计算方法上机实验指导

计算方法上机实验指导
计算方法上机实验指导

计算方法上机实验指导

一、非线性方程求解

(一)问题的指出 二分法 1.方法概要

假定()f x 在[,]a b 上连续,()()0f a f b <且()f x 在(,)a b 内仅有一实根*

x 取区间中点

c ,若()0f c =,则c 恰为其根,否则,根据()()0f a f c <是否成立,可判断出根所属的

新的有根子区间(,)a c 或(,)c b ,为节省内存,仍称其为(,)a b 。运算重复进行,直到满足精度要求为止,即*

||c x b a ε-<-<。式中,a b 为新的有根子区间的端点。 2.计算框图

Nowton 迭代法 1.方法概要

0x 为初始猜测,则由递推关系

1()

()

k k k k f x x x f x +=-

' 产生逼近解*

x 的迭代序列{}k x ,这个递推公式就是Newton 法。当0x 距*

x 较近时,

{}k x 很

快收敛于*

x 。但当0x 选择不当时,会导致{}k x 发散。故我们事先规定迭代的最多次数。若超过这个次数,还不收敛,则停止迭代另选初值。 2.计算框图

(二)目的

掌握二分法与牛顿法的基本原理及应用 (三)要求

1.用二分法计算方程

2

sin 02

x x -=

在(1,2)内的根的近似值 2.用二分法计算方程

310x x --=

在(1,1.5)内的根的近似值5

(0.510)ε-=?。

3.用牛顿法求下列非线性方程的近似根。

① 10x

xe -= 00.5x = ② 3

10x x --= 01x =

③ 2

(1)(21)0x x --= 00.45x = 00.65x =

4.用改进的牛顿法

12()

()

k k k k f x x x f x +=-

'

计算方程

20(1)(21)0

0.55x x x --==

的近似根,并与要求3.中的③的结果进行比较。

二、Gauuss 列主元消去法

(一)问题的提出

由地一般线性方程组在使用Gauss 消去法求解时,从求解过程中可以清楚地看到,若

(1)0k kk a -=,必须施以行交换的手续,才能使消去过程继续下去。有时既使(1)0k kk a -≠,但其

绝对值很小,由于舍入误差的影响,消去过程也会出现不稳定现象。因此,为使这种不稳定现象发生的可能性减至最小,在施行消去过程时每一步都要选主元素,即要寻找行r ,使

(1)(1)

||max ||k k rk ik i k

a a -->=

并将第r 行与第k 行交换,以使(1)

k kk a -的当前值(即(1)

k ik

a -的数值)远大于0。

这种列主元消去法的主要步骤如下:

1.消元过程

对1,2,,1k n =-L ,做 1o 选主元,记

||max ||rk ik i k

a a >=

若0rk a =,说明方程组系数矩阵奇异,则停止计算,否则进行2o。 2o 交换A (增广矩阵)的,r k 两行元素

,,1rj kj

a a j k n ?=+L

3o 计算

/ij ij ik kj kk a a a a a =-

1,,i k n =+L

1,,1j k n =++L

2.回代过程

对,1,,2,1k n n =-L ,计算

,11

(/)n

k k n kj

j kk j k x a a

x a +=-=-

其计算框图如下:

(二)目的

1.熟悉Gauss 列主元消去法,编出实用程序。 2.认识选主元技术的重要性。

3.明确对于哪些系数矩阵A ,在求解过程中不需使用选主元技术。

(三)要求

1.编制程序,用Gauss 列主元消去法求解线性方程组Ax b =,并打印结果,其中

(1)810231 3.712 4.6232 1.072 5.643A -????=-????-??

, 123b ????=??

????

(2)424217104109A -????=-????-??, 1037b ????=????-??

2.与不选主元的Gauss 消去法结果比较并分析原因。

三、Runge 现象的产生和克服

(一)问题的提出

在给定1n +个插值节点和相应的函数值以后构造n 次插值多项式的方法。从余项的表达式看出,插值多项式与被插函数逼近的程度是同分点的数目及位置有关的。能不能说,分点越多,插值多项式对函数的逼近程度越好呢?答案是否定的,在本世纪初Runge 指出了这种多项式插值的缺点。 什么是Runge 现象呢? 例:给定函数

2

1

()11125f x x x =

-≤≤+

取等距节点2

1(0,1,,10)10

i x i i =-+=L ,试建立插值多项式10()x φ,并研究它与()f x 的误差。

插值多项式的次数为10,用拉格朗日插值公式有

10

100

()()()i i i x f x l x φ==∑

其中

21

()125i i f x x =

+

2

1,0,1,,1010

i x i i =-+=L

0111001110()()()()

()()()()()

i i i i i i i i i x x x x x x x x l x x x x x x x x x -+-+----=

----L L L L

画出它们的图形,从图中可以看出,在[0.20,0]-区间内10()x φ能较好地逼近()f x ,但在其他部分10()x φ与()f x 的差异较大,越靠近端点,逼近的效果越差。事实上可以证明,对

2

1

125x

+这个函数在[1,1]-区间内用1n +个等距节点作插值多项式10()x φ,当n →∞时()n x φ只能在||0.73x <内收敛,而在这个区间之外是发散的,这一现象称为Runge 现象。

从上面例子看到,在区间上给定等距插值节点,过这些插值节点作拉格朗日插值多项式,节点不断加密时,构造的插值多项式的次数也不断提高,但是,尽管被插值函数是连续的,高次插值多项式也不一定收敛到相应的被插值函数。

解决Runge 现象有分段线性插值,三次样条插值等方法。 分段线性插值:

设在区间[,]a b 上,给定1n +插值节点

01n a x x x b =<<<=L

和相应的函数值01,,,n y y y L ,求作一个插值函数()x φ,具有下面性质: (1)(),0,1,2,,j j x y j n φ==L

(2)()x φ在每个小区间1[,]j j x x +上是线性函数。

插值函数()x φ叫做区间[,]a b 上对数据(,)(0,1,,)i i x y i n =L 的分段线性插值函数。 三次样条插值

给定区间[,]a b 一个分划

01:N a x x x b ?=<<<=L

若函数()S x 满足下述两条件:

1)()S x 在每个小区间1[,](1,2,,)j j x x j N -=L 上是3次多项式。

2)()S x 及其直到2阶导数在[,]a b 连续。则称()S x 是关于分划?的三次样条函数。

(二)目的

1.深刻认识多项式插值的缺点; 2.明确插值的不收敛性怎样克服; 3.明确精度与节点、插值方法的关系。

(三)要求 给定函数21(),11125f x x x =

-≤≤+,及节点2

1(1),1,2,,1j

x j j N N

=-+-?=+L ,试用如下插值方法如何克服Runge 现象 1.用多项式插值计算出下列插值

(0),(0.060.1),(0.060.1)N N N S S k S k +--

0,1,,9k =L ,观察是否会产生Runge 现象。

2.用下列方法进行计算,并且比较它们克服Runge 现象的效果。 (1)分段线性插值

(2)三次样条函数插值(一),条件为:

()(),1,,1()(),1,,1N j j N

i j S x f x j N S x f x i N ?==+??''''==+??L L

(3)三次样条函数插值(二),条件为

()(),1,,1

()(),1,,1N j j N

i i S x f x j N S x f x i N ?==-??''==-??L L

3.编程序,打印结果分析。

(1)编写计算程序,调试计算,比较每种插值在插值点上与精确值的误差是多少。 (2)同一种插值法,当节点增多时,精度怎样? (3)打印程序、结果,写出实验报告。

四、多项式最小二乘法

(一)问题的提出

对于给定的测量数据(,)(1,2,,)i i x f i n =L 设函数分布为

()()m

j j j y x a x ?==∑

特别地,取()j x ?为多项式形式

()0,1,2,,j

j x x j m ?==L

则根据最小二乘原理,可构造泛函

2011

(,,,)(())n

n

m i j j i i j H a a a f a x ?===-∑∑L

00,1,2,,k

H

k m a ?==?L

则可得到法方程

01

1

()()()m n

n

j

i k i j i k i j i i x x a f x ?

??====∑∑∑

0,1,2,,k m =L

求解该方程组,则可得到解012,,,,m a a a a L ,因此可得到数据的最小二乘解

()()m

j j j f x a x ?=≈∑

(二)目的

1.学习使用最小二乘原理 2.了解法方程的特性 (三)要求

用最小二乘方法处理实验数据。

3456789

2.01 2.98

3.50 5.02 5.47 6.027.05

i i

x f

并作出()f x 的近似分布图。

五、龙贝格积分法

(一)问题的提出 考虑积分

()()b a

I f f x dx =?

欲求其近似值,可以采用如下公式:

(复化)梯形公式 1

10[()()]2n i i i h

T f x f x -+==

+∑ 2

()12b a E h f η-''=- [,]a b η∈

(复化)辛卜生公式 1

1102

[()4()()]6n i i i i h

S f x f x f x -++

==++∑

4

(4)

()1802b a h E f η-??=- ??? [,]a b η∈

(复化)柯特斯公式 1

11042

[7()32()12()90n i i i i h

C f x f x f x -++

==+++∑

3

14

32()7()]i i f x

f x +++

6

(6)

2()()9454b a h E f η-??=- ???

[,]a b η∈

这里,梯形公式显得算法简单,具有如下递推关系

1

2102

1()22n n n i i h T T f x -+==+∑

因此,很容易实现从低阶的计算结果推算出高阶的近似值,而只需要花费较少的附加函数计算。但是,由于梯形公式收敛阶较低,收敛速度缓慢。所以,如何提高收敛速度,自然是人们极为关心的课题。为此,记0,k T 为将区间[,]a b 进行2k

等份的复化梯形积分结果,1,k T 为将区间[,]a b 进行2k

等份的复化辛卜生积分结果,2,k T 为将区间[,]a b 进行2k

等份的复化柯

特斯积分结果。根据李查逊(Richardson )外推加速方法,可得到

1,11,,0,1,2,40,1,2,41

m m k m k

m k m k T T T m -+-=-??=

?=-??

L L 可以证明,如果()f x 充分光滑,则有

,lim ()m k k T I f →∞

= (m 固定)

,0lim ()m m T I f →∞

=

这是一个收敛速度更快的一个数值求积公式,我们称为龙贝格积分法。 该方法的计算可按下表进行

0,0T 0,1T 0,2T … 0,m T 1,0T 1,1T … 1,1m T - 2,0T … 2,2m T - … … ,0m T

很明显,龙贝格计算过程在计算机上实现时,只需开辟一个一维数组,即每次计算的结果

,m k T ,可存放在0,k T 位置上,其最终结果,0m T 是存放在0,0T 位置上。具体的计算过程为:

1.准备初值,计算

0,0[()()]2

a b

T f a f b -=

+ 且0k ←(k 为等份次数)

2.按梯形公式的递推关系,计算

210,10,10

11

(())2222k

k k k k i b a b a T T f a i -++=--=+++∑

3.按龙贝格公式计算加速值

1,11,0,,40,1,2,,41

m m k m m k m

k m m k m m

T T T T m k -+------←=

=-L

4.精度控制。对给定的精度ε,若

,01,0||m m T T ε--<

则终止计算,并取0,,s m s T T ←作为所求结果;否则1k k ←+,重复2~4步,直到满足精度为止。 (二)目的

1.理解和掌握龙贝格积分法的原理; 2.学会使用龙贝格积分法;

3.明确龙贝格积分法的收敛速度及应用时容易出现的问题。 (三)要求

1.用龙贝格积分法计算下列积分的近似值 (1)

10036

x dx ?; (2)1

0sin x

dx x ?

; (3)120sin x dx ? 2.打印龙贝格积分法的函数表,使积分结果更加清楚。 3.分析所出现的问题并加以讨论。

六、常微分方程初值问题的数值解法

(一)问题的提出

一阶常微分方程初值问题

0(,)

()dy

f x y dx

y x y

?=???=? (6.1) 的数值解法是近似计算中很重要的部分。

常微分方程初值问题的数值解法是求方程(6.1)的解在点列1(0,1,)n n n x x h n -=+=L 上的近似值n y ,这里n h 是1n x -到n x 的步长,一般略去下标记为h 。 常微分方程初值问题的数值解法一般分为两大类:

(1)单步法:这类方法在计算n y 时,只用到1n x +、n x 和n y ,即前一步的值。因此,在有了初值以后就可以逐步往下计算。典型方法如龙格–库塔()R K -方法。

(2)多步法:这类方法在计算1n y +时,除用到1n x +、n x 和n y 以外,还要用

(1,2,,;0)n p y p k k -=>L ,即前面k 步的值。典型方法如Adams 方法。

经典的R K -方法是一个四阶的方法,它的计算公式是:

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

计算方法上机实验报告

《计算方法》上机实验报告 班级:XXXXXX 小组成员:XXXXXXX XXXXXXX XXXXXXX XXXXXXX 任课教师:XXX 二〇一八年五月二十五日

前言 通过进行多次的上机实验,我们结合课本上的内容以及老师对我们的指导,能够较为熟练地掌握Newton 迭代法、Jacobi 迭代法、Gauss-Seidel 迭代法、Newton 插值法、Lagrange 插值法和Gauss 求积公式等六种算法的原理和使用方法,并参考课本例题进行了MATLAB 程序的编写。 以下为本次上机实验报告,按照实验内容共分为六部分。 实验一: 一、实验名称及题目: Newton 迭代法 例2.7(P38):应用Newton 迭代法求 在 附近的数值解 ,并使其满足 . 二、解题思路: 设'x 是0)(=x f 的根,选取0x 作为'x 初始近似值,过点())(,00x f x 做曲线)(x f y =的切线L ,L 的方程为))((')(000x x x f x f y -+=,求出L 与x 轴交点的横坐标) (') (0001x f x f x x - =,称1x 为'x 的一次近似值,过点))(,(11x f x 做曲线)(x f y =的切线,求该切线与x 轴的横坐标) (') (1112x f x f x x - =称2x 为'x

的二次近似值,重复以上过程,得'x 的近似值序列{}n x ,把 ) (') (1n n n n x f x f x x - =+称为'x 的1+n 次近似值,这种求解方法就是牛顿迭代法。 三、Matlab 程序代码: function newton_iteration(x0,tol) syms z %定义自变量 format long %定义精度 f=z*z*z-z-1; f1=diff(f);%求导 y=subs(f,z,x0); y1=subs(f1,z,x0);%向函数中代值 x1=x0-y/y1; k=1; while abs(x1-x0)>=tol x0=x1; y=subs(f,z,x0); y1=subs(f1,z,x0); x1=x0-y/y1;k=k+1; end x=double(x1) K 四、运行结果: 实验二:

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

计算方法实验

实验一: 姓名: 学号: 班级:2013级计算机6班实验地点:第二机房 实验时间:2015/3/17

1 实验目的和要求 1. 二分法求方程的根 2. 基本迭代法求方程的根 3. 用埃特金求方程010423=-+x x 在1.5处的一个根,精度要求410-。 4. 牛顿下山法求方程的根 求方程013=--x x 的根,初值取6.00=x ,精度满足510-。 5. 牛顿迭代法求解7,精度满足510- 2 实验环境和工具 机房 VC6 3 实验结果 3.1 算法流程图 3.2 程序核心代码 二分法代码 #include #include

void main() { double x,a=1.0,b=1.5; for(int i=1;i<10;i++) { x=(a+b)/2; if((a*a*a-a-1)*(x*x*x-x-1)<0) b=x; else a=x; if(b-a<0.01) break; cout< #include void main() { double x0=0.5,x,e=2.718281;

for(int i=1;i<20;i++) { x=pow(e,-x0); if(x-x0<0.00001) break; cout< #include #include using namespace std; ////////// double fun(double x); void AitkenIterative(double(*pf)(double x)); ////////// ////////// int main() { AitkenIterative(fun);

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

数值分析上机题目

数值分析上机题目 1、 分别用不动点迭代与Newton 法求解方程250x x e -+=的正根与负根。 2、 Use each of the following methods to find a solution in [0.1,1] accurate to within 10^-4 for 4326005502002010x x x x -+--= a. Bisection method b. Newton’s method c. Secant method d. Method of False Position e. Muller’s method 3、 应用Newton 法求f (x )的零点,e=10^-6,这里f (x )=x-sin (x )。 再用求重根的两种方法求f (x )的零点。 4、 应用Newton 法求f (x )的零点,e=10^-6,f(x)=x-sin(x) 再用Steffensen’s method 加速其收敛。 5、 用Neville’s 迭代差值算法,对于函数2 1 (),11125f x x x = -≤≤+进行lagrange 插值。取不同的等分数n=5,10,将区间[-1,1]n 等分,取等距节点。把f(x)和插值多项式的曲线画在同一张图上进行比较。 6、 画狗的轮廓图 7、 Use Romberg integration to compute the following approximations to ? a 、 Determine R1,1,R2,1,R3,1,R4,1and R5,1,and use these approximations to predict the value of the integral. b 、 Determine R2,2 ,R3,3 ,R4,4 ,and R5,5,and modify your prediction. c 、 Determine R6,1 ,R6,2 ,R6,3 ,R6,4 ,R6,5 and R6,6,and modify your prediction.

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

数值分析上机题目详解

第一章 一、题目 设∑ =-= N N j S 2 j 2 1 1,其精确值为)11 123(21+--N N 。 1) 编制按从大到小的顺序1 1 13112122 2-+??+-+-=N S N ,计算S N 的通用程序。 2) 编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 3) 按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) 4) 通过本次上机题,你明白了什么? 二、通用程序 N=input('Please Input an N (N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); Sn1=single(0); for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('The value of Sn (N=%d)\n',N); fprintf('Accurate Calculation %f\n',AccurateValue); fprintf('Caculate from large to small %f\n',Sn1); fprintf('Caculate from small to large %f\n',Sn2); disp('____________________________________________________')

三、结果 从结果可以看出有效位数是6位。 感想:可以得出,算法对误差的传播有一定的影响,在计算时选一种好的算法可以使结果更为精确。从以上的结果可以看到从大到小的顺序导致大数吃小数的现象,容易产生较大的误差,求和运算从小数到大数所得到的结果才比较准确。

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

东南大学《数值分析》-上机题

数值分析上机题1 设2 21 1N N j S j ==-∑ ,其精确值为1311221N N ??-- ?+?? 。 (1)编制按从大到小的顺序222 111 21311 N S N = +++---,计算N S 的通用程序。 (2)编制按从小到大的顺序22 21111(1)121 N S N N =+++----,计算N S 的通用程序。 (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。(编制程序时用单精度) (4)通过本上机题,你明白了什么? 程序代码(matlab 编程): clc clear a=single(1./([2:10^7].^2-1)); S1(1)=single(0); S1(2)=1/(2^2-1); for N=3:10^2 S1(N)=a(1); for i=2:N-1 S1(N)=S1(N)+a(i); end end S2(1)=single(0); S2(2)=1/(2^2-1); for N=3:10^2 S2(N)=a(N-1); for i=linspace(N-2,1,N-2) S2(N)=S2(N)+a(i); end end S1表示按从大到小的顺序的S N S2表示按从小到大的顺序的S N 计算结果

通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。从大到小的顺序计算得到的结果的有效位数少。计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

计算方法实验

算方法实验指导 姓名学号院系专业哈尔滨工业大学

计算方法实验指导 根据实际问题建立的数学模型,一般不能求出所谓的解析解,必须针对数学模型 的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行 调试,完成运算,如果计算结果存在问题或不知是否正确,还需要重新确定新的计算 方法,再编制出计算程序,输入计算机,重新调试,完成运算,直至获得正确的计算 结果,这就是数值计算的全部过程。 学生在学习“计算方法”和“高级语言”等课程时普遍存在的问题是:只会套用 教科书中的标准程序进行数值计算,很少有人能够独立地将学过的数值算法编制成计 算机程序,至于灵活应用已经掌握的算法求解综合性较大的课题,则更是困难的事情。 编写《计算方法实验指导》的目的是:突出数值计算程序结构化的思想。提高学 生的编程能力,加深对“计算方法”课程内容的理解和掌握,为”计算方法“课程的 教学服务,进一步奠定从事数值计算工作的基础。具体地 1. 根据“计算方法”课程内容的特点,给出五个典型算法的分析流程,学生可以 利用所掌握的 “高级语言”顺利地编制出计算机程序,上机实习,完成实验环节的教 学要求。 2. 所有的计算实习题目都经过任课教师逐一检验,准确无误。 3. 充分利用循环的思想、 迭代的思想, 给出算法结构描述和程序语言的对应关系, 有利于学生编 制相应的程序。 4. 结合实习题目,提出实验要求,要求学生按规范格式写出相应的实验报告,实 验报告成绩记入 期末总成绩。需要提醒学生:不能简单地套用现成的标准程序完成实 验题目,应当把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析 上,否则就失去实验课的目的啦。 5. 五个具体的实验题目是: 实验题目 实验题目 实验题目 实验题目 实验题目 要求必须完 成其中三个(如果全部完成更好) 。 1 拉格朗日 (Lagrange) 插值 2 龙贝格 (Romberg) 积分法 3 四阶龙格—库塔 (Runge — Kutta) 方法 4 牛顿 (Newton) 迭代法 5 高斯 (Gauss) 列主元消去法

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

(完整版)数值计算方法上机实习题答案

1. 设?+=1 05dx x x I n n , (1) 由递推公式n I I n n 1 51+-=-,从0I 的几个近似值出发,计算20I ; 解:易得:0I =ln6-ln5=0.1823, 程序为: I=0.182; for n=1:20 I=(-5)*I+1/n; end I 输出结果为:20I = -3.0666e+010 (2) 粗糙估计20I ,用n I I n n 51 5111+- =--,计算0I ; 因为 0095.05 6 0079.01020 201 020 ≈<<≈??dx x I dx x 所以取0087.0)0095.00079.0(2 1 20=+= I 程序为:I=0.0087; for n=1:20 I=(-1/5)*I+1/(5*n); end I 0I = 0.0083 (3) 分析结果的可靠性及产生此现象的原因(重点分析原因)。 首先分析两种递推式的误差;设第一递推式中开始时的误差为000I I E '-=,递推过程的舍入误差不计。并记n n n I I E '-=,则有01)5(5E E E n n n -==-=-Λ。因为=20E 20020)5(I E >>-,所此递推式不可靠。而在第二种递推式中n n E E E )5 1(5110-==-=Λ,误差在缩小, 所以此递推式是可靠的。出现以上运行结果的主要原因是在构造递推式过程中,考虑误差是否得到控制, 即算法是否数值稳定。 2. 求方程0210=-+x e x 的近似根,要求4 1105-+?<-k k x x ,并比较计算量。 (1) 在[0,1]上用二分法; 程序:a=0;b=1.0; while abs(b-a)>5*1e-4 c=(b+a)/2;

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

数值分析上机题参考答案.docx

如有帮助欢迎下载支持 数值分析上机题 姓名:陈作添 学号: 040816 习题 1 20.(上机题)舍入误差与有效数 N 1 1 3 1 1 设 S N ,其精确值为 。 2 2 2 N N 1 j 2 j 1 (1)编制按从大到小的顺序 1 1 1 ,计算 S 的通用程序。 S N 1 32 1 N 2 1 N 2 2 (2)编制按从小到大的顺序 1 1 1 ,计算 S 的通用程序。 S N 1 (N 1)2 1 22 1 N N 2 (3)按两种顺序分别计算 S 102 , S 104 , S 106 ,并指出有效位数。 (编制程序时用单精度) (4)通过本上机题,你明白了什么? 按从大到小的顺序计算 S N 的通用程序为: 按从小到大的顺序计算 S N 的通用程序为: #include #include float sum(float N) float sum(float N) { { float j,s,sum=0; float j,s,sum=0; for(j=2;j<=N;j++) for(j=N;j>=2;j--) { { s=1/(j*j-1); s=1/(j*j-1); sum+=s; sum+=s; } } return sum; return sum; } } 从大到小的顺序的值 从小到大的顺序的值 精确值 有效位数 从大到小 从小到大 0.740049 0.74005 0.740049 6 5 S 102 0.749852 0.7499 0.7499 4 4 S 104 0.749852 0.749999 0.749999 3 6 S 106 通过本上机题, 看出按两种不同的顺序计算的结果是不相同的, 按从大到小的顺序计算 的值与精确值有较大的误差, 而按从小到大的顺序计算的值与精确值吻合。 从大到小的顺序 计算得到的结果的有效位数少。 计算机在进行数值计算时会出现“大数吃小数”的现象,导 致计算结果的精度有所降低, 我们在计算机中进行同号数的加法时, 采用绝对值较小者先加 的算法,其结果的相对误差较小。

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

计算方法实验报告册

实验一——插值方法 实验学时:4 实验类型:设计 实验要求:必修 一 实验目的 通过本次上机实习,能够进一步加深对各种插值算法的理解;学会使用用三种类型的插值函数的数学模型、基本算法,结合相应软件(如VC/VB/Delphi/Matlab/JAVA/Turbo C )编程实现数值方法的求解。并用该软件的绘图功能来显示插值函数,使其计算结果更加直观和形象化。 二 实验内容 通过程序求出插值函数的表达式是比较麻烦的,常用的方法是描出插值曲线上尽量密集的有限个采样点,并用这有限个采样点的连线,即折线,近似插值曲线。取点越密集,所得折线就越逼近理论上的插值曲线。本实验中将所取的点的横坐标存放于动态数组[]X n 中,通过插值方法计算得到的对应纵坐标存放 于动态数组[]Y n 中。 以Visual C++.Net 2005为例。 本实验将Lagrange 插值、Newton 插值和三次样条插值实现为一个C++类CInterpolation ,并在Button 单击事件中调用该类相应函数,得出插值结果并画出图像。CInterpolation 类为 class CInterpolation { public : CInterpolation();//构造函数 CInterpolation(float *x1, float *y1, int n1);//结点横坐标、纵坐标、下标上限 ~ CInterpolation();//析构函数 ………… ………… int n, N;//结点下标上限,采样点下标上限 float *x, *y, *X;//分别存放结点横坐标、结点纵坐标、采样点横坐标 float *p_H,*p_Alpha,*p_Beta,*p_a,*p_b,*p_c,*p_d,*p_m;//样条插值用到的公有指针,分别存放 i h ,i α,i β,i a ,i b ,i c ,i d 和i m }; 其中,有参数的构造函数为 CInterpolation(float *x1, float *y1, int n1) { //动态数组x1,y1中存放结点的横、纵坐标,n1是结点下标上限(即n1+1个结点) n=n1; N=x1[n]-x1[0]; X=new float [N+1]; x=new float [n+1]; y=new float [n+1];

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

东南大学计算方法实验报告

计算方法与实习实验报告 学院:电气工程学院 指导老师:李翠平 班级:160093 姓名:黄芃菲 学号:16009330

实习题一 实验1 拉格朗日插值法 一、方法原理 n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。可求得l k 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型参数意义 int n 节点的个数 double x[n](double *x)存放n个节点的值 double y[n](double *y)存放n个节点相对应的函数值 double p 指定插值点的值 double fun() 函数返回一个双精度实型函数值,即插值点p 处的近似函数值 #include #include using namespace std; #define N 100 double fun(double *x,double *y, int n,double p); void main() {int i,n; cout<<"输入节点的个数n:"; cin>>n; double x[N], y[N],p; cout<<"please input xiangliang x= "<>x[i]; cout<<"please input xiangliang y= "<>y[i]; cout<<"please input LagelangrichazhiJieDian p= "<>p;

相关文档
最新文档