偏差迅速增大;而且因为多项式次数较高(10次),函数的稳定性也很差。

2、与使用等距节点对Runge函数进行Newton插值生成的插值函数L n(x)(下图左)与被插函数的最大偏差相比,使用非等距节点对Runge函数进行Lagrange插值生成的插值函数R n(x)(下图右)与被插函数的最大偏差要小很多!考虑到在插值节点相同时,L n(x)≈R n(x);而在本例中R n(x)是20次多项式,L n(x)只是10次多项式。由此可见:插值点的选取是否得当对插值多项式的逼近效果好坏有很大的影响。

等距插值节点的newton 插值与非等距插值节点的Lagrange 插值比较图

3、为了避免Runge 现象,使用分段低阶多项式确实是一项很有利的手段。随着插值节点的增多,分段线性插值函数和相对误差将会越来越小,不过分段线性插值函数的缺点之一是函数不够连续。

4、使用两点三次Hermite 插值方法得到的曲线、三次自然样条插值函数得到的曲线与原函数曲线几乎重合,可见其插值效果的优良性。图中三次自然样条插值函数的误差较两点三次Hermite 插值方法稍稍大一些的可能原因有:三次自然样条插值时解矩阵方程会引入更大的误差;选取的插值节点比较少。

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

计算方法上机实验报告

. / 《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求在附近的数 值解,并使其满足. 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交

点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x 的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果:

最优化实验报告

最优化方法 课程设计报告班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日

目录 一、摘要 (1) 二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (4) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (11) 三、最速下降法 (11) 3.1 最速下降法的基本思路 (11) 3.2 算法流程图 (13) 3.3 用matlab编写源程序 (13) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (17) 4.1 惩罚函数法的基本思路 (17) 4.2 算法流程图 (18) 4.3 用matlab编写源程序 (18) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (20) 六、参考文献 (20)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

西安交通大学计算方法B上机报告

计算方法上机报告

姓名: 学号: 班级:能动上课班级:

题目及求解: 一、对以下和式计算: ∑ ∞ ? ?? ??+-+-+-+=0681581482184161n n n n S n ,要求: ① 若只需保留11个有效数字,该如何进行计算; ② 若要保留30个有效数字,则又将如何进行计算; 1 算法思想 (1)根据精度要求估计所加的项数,可以使用后验误差估计,通项为: 1421114 16818485861681 n n n a n n n n n ε??= ---<< ?+++++??; (2)为了保证计算结果的准确性,写程序时,从后向前计算; (3)使用Matlab 时,可以使用以下函数控制位数: digits(位数)或vpa(变量,精度为数) 2 算法结构 ;0=s ?? ? ??+-+-+-+= 681581482184161n n n n t n ; for 0,1,2,,n i =??? if 10m t -≤ end; for ,1,2,,0n i i i =--??? ;s s t =+ 3 Matlab 源程序 clear; %清除工作空间变量 clc; %清除命令窗口命令 m=input('请输入有效数字的位数m='); %输入有效数字的位数 s=0;

for n=0:50 t=(1/16^n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)); if t<=10^(-m) %判断通项与精度的关系break; end end; fprintf('需要将n值加到n=%d\n',n-1); %需要将n值加到的数值 for i=n-1:-1:0 t=(1/16^i)*(4/(8*i+1)-2/(8*i+4)-1/(8*i+5)-1/(8*i+6)); s=s+t; %求和运算 end s=vpa(s,m) %控制s的精度 4 结果与分析 若保留11位有效数字,则n=7,此时求解得: s =3.1415926536; 若保留30位有效数字时,则n=22, 此时求解得: s =3.8。 通过上面的实验结果可以看出,通过从后往前计算,这种算法很好的保证了计算结果要求保留的准确数字位数的要求。 二、某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示:

最优化方法实验报告(1)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验一 实验名称:熟悉matlab基本功能 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。 二、实验内容: 1. 全面了解MATLAB系统 2. 实验常用工具的具体操作和功能 实验二 实验名称:一维搜索方法的MATLAB实现 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 通过上机利用Matlab数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: (一)0.618法(黄金分割法),它是一种基于区间收缩的极小点搜索

算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当()()k k f f λμ≤转步骤(4)。 (3)置 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

学生科学实验效果最优化的基石实验报告设计

学生科学实验效果最优化的基石实验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。 教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人

花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

计算方法B上机报告

计算方法B 上机报告 第1题 某通信公司在一次施工中,需要在水面宽度为20米的河沟底部沿直线走向铺设一条沟底光缆。在铺设光缆之前需要对沟底的地形进行初步探测,从而估计所需光缆的长度,为工程预算提供依据。已探测到一组等分点位置的深度数据(单位:米)如下表所示: (1)请用合适的曲线拟合所测数据点; (2)估算所需光缆长度的近似值,并作出铺设河底光缆的曲线图; 问题分析和算法思想: 本题的主要目的是对21个测量数据进行拟合,同时对拟合曲线进行线积分即可得到河底光缆长度的近似值,可以用的插值方法很多:多项式插值、Lagrange 插值、Newton 插值、三次样条插值等。由于数值点较多时,采用高次多项式插值将产生很大的误差,用拉格朗日插值多项式会出现龙格现象。故为了将所有的数据点都用上,且题中光缆为柔性,可光滑铺设于水底,鉴于此特性,采用三次样条插值的方法较为合适。 计算光缆长度近似值,只需将每两点之间的距离算出,然后依次相加,所得的折线长度,即为光缆长度的近似值。 光缆长度计算公式: 19 1 k k k l +===∑? ? ? 算法结构: 三次样条算法结构见《计算方法教程》P110。 源程序: clear;clc; x=0:20;

y=[9.01 8.96 7.96 7.97 8.02 9.05 10.13 11.18 12.26 13.28 13.32 12.61 11.29 10.22 9.15 7.90 7.95 8.86 9.81 10.80 10.93]; d=y; plot(x,y,'k.','markersize',15) hold on %%%计算二阶差商 for k=1:2 for i=21:-1:(k+1) d(i)=(d(i)-d(i-1))/(x(i)-x(i-k)); end end %%%假定d的边界条件,采用自然三次样条 for i=2:20 d(i)=6*d(i+1); end d(1)=0; d(21)=0; %%%追赶法求解带状矩阵的m值 a=0.5*ones(1,21); b=2*ones(1,21); c=0.5*ones(1,21); a(1)=0;c(21)=0; u=ones(1,21); u(1)=b(1); r=c; yy(1)=d(1); %%%追的过程 for k=2:21 l(k)=a(k)/u(k-1); u(k)=b(k)-l(k)*r(k-1); yy(k)=d(k)-l(k)*yy(k-1); end %%%赶的过程 m(21)=yy(21)/u(21); for k=20:-1:1 m(k)=(yy(k)-r(k)*m(k+1))/u(k); end %%%利用插值点画出拟合曲线 k=1; nn=100; xx=linspace(0,20,nn); l=0; for j=1:nn for i=2:20 if xx(j)<=x(i) k=i;

最优化方法课程实验报告

. . 项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点])0[)(0[max 00t t t ,或,∈?∞+∈,计算)(00 t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代, 令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

. . 程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c += . (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2).

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

相关文档
最新文档