射频微波技术课程设计

射频微波技术课程设计
射频微波技术课程设计

射频微波技术课程设计

专业班级:

学号:

学生姓名:

指导教师:

年月日

设计题目:圆极化微带天线仿真设计

一、内容摘要

微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。微带天线分2 种:①贴片形状是一细长带条,则为微带振子天线。②贴片是一个面积单元时,则为微带天线。如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。

二、设计任务及指标:

设计一种谐振频率为920MHz的圆极化贴片天线,利用Ansoft公司的HFSS13.0对其进行建模并对其进行仿真分析天线的远区辐射场特性并进行一系列优化。进一步理解微带天线的特性与应用,掌握微波天线的工程设计方法和技巧,熟悉三维电磁场仿真工具HFSS,了解微波天线产品的系统概念,提高专业素质和工程实践能力。

(1)工作频段:900~1200MHz。

(2)基板FR4:H=1.5mm,Er=4.4,tand=0.02。

(3)驻波比小于1.5。

(4)轴比小于3dB。

(5)方向性系数高于3dB。

(6)极化方式RHCP。

三、设计原理:

1.微带贴片天线的工作原理

微带贴片天线是由介质基片、在基片一面上有任意平面形状的导电贴片和基片另一面上的地板所构成。

天线要解决的两个重要问题是阻抗特性和方向特性。前者要解决天线与馈线的匹配问题;

后者要解决定向辐射或定向接收问题,也就是要解决提高发射功率或接收机灵敏度的问题。

而不论是阻抗特性还是方向特性都必须首先求出天线在远区的电磁场分布,为此要求解满足天线边界条件的麦克斯韦方程组。对于这样一个电磁场的边值问题,严格的数学求解是很困难的。因此,经常采用工程近似的方法进行研究,即用某种初始场的近似分布代替真实的准确分布来计算辐射场。

微带天线的辐射机理实际上是高频的电磁泄漏。一个微波电路如果不是被导体完全封闭,电路中的不连续处就会产生电磁辐射。例如微带电路的开路端,结构尺寸的突变、折弯等不连续处也会产生电磁辐射(泄漏)。当频率较低时,这些部分的电尺寸很小,因此泄漏也笑;但随着频率的增高,电尺寸增大,泄漏就大。在经过特殊设计,即放大成贴片状,并使其工作在谐振状态,辐射就明显增强,辐射效率就大大提高,从而成为有效的天线。

图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介

电常数r 和损耗角正切tanδ、介质层的长度LG 和宽度WG 。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。

图1.1微带天线的结构

对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。矩形贴片微带天线的工总模式是TM10模,意味着电场在长度L 方向有λg/2的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。

图1.2微带天线示意图

微带天线的辐射可以用图2.1(a )所示的简单情况来说明。假定介质基片厚度0h λ<<,可以认为电场沿微带结构的宽度W 与厚度h 方向没有变化,则贴片天线的电场结构可由图2.1(b )表示,电场仅沿约为半波长的贴片长度L 方向变化。辐射基本上是由贴片开路边沿的边缘场引起的。在两端的场相对于地板可以分解为法向分量和切向分量,因为贴片长近似为/2e λ,所以法向分量反相,由它们产生的远区场在正面方向上相互抵消。平行于地板的切向分量同相,因此,合成场增强,从而使垂直于结构表面的方向上辐射场最强。所以,贴片可以表示为相距/2e λ、同相激励的两个缝隙,如图2.1(c)所示。图2.2给出了矩形微带天线H 面和E 面辐射方向图,由于接地板的存在天线主要向上半空间辐射。

图2.1 矩形微带天线

图2.2 矩形微带天线方向图

选择天线的工作频率c f 和介质基板后,根据施奈德经验公式(2.1),(2.2),(2.3),(2.4)可以计算出天线的长和宽。具体过程如下:选择适当厚度的介质基片。本实验选择介电常数为4.4厚度h 为1.5mm 的介质片。介质基片参数r ε、tan δ和h 选定之后,由式(2.1)计算贴片矩形贴片天线的宽度W 。

12

1w 22r c c f -

ε+??

=

???

(2.1) 对于工作于TM 01模的矩形微带贴片天线长度近似为λg /2,而介质内波长λg =λ0

里c ε为介质基片的有效介电常数,考虑到边缘效应,c ε 用施奈德等效介电常数e ε代替,用式(2.2)得到e ε。

()()12

111012

2

r r e h w εεε-

+-??

=

++

??

?

(2.2) 矩形微带贴片天线的长度L 在理论上近似为λg /2,但实际上由于边缘场的影响,

在确定

L 的尺寸时应从λg /2中减去2ΔL 。ΔL 的值由式(2.3)计算

()()()()

0.3/0.2640.4120.258/0.8e e w h L h w h εε++?=-+ (2.3)

于是

2L L =

-? (2.4)

2. 圆极化微带天线的基本知识

圆极化微带天线包括两种形式:谐振微带贴片与行波微带线型天线。谐振贴片辐射圆极化波的基本原理是:产生两个相互垂直的线极化电场分量,并使二者振幅相等,相位相差90°。实现方法分为三类:单馈法,多馈法和多元法。本次采用单馈法进行设计。单馈法的产生机理是基于空腔模型理论,利用兼并分离单元产生的两个简并分析模工作。设计关键为确定几何微扰,即选择简并模分离单元的位置和大小,以及恰当的馈点。单馈法的优点是无需外加的相移网络和功率分配器,结构简单,成本低,适合小型化。缺点是带宽窄,极化性能较差。 3. 设计过程

(1)设计目标:工作频率920MHz 的圆极化微带贴片天线。 (2)采用单馈法(同轴馈电),矩形采用的是正方形。 (3)将h=1.5mm ,r ε=4.4,

中心频率为920MHz ,经过公式2.1计算得到W 约等于99.23mm ,公式2.2计算得到e ε=4.28,公式2.3和2.4的计算可得L 约等于77.41mm 。在实际的贴片天线中常采用正方形的形式,且实际仿真与理论计算之间的误差,所以初始的贴片尺寸设计为长宽均为80mm 的贴片。

(4)采用右旋圆极化,切角选用三角形。切角的大小在设计过程中采用仿真的方法确定。

四、贴片天线仿真:

1. 新建工程,按照给定材料要求创建三维模型。 模型包括以下几个部分: 介质板substrate ,其初始坐标(-100,-100,0),相对坐标(200,200,1.5) 底层金属ground_plane ,初始坐标(-100,-100,0),相对坐标(200,200,0) 金属贴片patch ,初始坐标(-40,-40,1.5),相对坐标(80,80,0)

馈电点feed ,圆心坐标(0,20,0),相对坐标(0.5,0,1.5) 板上圆孔port ,圆心坐标(0,20,0),相对坐标(1.15,0,0) 贴片三角形(-18,-18,1.5)和(18,18,1.5)

单位均为mm

背景空间air 沿Z 轴空间范围为±2000,沿X ,Y 轴范围为±100

图1.1

在patch上切割三角形,最终结果如下图

图1.2

2.设置几何变量

设置几何形状尺寸变量

(1)设置地板ground_plane的尺寸变量:

将Position的(-100mm,-100mm,0mm) → (PlaneStart, PlaneStart,0)。

相对坐标(200,200,0)→ (PlaneSize,PlaneSize,0)。

(2)设置介质板substrate的尺寸变量:

(-100,-100,0)→(SubStart,SubStart,0)

(200,200,1.5)→(SubSize,SubSize,SubHight)

(3)设置Patch尺寸变量:

(-40,-40,1.5)→(PatchStart,PatchStart,SubHight)

(80,80,0)→(PatchSize,PatchSize,0)

(4)设置Feed尺寸变量

(0,20,0)→(0,FeedLocation,0)

Height→SubHight

(5)设置Port尺寸变量

(0,20,0)→(0,FeedLocation,0)

(6)设置三角形尺寸变量

(0,18,0)→(0,ChamSize,0)

(18,0,0)→(ChamSize,0,0)

3.设定三角形的位移变量

展开patch/Subtract/polyline1/move,将Move Vector设置为(PatchStart,PatchStart,SubHight)4.设置变量之间的关系

PlaneStart设为-PlaneSize/2,SubStart设为-SubSize/2,PatchStart设为-PatchSize/2

5.Substrate材料选择FR4

6.设置边界条件和激励源

背景空间设定为”Radiation”边界条件,以模拟一个允许波进入空间辐射无限远的表面。

在操作历史树中复选" ground_plane "和"patch",点击鼠标右键选择Assign Boundary\Finite Conductivity。出现对话框,不作改动,点击ok完成设置。" Finite Conductivity "(有限电导边界)是一种电导率和磁导率均为频率函数的有耗材料,若选择"Perfect E"(理想电边界)会使模拟结果的S11较低。

为Port设置激励源

在操作历史树中的sheets中选定Port点击右键选择”Assign Excitation\Lumped port”,在出现的对话框中将”name”设置为”port”,点击下一步。在”Integration Line”中选择”New Line”,出现”Create Line”的对话框,输入起始坐标(0,21.15,0),激励源向量(0,-0.65,0),表示一个从feed的激励源向量。

这里需要说明的是”Wave Port”和”Lumped port”都是常用的激励源,前者属于整个平面的激发,后者属于某个点的激发。而且因为设置的求解模式”Driven Modal”,所以需要CreateLIne 来画积分线。

7.解的设置

在项目管理窗口中选中”Analysis”,选择”analysis solution setup”,在出现的对话框中设定”Solution Frequency”为920MHz,迭代次数Maximum Number of为20,Maximum delta S 为0.02,点击对话框中的option属性页,按照要求设置参数。

在完成以上设置之后,在项目管理窗口的analysis下出现setup1,选中setup1点击右键选择”add frequency sweep”,出现对话框Edit sweep,设定扫频方式”Fast”,扫频范围Type 为”Liner Count”,Start=750MHz,Stop=1200MHz,Count=255。仿真以及结果报告

8.仿真

在菜单栏中点击HFSS\ Validation Check或者工具栏上的,进行检查分析,如果工程建立没有问题,在菜单栏中点击HFSS\ Analysis All或者工具栏上的进行仿真。

图9.1

通过以上优化可以发现,当贴片尺寸越大,频率越低;随着ChamSize的增大,贴片天线的S11曲线由一个波谷变成2个,且低频处的波谷的频率变化很小,高频处的频率变化范围较大。因为在设计中切角不宜过大,所以可选用ChamSize=11.4mm,进行下一步的优化,若下一步结果优化不能达到设计目标,再选用其他ChamSize的值进行优化;馈电位置的改变会对S11曲线造成较大影响。随着FeedLocation的增大,S11曲线的两个波谷逐渐变深,且频率几乎不变。可以看到在FeedLocation=33mm时,最能满足设计要求。

根据优化过程选定变量尺寸如下:

PatchSize=77mm,ChamSize=11.4mm,FeedLocation=33mm,SubHight=1.5mm。

9.1生成最终结果报告(优化后)

图9.1.5 三维远场辐射报告

五、实物制作及测试按照仿真尺寸进行实物制作

测试结果如下

六、结果分析

1.经计算,贴片天线的尺寸是W=99.23mm,L=77.41mm,但在实际仿真过程中,初始选择了80mm*80mm的正方形,经过优化,确定了较优的贴片尺寸77mm、馈电点深度33mm、切角大小11.4mm,与起初计算结果有些偏差,从仿真的结果看,S11<-14dB也即ρ<1.5;Theta=0°时,轴比为1.0858<3dB;频率扫描曲线中,轴比为0.4923;由动画模拟图可以看出的确为右旋圆极化。

2.实际制作过程中,由于手工切割导致贴片边缘的不均匀,以及粘贴不均匀导致在实际测量S11曲线时,在920MHz频率附近,S11为-8.281dB并没有小于-14dB。

3.通过转台测试发现,当f=920MHz,Theta=0°时,轴比在10左右,将频率调到930~935MHz 时,轴比得到明显的改善,由此可见,贴片尺寸稍微小一点,若将尺寸在稍微调大一点,会有更好的结果。

参考文献

【1】栾秀珍、房少军、金红、邰佑诚·微波技术·北京邮电大学出版社,2009.

【2】栾秀珍·微波工程基础[M].·大连海事大学出版社, 2001

【3】钟顺时·微带天线理论与应用·西安电子科技大学出版社, 1999

RFID课程设计报告——图书管理系统

RFID课程设计报告 名称图书管理系统 专业班级物联网111 学号201110410119 姓名雷林尚 指导教师江虹 2014.7

一、设计背景 目前大多数图书馆还是采用条码加磁条的作业方式,借书流程仍然需要人工将图书打开并找到条码位置进行扫描。但随着读者人数的激增,这样的操作流程显得较为繁琐,借还书效率低。另外条码容易破损,影响正常的借还书程序,降低了读者的满意度。 图书馆使用了射频识别(RFID)技术,读者一卡在手,就可自由进出各个借阅室。图书将采用电子数字标签,读者可自动化借还书。自助借还书机以及还书箱的出现,特别是其一次可以做多本借还书服务和24小时还书服务等功能,大大节省了馆员的工作量和读者等待的时间。RFID能更好地提高图书流通管理和典藏管理的工作效率,使得图书馆管理员可以有更多的时间来为读者提供服务,为图书馆行业的发展带来新的机遇。 二、系统功能描述 1.RFID概述 RFID的全称是Radio Frequency IDentification,即无线射频识别技术,它使用无线传输方式实现对人或物的非接触识别和数据信息交换。在动物跟踪、防盗系统、门禁管理、停车场管理、自动生产线、物料管理等行业领域已有20多年的应用历史。在图书馆的应用中,RFID标签可为一本书籍或一张光盘存储一个唯一的标识符号,并且可以通过这个符号进行快速高效的流通处理和库存管理。 科技的发展与应用的普及,RFID的原理可简化为基于资料存储在一个透过无线电能够被读写器读取资料的标签。如图所示,一个RFID系统包含

三个主要部分:RFID标签(tag或称为transponder应答器)、RFID读写器(reader或称为interrogator)、运用于管理两者之间传输资料的应用系统。 标签通常是由一组耦合原件与一个电子晶片,提供天线的功能。一个读写器包含射频模块(提供传送与接收信号的处理)和控制模块,以及一组耦合原件,通过输入/输出接口,如串口、USB接口等,与应用系统设备(如PC)连接。 RFID标签按信号发射机制的不同可分为有源标签和无源标签,按工作的频段不同可以分为低频(LF)、高频(HF)、超高频(UHF)和微波等不同种类。目前适合图书馆所使用的标签为13.56MHz的HF频段无源标签。 2.RFID图书智能管理系统的功能 RFID文献智能管理系统在读者、文献、书架的RFID标识的基础上,以RFID 标签为流通管理介质,通过相关的RFID流通设备、RFID读写设备、RFID安全门设备、RFID典藏设备进行读者、文献、书架的一体化管理与维护,并借助移动归架书车保持文献与书架的一一对应关系,采用流通设备、典藏设备、智能文献定位书车设备,对读者而言能够实现自助式的操作、定位索取文献,能全面提升读者服务水平,提高服务效率,对工作人员而言能够实现文献的高效率借还、定位管理、精确点藏,能有效降低一线人员的工作量,提高工作效率,提升馆藏管理能力。

ads报告平面魔T设计

南京理工大学 微波毫米波课程设计报告 ——平面魔T的设计 作者: 学号: 学院(系): 专业: 实验日期:

摘要: 通过ADS软件来设计平面魔T,包括通过软件来了解平面魔T的结构,如何在设计时仿真和赋值等等。首先介绍混合环的理论基础,然后通过ADS设计,并且完成原理图仿真和版图仿真。在版图仿真不符合要求的时候对混合环的参数加以修改,使之符合实验要求。 关键字: 平面魔T ADS 原理图仿真版图仿真

目录 一、实验设计要求 4 二、实验设计原理 4 三、实验设计步骤 5 1、新建项目 2、搭建原理图 3、原理图仿真 4、将原理图生成版图 5、版图仿真 6、修改参数,使得版图仿真结果更加符合实验设计要求 四、实验设计过程中遇到的问题17 五、实验设计心得18 六、参考文献19

一、实验设计要求 设计一个rate-race ring,中心工作频率为35GHz,介质基片厚度为 0.5mm,介电常数2.2,微带线损耗角正切为0.008,铜导体厚度为0.5mil (1inch=1000mil),可以采用ADS设计,也可以采用Ansoft designer设计,也可以自己动手设计。 二、实验设计原理 Rate-race ring即混合环,是四端口网络,可以由微带线制成。整个环的周长为1.5λ,四个分支线并联在环上,将环分为4段,4段长度如下图所示。 混合环有两个端口相互隔离,另外两个端口平分输入功率的特性,因此可以看作是一个3dB定向耦合器。 ①在中心频率处,当端口1输入信号时,端口2,3,4的输出如下: 2的两路信号等幅同相,端口2有输出,相位滞后90度; 3的两路信号等幅反相,端口3无输出; 到达端口4的两路信号等幅同相,端口4有输出,相位滞后90度。 其中端口2和端口4输出振幅相同。因此,有如下的关系式: S??=S??= 1/√2(-j),S??=0 ②端口2输入信号时,端口1,3,4的输出如下: 到达端口1的两路信号等幅同相,端口1有输出,相位滞后90度; 到达端口3的两路信号等幅同相,端口3有输出,相位滞后70度; 到达端口4的两路信号等幅反相,端口4无输出。 其中端口1和端口3输出振幅相同。因此,有如下的关系式: S??= 1/√2(-j), S??= 1/√2 j , S??=0; ③当端口3输入信号时,端口1,2,4的输出如下:

微波、射频与激光的区别(内容清晰)

微波、射频与激光 微波、射频和激光都是通过高温将肿瘤细胞杀死。目前临床上一根治术为主,但并非所有实体肿瘤都适合根治术,有些年龄叫大或者合并其他比较严重疾病者不一定适用,一般晚期癌症患者也不适合根治术。以较小的创伤达到同样的疗效是人们追求的目标,微创医学顺应了这一发展趋势,肿瘤不予切除而采用原位灭活是现代微创治疗医疗的一个重要思想。 微波:微波治疗疾病主要是通过热效应和生物效应来实现的。微波是指频率从300MHZ到GHZ范围内的电磁波。微波对人体组织的热效应效率高、穿透力强、具有内外同时产生热的优点。微波在人体组织内产生热量,作用可达5--8厘米,可穿透衣物和石膏等体表覆盖物,直达病灶部位促进血液循环、水中吸收和新肉芽生长。 一种是微波从体外照射进去,另一种是把微波送到患部直接照射肿瘤,这二种治疗方式可根据病变部位来选择。但有一个共同要求是:必须使病变的温度保持在42.5-43.5℃的范围内,温度低了对肿瘤治疗无效,温度高了将造成对病变周围健康组织的损害,因此微波治疗肿瘤时,一定要严格控制肿瘤部位的温度。 微波进行切割的原理的把双极辐射器送到患部,进行瞬时放电,把病变组织固化。这个治疗方法的实质是通过微波的趋肤效应,把病变组织从表面逐步向内的烧死,从而达到治疗目的。但必须注意定位准确,治疗部位要有及时采取冷却措施。 单针消融面积大于射频,可达到更高的治疗温度,电极所形成的凝固体呈锥形,不适合消融类圆形的肿瘤。 照射治疗5~10W,每次15-20分钟,20分钟,手术进行切割25~35W,最高可达50W,切割止血的作用。 缺陷:容易造成灼伤,有心脏起搏器或者内置金属类的禁用。 射频:在影像技术的引导下,将电极针直接插入肿瘤内,通过射频能量使病灶局部组织产生高温、干燥、最终凝固和灭活软组织及肿瘤。其工作原理为:当电子发生器产生射频电流(460KHZ)时,通过裸露的电极针使其周围组织细胞产生热凝固性坏死和变性。现有的技术可以产生直径约为3-5cm大小的球形或椭圆形凝固灶,并可控制所需凝固病灶的大小。几个球形或椭圆形凝固灶的叠合可产生更大的凝固灶。 射频目前医用射频大多采用200KHz -750KHz的频率。(内镜)射频治疗仪工作频率为400KHz。当射频电流流经人体组织时,因电磁场的快速变化使得细胞内的正、负离子快速运动,于是它们之间以及它们与细胞内的其它分子、离子等的摩擦使病变部位升温,致使细胞内外水分蒸发、干燥、固缩脱落以致无菌性坏死,从而达到治疗的目的。 肿瘤经皮射频消融治疗是在影像学(CT、B超等)导向下,使用射频热效应引起组织凝固性坏死而达到切除肿瘤的目的,目前已在众多的姑息疗法中成为新的热点。该技术的主要作用原理为弹头发出中高频率的射频波(460k Hz),能激发组织细胞进行等离子震荡,离子相互撞击产生热量,达到80-100℃,可有效快速地杀死局部肿瘤细胞,同时可使肿瘤周围的血管组织凝同凝固形成一个反应带,使之不能继续向肿瘤供血和有利于防止肿瘤转移。 整个治疗过程是在电脑控制于电视屏幕监视下进行,集束电极发出的射频波一次可使组织凝同性坏死范围(灭活肿瘤区)达5cm×5cm×5cm,是一种最先进的杀伤肿瘤较多而损害机体较轻的“导向治疗方法”和微创的肿瘤切除治疗方法。 射频消融系统包含射频发生器、电极针及电极板。最重要的是电极针。目前常用的电

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:3003000 波长:0.11m 独特的特点:的波长与自然界物体尺寸相比拟 在波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。 长线概念:通常把导线(传输线)称为长线,传统的电路理论已不适合长线!系统的组成: 传输线:传输信号 微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输 目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线 任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播 分析和研究电波在空间的传播方式和特点 常用传输线机构:矩形波导共面波导同轴线带状线 微带线槽线

分析方法 场分析法:麦克斯韦方程满足边界条件的波动解传输线上电磁场表达式分析传输特性 等效电路法:传输线方程满足边界条件的电压电流波动方程的解沿线等效电压电流表达式分析传输特性 称为传输线的特性阻抗 特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, 0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。 常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。 常用的同轴线的特性阻抗有50 Ω 和75Ω两种。 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。 无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿方向传播的行波(称为入射波)和沿方向传播的行波(称为反射波)叠加而成。 传播常数γ: α为衰减常数, 单位为 β为相移常数 对于均匀无耗传输线来说, 由于β与ω成线性关系, 故导行波的相速与频率无关, 也称为无色散波。当传输线有损耗时, β不再与ω成线性关系, 使相速υp 与频率ω有关,这就称为色散特性。 定义传输线上任意一点 z 处的反射波电压(或电流)与入射波电压(或电流)0L Z C =)j /()j (0C G L R Z ωω++=β ωωγj )j )(j (+=++≈a C G L R

基于RFID的公交卡管理系统课程设计说明书

郑州轻工业学院 课程设计说明书题目:基于RFID的公交卡管理系统 姓名: 院(系):计算机与通信工程学院 专业班级:物联网工程XXX 学号: 指导教师: 成绩: 时间:2016年 1 月5日至2016年 1 月8日

郑州轻工业学院 课程设计任务书 题目基于RFID的公交卡管理系统 专业、班级物联网工程XX班学号姓名 主要内容、基本要求、主要参考资料等: 主要内容:利用实验室的读卡器和M1卡,编写程序,实现一简单的公交卡管理功能。 基本要求:(1)当卡放到读卡器上时能够自动显示姓名; (2)读卡器可识别出该卡的类别,即月票、电子钱包、学生票,并显示出剩余的钱数或次数; (3)当刷卡时,可自动扣除钱数或次数; (4)当充值时,可加钱数或次数。 参考资料:[1]高建良,贺建飚.物联网RFID原理与技术[M].北京:电子工业出版社,2015. [2]黄玉兰.物联网射频识别(RFID)核心技术详解[M].北京:人民 邮电出版社,2011. 2016年 1月 5日

课程设计成绩评定表

目录 1实验任务和目的 (1) 2实验过程和结果 (1) 2.1实验过程 (1) 2.2实验结果 (1) 3实验总结和心得 (3) 4参考文献 (4) 5附录(代码) (4)

1实验任务和目的 利用实验室的读卡器和M1卡,编写程序,实现一简单的公交卡管理功能。 能达到如下功能: (1)当卡放到读卡器上时能够自动显示姓名; (2)读卡器可识别出该卡的类别,即月票、电子钱包、学生票,并显示出剩余的钱数或次数; (3)当刷卡时,可自动扣除钱数或次数; (4)当充值时,可加钱数或次数。 2实验过程和结果 2.1实验过程 1.打开VC,建立新的MFC工程; 2.在MFC建立Dialog界面,如下图 3.建立相关的控件链接; 4.在程序编写相关程序,使其能达到相关目标; 5.运行程序检测实验是否成功。 2.2实验结果 1.基本界面

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表 说明:1、学院、专业、年级均填全称。 2、本表除评语、成绩和签名外均可采用计算机打印。 重庆大学本科学生课程设计任务书

2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。 摘要 本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。 在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。 对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。 设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。为了达到所要求的增益,采用两级放大。其中第一级放大为低噪声放大,第二级放大为双共轭匹配放大。 由于在微波领域,很多时候要用经验值,而不是理论值,来达到所要求的元件特性,因此在算出理论值之后,常常需要进行一些调整来达到设计要求。 关键词:低通原型Kuroda规则功率分配比匹配网络微带线 课程设计正文 1.切比雪夫低通滤波器的设计 1.1 设计要求: 五阶微带低通滤波器: 截止频率2.5GHZ 止带频率:5GHZ 通带波纹:0.5dB 止带衰减大于42dB

RFID通讯技术实验报告

· RFID通讯技术试验 专业: 物流工程 班级: 物流1201 学生: 学号: 指导教师:

一.前言 射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。 无线电的信号是通过调成无线电频率的电磁场,把数据从附着在物品上的标签上传送出去,以自动辨识与追踪该物品。某些标签在识别时从识别器发出的电磁场中就可以得到能量,并不需要电池;也有标签本身拥有电源,并可以主动发出无线电波(调成无线电频率的电磁场)。标签包含了电子存储的信息,数米之都可以识别。与条形码不同的是,射频标签不需要处在识别器视线之,也可以嵌入被追踪物体之。 许多行业都运用了射频识别技术。将标签附着在一辆正在生产中的汽车,厂方便可以追踪此车在生产线上的进度。仓库可以追踪药品的所在。射频标签也可以附于牲畜与宠物上,方便对牲畜与宠物的积极识别(积极识别意思是防止数只牲畜使用同一个身份)。射频识别的身份识别卡可以使员工得以进入锁住的建筑部分,汽车上的射频应答器也可以用来征收收费路段与停车场的费用。 某些射频标签附在衣物、个人财物上,甚至于植入人体之。由于这项技术可能会在未经本人许可的情况下读取个人信息,这项技术也会有侵犯个人隐私忧患。 二.实验目的 1. 了解RFID相关知识,了解RFID模块读写IC卡数据的原理与方法(电子钱包试验);

2. 模拟企业生产线上的物料跟踪情况,掌握RFID的应用(企业物流采集跟踪系统演示)。 三.实验原理 1. 利用RFID模块完成自动识别、读取IC卡信息,实现RFID电子钱包的功能,给IC卡充值、扣款(电子钱包试验); 2.利用4个RFID模块代替4个工位,并与软件系统绑定(添加,删除),由IC卡模拟物料的移动,并对物料在生产线上所经过的工位的记录进行查询,而且可以对物料的当前工位定位。 四.实验设备 《仓库状态数据检测开发系统》试验箱、IC卡、、锂电池、ZigBee通讯模块、RFID阅读器,ID卡、条码扫描器。 五.实验过程 5.1电子钱包试验 (1)先用电源线将试验箱连上电源,打开电源开关,然后打开Contex-A8电源开关,如图1所示。

ADS课程设计混频器

湖南理工学院 射频电路课程设计序号:609 论文题目:混频器的设计 姓名:刘志昌 院别:信息与通信工程 专业:电子信息工程 学号: 14072200213 指导老师:粟向军

目录 摘要.......................................................................... 错误!未定义书签。 一、混频器基本原理 ........................................... 错误!未定义书签。 二、具体设计过程 ................................................. 错误!未定义书签。 1.创建一个新项目....................................... 错误!未定义书签。 2.3dB定向耦合器设计............................... 错误!未定义书签。 3.低通滤波器............................................... 错误!未定义书签。 4.混频器频谱分析....................................... 错误!未定义书签。 (1)设计完整的电路............................ 错误!未定义书签。 (2)设置变量........................................ 错误!未定义书签。 (3)配置仿真器.................................... 错误!未定义书签。 5.噪音系数仿真........................................... 错误!未定义书签。 6.噪声系数随RF频率的变化.................... 错误!未定义书签。 7.三阶交调系数........................................... 错误!未定义书签。 8.功率-三阶交调系数............................... 错误!未定义书签。 三、总结.................................................................. 错误!未定义书签。参考文献:.............................................................. 错误!未定义书签。

射频微波技术课程设计

射频微波技术课程设计 专业班级: 学号: 学生姓名: 指导教师: 年月日

设计题目:圆极化微带天线仿真设计 一、内容摘要 微带天线(microstrip antenna)在一个薄介质基片上,一面附上金属薄层作为接地板,另一面用光刻腐蚀方法制成一定形状的金属贴片,利用微带线或同轴探针对贴片馈电构成的天线。微带天线分2 种:①贴片形状是一细长带条,则为微带振子天线。②贴片是一个面积单元时,则为微带天线。如果把接地板刻出缝隙,而在介质基片的另一面印制出微带线时,缝隙馈电,则构成微带缝隙天线。 二、设计任务及指标: 设计一种谐振频率为920MHz的圆极化贴片天线,利用Ansoft公司的HFSS13.0对其进行建模并对其进行仿真分析天线的远区辐射场特性并进行一系列优化。进一步理解微带天线的特性与应用,掌握微波天线的工程设计方法和技巧,熟悉三维电磁场仿真工具HFSS,了解微波天线产品的系统概念,提高专业素质和工程实践能力。 (1)工作频段:900~1200MHz。 (2)基板FR4:H=1.5mm,Er=4.4,tand=0.02。 (3)驻波比小于1.5。 (4)轴比小于3dB。 (5)方向性系数高于3dB。 (6)极化方式RHCP。 三、设计原理: 1.微带贴片天线的工作原理 微带贴片天线是由介质基片、在基片一面上有任意平面形状的导电贴片和基片另一面上的地板所构成。 天线要解决的两个重要问题是阻抗特性和方向特性。前者要解决天线与馈线的匹配问题; 后者要解决定向辐射或定向接收问题,也就是要解决提高发射功率或接收机灵敏度的问题。 而不论是阻抗特性还是方向特性都必须首先求出天线在远区的电磁场分布,为此要求解满足天线边界条件的麦克斯韦方程组。对于这样一个电磁场的边值问题,严格的数学求解是很困难的。因此,经常采用工程近似的方法进行研究,即用某种初始场的近似分布代替真实的准确分布来计算辐射场。 微带天线的辐射机理实际上是高频的电磁泄漏。一个微波电路如果不是被导体完全封闭,电路中的不连续处就会产生电磁辐射。例如微带电路的开路端,结构尺寸的突变、折弯等不连续处也会产生电磁辐射(泄漏)。当频率较低时,这些部分的电尺寸很小,因此泄漏也笑;但随着频率的增高,电尺寸增大,泄漏就大。在经过特殊设计,即放大成贴片状,并使其工作在谐振状态,辐射就明显增强,辐射效率就大大提高,从而成为有效的天线。 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介

基于RFID超市管理系统的课程设计

基于RFID超市管理系统的课程设计

1.超市管理系统规划 1.1现状分析 最初的超市资料管理,都是靠人力来完成的。但近几年中国超市经营规模日趋扩大,销售额和门店数量大幅度增加,而且许多超市正在突破以食品为主的传统格局,向品种多样化发展。小型超市在业务上需要处理大量的库存信息,还要时刻更新产品的销售信息,不断添加商品信息,并对商品各种信息进行统计分析。因此,在超市管理中引进现代化的办公软件,实现超市庞大商品的控制和传输,从而方便销售行业的管理和决策,为超市和超市管理人员解除后顾之忧。 1.2系统目的 帮助超市工作人员提高工作效率,帮助超市工作人员利用计算机,极为方便的对超市的商品进行等有关操作,使杂乱的超市数据能够具体化、直观化、合理化等。 1.3研究背景 当前,中国零售业信息化状况的三个层面的分布基本明朗:在高端企业,进销调存核心结构体系基本运作正常,面临的主要问题是数据的深挖掘和加工、财务业务系统的高度集成、根据企业的并购重组保证系统和数据的统一、稳定;在中端企业,分散营运向集中管理转变,进销调存核心结构系统正在由分散单店管理、销售核算向连锁管理、进价核算过渡;在低端企业,刚刚涉足、转向连锁零售业,对于信息化认识处于表面层次,业务流程和信息系统建设需要一段时间的探索、认识和渐进过程。而整个零售行业对信息化的认识已经逐渐趋向一致的认识:信息化是企业可持续发展、增强核心竞争力的必要手段。 超市软件系统从企业运营及管理的实际情况出发,结合当前中国零售业业态发展趋势,顺应了零售行业对信息化的要求,为商业管理信息系统提供了系统全面的技术解决方案。基于以上原因,超市信息管理系统当前在各个商业领域都发挥了很大的作用,也得到了越来越多的大、中、小型商业企业的应用。但就当前的应用状况分析,管理系统在中、高端企业得到了广泛的应用和重视,在小型企业、零售店的应用仅局限于信息化的表面层次,没有得到高度的重视。同时,小企业也因资金

嵌入式系统课程设计报告(使用ADS编写交通灯程序及实时温度采集系统程序,含proteus图)

嵌入式系统 课程设计报告 设计任务一 十字路口交通灯控制 一、设计目的: 1.了解基于ARM7核的LPC2106的管脚功能和特点,掌握I/O 控制寄存器的设置方法; 2.掌握ARM7应用系统编程开发方法,能用C 语言编写应用程序; 3.熟练掌握ADS1.2软件的使用以及PROTEUS 仿真调试的方法; 二、具体任务: 1.采用PROTEUS 完成十字路口交通灯控制的硬件电路设计,要求单片机选型为飞利浦公司的LPC2106,东西南北方向分别设置红黄绿3个指示灯,东西方向和南北方向各用1个数码管显示通行时间; 2.用ADS1.2编写C 语言应用程序,完成十字路口交通灯控制; 3.采用PROTEUS 将应用程序装载在LPC2106中,进行仿真验证。要求东西方向和南北方向的数码管显示通行时间并倒计时,可以设置成一样,例如都是9秒倒计时;每当倒计时时间到,完成红黄绿指示灯的状态切换,模拟实现十字路口的交通灯管理控制。

三、硬件电路设计。 附图: 四、源程序。(只将C语言应用程序附在后面,其它项目文档不要提供,C语言应用程序要有一定的注释说明) 源程序: #include "config.h" void delay(unsigned int i) { while(i--) { unsigned char j; for(j=0;j<125;j++) { ; } } }

int main(void) { uint32 k; PINSEL0=0x00000000; PINSEL1=0x00000000; IODIR=0xFFFFFFFF; while(1) { IOSET=0x000019E1; delay(10000); IOCLR=0x000019E1; IOSET=0x00001FE1; delay(10000); IOCLR=0x00001FE1; IOSET=0x000001E1; delay(10000); IOCLR=0x000001E1; IOSET=0x00001F61; delay(10000); IOCLR=0x00001F61; IOSET=0x00001B61; delay(10000); IOCLR=0x00001B61; IOSET=0x000019A1; delay(10000); IOCLR=0x000019A1; IOSET=0x000013E1; delay(10000); IOCLR=0x000013E1; IOSET=0x000016E1; delay(10000); IOCLR=0x000016E1; IOSET=0x000001A1; delay(10000); IOCLR=0x000001A1; for(k=0;k<5;k++) { IOSET=0x00000011; delay(3000); IOCLR=0x00000010; delay(3000); } IOCLR=0x00000001;

RFID毕业课程设计

RFID毕业课程设计 (本文档为word格式。下载后您可以进行编辑和修改!) 中南大学 射频识别课程设计 学院:信息科学与工程学院 班:学号:讲师: 1年前 9这种传统的仓库管理,一般依靠非自动化的基于纸张的系统来记录和跟踪进出的货物,并且仓库的内部管理完全是人工进行的。因此,仓库管理的效率极低,能够管理的仓库规模也很小。随着计算机应用的普及,目前大多数企业的仓库管理数据已经开始由计算机数据系统管理,但数据仍然是通过纸质记录和手工输入计算机的方式进行收集和统计整理的。这不仅造成人力资源的大量浪费,而且由于人为因素

导致数据录入速度慢、准确性低。随着企业规模的不断发展,仓库管理下的物料类型和机器数量不断增加,进出仓库的频率急剧增加。仓库管理操作也变得非常复杂和多样化。传统的手工仓库操作模式和数据采集方式已经不能满足快速准确的仓库管理要求,严重影响了企业的运营效率,成为企业发展的主要障碍。 射频识别技术目前正在给供应链领域带来巨大的变革,它可以识别条形码不可比拟的优点,如距离远、速度快、不易损坏、容量大等。,简化复杂的工作流程,有效提高供应链的效率和透明度。基于射频识别的仓库管理系统是将射频识别技术引入到现有的仓库管理中,自动采集仓库到货检验、入库、出库、调拨、仓库调拨、库存盘点等各个操作环节的数据,保证仓库管理各个环节数据输入的速度和准确性,保证企业能够及时准确地掌握库存的真实数据,合理地维护和控制企业库存。通过科学编码,也便于管理物品的批次和保质期。通过使用 系统的货位管理功能,可以及时掌握所有库存物料的当前货位,有利于提高仓库管理的工作效率。第一,实现目标 。在这个计划中,速度、效率、准确性和信息集成是要追求的关键目标。主要在于提高仓库管理的正确性、管理的准确性和操作的便利性;将射频识别技术集成到仓库管理系统中,应用货物包装和货物定位两种电子标签辅助仓库管理,提高企业效率。 。最小包装单元管理,即存储的每个最小包装单元都有一个支持精细

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

射频与微波论文-射频与微波应用与发展综述

射频与微波技术应用与发展综述 班级: 姓名: 学号: 序号: 日期:

摘要: 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信,再 到微波炉,微波技术对社会发展和人们生活的进步产生着深远的影响。本文介绍了微波技 术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。Abstract: Microwave technology is one of the most important technology in the nearly century, from radar to broadcast TV, radio communication, microwave oven, microwave technology had a profound impact on society development and progress of people's lives .The paper introduced the development of microwave technology and it’s applications in various fields. It also discussed the future direction of microwave technology. 关键词:微波技术,微波电效应,污水处理 Keywords: Microwave technology, microwave electric effect, sewage treatment 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为 它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。 19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其 进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦 的一个预言──电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4 月美国科学家SouthWorth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导 传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个预言──电磁波可以 在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效

中南大学RFID课程设计报告

CENTRAL SOUTH UNIVERSITY 课程设计报告 课程: RFID课程设计 班级:物联网工程1201班 学号: 0909120316 姓名:王兆岳 指导教师:李刚 日期: 2015年4月25日

第一节课程设计选题 (1) 1.1选题背景 (1) 1.2课程设计目标 (1) 1.3课程设计使用的相关语言及数据库 (2) 1.4测试环境 (2) 第二节总体设计 (2) 2.1处理流程概要 (2) 2.2总体架构设计 (3) 2.3总体处理流程 (4) 第三节 PC端具体设计 (4) 3.1PC端模块划分 (4) 3.2出入库控制模块 (5) 3.3信息查询模块 (6) 3.4账号注册模块 (8) 3.5充值缴费模块 (8) 3.6硬件通讯中间件 (10) 第四节移动端具体设计 (11) 4.1剩余车位展示 (11) 4.2停车场线路导航 (12) 4.3个人记录、余额查询 (13) 第五节主要算法 (13) 6.1避免刷卡同时激活入库和出库 (13) 6.2多张卡同时在区域内时的屏蔽 (14) 6.3屏蔽偶发错误 (15) 第六节实验总结 (15)

第一节课程设计选题 1.1选题背景 近几年随着我国高速发展,我国的机动车保有量也在不断攀升,因此楼宇、社区和商业区构建停车场及管理系统就显得十分迫切,构建一套包含车辆进出、停车泊位、缴费结算、资料查询、信息提示等功能的相对完善的管理系统,已成为停车场管理部门的共同愿望,同时由于传统停车场并没有与互联网实现对接,经常造成停车位的浪费或是由于驾驶员不能及时获知停车位已满的消息而导致能源的极大浪费、加剧交通拥堵的状况,基于此我选择停车场管理系统作为本次RFID课程设计的题目。 1.2课程设计目标 在本方案中,效率、正确率、信息的整合、以及便捷性是重点追求的目标。 效率读取后数据应及时进行处理,并写入数据库备查 正确率保证每次读取信息的准确性,避免“漏读”或“重读” 信息的整合不同功能模块要实现良好的整合 便捷性尽可能减少人员手动操作,尽量实现自动化

RFID课程设计

武汉理工大学华夏学院 课程设计报告 课程名称:射频识别基础课程设计 题目:高频数据块写入 专业信息工程系 班级 学号 姓名 成绩_________________ 指导教师 2015年1月5日至2015年1月9日

设计实验目的 学习和掌握高频RFID电子标签的识别控制原理。 一、设计实验内容 将电子标签放入高频RFID模块的识别范围内,高频RFID模块识别后在LCD上显示识别的卡号。 二、使用仪器 电脑一台、WSN通用底板、RF2530模块、高频RFID模块、电子标签、zigbee多功能仿真器(带10pin的JTAG下载线)、A转Mini USB线。 三、设计实验原理 射频识别技术(RFID)是一种新型自动识别技术,具有可靠性高、保密性强、方便快捷的特点,它利用无线射频方式,通过电磁感应、无线电波或微波能量,在读写基站和应答目标之间进行非接触双向通信,以达到目标识别和数据交换的目的,这项技术简称为“电子标签”。 射频识别系统通常由电子标签(射频标签)和阅读器组成。电子标签内,存有一定格式的电子数据,常以此作为待识别目标的标示性信息。应用中将电子标签附在待识别目标上,作为待识别目标的电子标记,阅读器与电子标签可按约定的通信协议互传信息,RFID标签主要分为无源标签和有源标签两类(或是称为主动和被动)。 最常见的是被动标签(无源标签),当阅读器遇见RFID标签时,发出电磁波,周围形成电磁场,标签从电磁场中获得能量激活标签中的微芯片电路,芯片转换电磁波,然后发送给解读器,解读器把它转换成相关数据。 这里我们主要使用的电子标签是Mifare S70射频薄卡,该卡采用的飞利浦(NXP)原装的Mifare IC S70芯片,符合IEC/ISO 14443A 空气接口协议。其具有先进的数据加密及双向密码验证系统,与S50芯片相比,其具有更大的存储容量,是企业一卡通,水表预付费,公交储值卡,高速公路收费,停车场,小区管理,交运卡,公园,公路等首选的高频RFID产品。 卡片有4K的存储空间,有32个小扇区和8个大扇区。小扇区的结构为:每扇区有4块,每块16个字节,一共64字节,第3块为密钥和控制字节;大扇区的结构为:每扇区16块,每块16个字节,一共256字节,第15块为密钥和控制字节;详细介绍如下: (1)4K字节, 共40个扇区。前32个扇区中,每个扇区4个数据块;后8个扇区中,每个扇区16个数据块。每个数据块16个字节; (2)每个扇区有独立的一组密码及访问控制; (3)每张卡有唯一序列号,为32位; (4)具有防冲突机制,支持多卡操作; (5)无电源,自带天线,内含加密控制逻辑和通讯逻辑电路; (6)数据保存期为10年,可改写10万次,读无限次; (7)工作频率:13.56MHZ; (8)通信速率:106 KBPS; (9)读写距离:10 cm以内(与读写器有关)。 其存储结构——4K字节, 共40个扇区,前32个扇区中,每个扇区4个数据块;后8

课程设计——基于ADS的微带滤波器设计

课程设计 报告 题目:基于ADS的微带滤波器设计姓名: 学号: 班级:电子101 专业:电子信息工程 指导老师: 提交时间: 2014-01-05

1.绪论 我们利用微波滤波器只让频率正确的的信号通过阻碍频率不同的信号的特性来区分信号。滤波器的性能对微波电路系统的性能指标有很大的影响,因此设计微波电路系统时设计出具有高性能的滤波器很重要。微带电路在微波电路系统应用广泛路。具有个体,质量轻、频带分布宽等特点,其中用微带做滤波器是其主要应用之一,微带滤波器当中最基本的滤波器是微带低通滤波器,而别的滤波器可以通过低通滤波器为原型转化过来。其中最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。因此本节将重点研究如何设计并优化微带滤波器 1.1 微带滤波器简介 滤波器是一个的二端口网络,对频率适合的信号进行传输,对频率不匹配的信号进行发射衰减,从而实现信号频谱过滤。典型的频率响应包括低通、高通、带通、带阻衰减。如图1-1所示. 还可以从不同角度对滤波器进行分类: (1)按功能分,低通滤波器,高通滤波器,带通滤波器,带阻滤波器,可调滤波器。 (2)按用的元件分,集总参数滤波器,分布参数滤波器,无源滤波器,有源滤波器,晶体滤波器,声表面波滤波器,等。

1.2微带滤波器的主要参数 (1)中心频率:一般取f0=(f1+f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 (2)截止频率:指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。 (3)通带带宽:指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽=BW3dB/f0×100%, (4)纹波:指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 (5)带内波动:通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 (6)带内驻波比:衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR<1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 (7)回波损耗:端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。

相关文档
最新文档