现代密码学考试重点总结 (1)

现代密码学考试重点总结 (1)
现代密码学考试重点总结 (1)

古典密码

1.密码的基本概念

○1作为数学的一个分支,是密码编码学和密码分析学的统称

○2密码编码学:使消息保密的技术和科学

研究内容:1、序列密码算法的编码技术

2、分组密码算法的编码技术

3、公钥密码体制的编码技术

○3密码分析学:破译密文的科学和技术

研究内容:1、密码算法的安全性分析和破译的理论、方法、技术和实践

2、密码协议的安全性分析的理论与方法

3、安全保密系统的安全性分析和攻击的理论、方法、技术和实践2.密码体制的5构成要素:

○1M:明文消息空间,表示所有可能的明文组成的有限集。

○2C:密文消息空间,表示所有可能的密文组成的有限集。

○3K:密钥空间,表示所有可能的密钥组成的有限集。

○4E:加密算法集合。

○5D:解密算法集合

3.密码体制的分类:

○1对称密匙密码系统加密密钥=解密密钥钥匙是保密的依赖密钥选择

○2非对称密匙密码系统加密密钥≠解密密钥

加密密钥为公钥(Public Key)解密密钥为私钥(Private Key)

4.古典密码体制的算法

○1棋盘密码希腊作家Polybius提出密钥空间:25

○2移位密码

○3代换密码

○4维吉尼亚密码

○5仿射密码:仿射密码是移位密码的一个推广,其加密过程中不仅包含移位操作,而且使用了乘法运算

例题:

1-1mod26=1 3-1mod26=9 5-

1mod26=21 7-1mod26=15

11-1mod26=19 17-1mod26=23 25-

1mod26=25 ○6置换密码

○7Hill密码

例题:

5.密码分析的Kerckhoffs原

则:攻击者知道所用的加密算法的内部机理,不知道的仅仅是加密算法所采用的加密密钥

6.常用的密码分析攻击分为以下四类:

惟密文攻击 已知明文攻击 选择明文攻击 选择密文攻击

7. 衡量密码体制安全性的基本准则:

计算安全的 可证明安全的 无条件安全的

分组密码

8. 分组密码的设计准则

1概念:又称块密码。是指对固定长度的一组明文进行加密的一种加密算法,这一固定长度称之为分组长度

2在分组加密中,要求填充是可逆的 ○

3严格的雪崩准则SAC 位独立准则BIG 保证的雪崩准则GAC 非线性性和随机性 9. Feistel 分组密码的基本结构:

Shannon 能够破坏对密码系统进行各种统计分析攻击的两个基本操作:扩散和混淆

10. Feistel 安全性取决于:

1明文消息和密文消息分组的大小 ○

2子密钥的大小 ○

3循环次数 ○

4子密钥产生算法 ○

5轮函数(核心——非线性) 11. 数据加密标准——DES (Data Encryption Standard )

1包含16个阶段的“替换--置换”的分组加密算法 经过16轮加密得到64位密文序列 ○

2密钥的长度56位 12. DES 共8个s 盒——6位输入4位输出

13. 高级加密标准AES (Advanced Encryption Standard )

128位分组/密钥—10轮 192位分组/密钥—12轮 256位分组/密钥—14轮

14. IDEA (International Data Encryption Algorithm :国际数据加密标准)

64位分组 128位密钥 8轮

15. 分组密码的4种常用工作模式为:

“工作模式”是指以某个分组密码算法为基础,解决对任意长度的明文的加密问题的方法

电码本模式(Electronic-Codebook Mode ,ECB 模式)

密码反馈模式(Cipher- Feedback Mode ,CFB 模式)

密码分组链接模式(Cipher-Block-Chaining,CBC 模式)

输出反馈模式(Output-Feedback Mode ,OFB 模式)

模式(计数器Counter Mode ,CTR 模式)

16. 分组密码的分析技术主要有以下几种:

穷尽搜索攻击;

差分密码分析攻击;

线性密码分析攻击;

相关的密钥密码分析攻击。 序列密码

17. 序列密码的设计思想

18. 序列密码的主要原理: 通过随机数发生器产生性能优良的伪随机序列(密钥流),使用该序列加密信息流(逐比特加密),得到密文序列。 种子密钥

随机数发生器 密钥流

明文流 加密变换 密文流

19.序列密码的分类:

○1同步序列密码性质:1.同步性 2.无错误传播性 3.主动攻击

○2自同步序列密码性质:1.自同步性2.错误传播的有限性3.主动攻击4.明文统计扩散性

20.随机性检验的5个统计测试

○1频率测试○2序列测试○3扑克测试○4游程测试○5自相关测试

24. 序列密码的攻击法

○11.插入攻击法○2位串匹配攻击法○3单词匹配攻击法

Hash函数

21.Hash函数概念:是一个将任意长度的消息序列映射为较短的、固定长度的一个值的函数

能够保障数据的完整性

22.Hash函数的分类:

○1简单的Hash函数

○2带密钥的Hash函数

23.带密钥的Hash函数通常用来作为:

消息认证码MAC(Message authentication code)

24.一个带密钥的Hash函数包括以下构成要素:

X:所有消息的集合(有限级或无限级)

Y:所有消息摘要构成的有限集合

K:密钥集合

25.Hash函数的性质:

(1)能够用于任何大小的数据分组√

(2)能产生定长的输出√

(3)易于计算,便于软硬件实现√用于消息认证的基本要求

(4)原像稳固——单向性

26.Hash函数的目的:是确定消息是否被修改

27.对Hash函数攻击的目标是:

生成这样的修改后消息:其Hash函数值与原始消息的Hash函数值相等。

28.典型的hash函数算法

○1MD5(改进MD——Message Digest,消息摘要的算法)

○2SHA-1(SHA:Security Hash Algorithm,安全Hash算法)

29.MD5的具体步骤:

看ppt

30.MD5算法的性质:

31.○1Hash函数的每一位均是输入消息序列中每一位的函数。

○2保证了在Hash函数计算过程中产生基于消息x 的混合重复,从而使得生成的Hash函数结果混合得非常理想。

○3也就是说,随机选取两个有着相似规律性的两组消息序列,也很难产生相同的Hash函数值

32.SHA-1的具体步骤:

○1填充消息:首先将消息填充为512的整数倍,填充方法与MD5相同。与MD5不同的是SHA-1的输入为长度小于264比特的消息

○2初始化缓冲区:初始化160位的消息摘要缓冲区(即设定IV值),每个缓冲区由5个

32比特的寄存器A,B,C,D,E组成

○3处理512位消息块Yq,进入主循环

主循环有四轮,每轮20次操作(MD5 有四轮,每轮16次操作)。

每次操作对A 、B 、C 、D 和E中的三个做一次非线性函数运算

然后进行与MD5中类似的移位运算和加运算

公钥密码

33.公钥密码体制的提出者(美国):○1W. Diffie ○2M. Hellman

34.公钥密码体制的基本流程:

Ppt

35.公钥密码体制的基本思想:

ppt

公钥密码体制的核心:加密变换和解密变换的设计

36.公钥密码学解决的两个问题:○1密钥分配○2数字签名

37.公钥密码的好处:

○1简化了密钥分配任务;○2对密钥协商与密钥管理,数字签名与身份

○3认证产生了深刻的影响;○4是密码学发展史上的一次革命

38.RSA算法思想+提出者+RSA公钥算法特点

○1提出者:美国R. Rivest,A. Shamir和L. Adleman

39.RSA算法原理:大数分解问题:

○1计算两个素数的乘积非常容易;○2分解该乘积却异常困难

RSA算法描述ppt

数字签名

40.数字签名的用途:

用于网络通信的安全以及各种用途的电子交易系统(如电子商务、电子政务、电子出版、网络学习、远程医疗等)中

41.数字签名的概念:

数字签名是对以数字形式存储的消息进行某种处理,产生一种类似于传统手书签名功效的信息处理过程

它通常将某个算法作用于需要签名的消息,生成一种带有操作者身份信息的编码

49. 数字签名体制——组成部分

○1签名算法:用于对消息产生数字签名,通常受一个签名密钥的控制签名算法或者签名密钥是保密的,有签名者掌握

○2验证算法:用于对消息的数字签名进行验证,通常受一个验证密钥的控制,验证算法和验证密钥应该公开。

51. 功能特性:

○1依赖性:一个数字签名与被签消息是紧密相关,不可分割的,离开被签消息,签名不再具有任何效用

○2独特性:数字签名必须是根据签名者拥有的独特消息来产生的,包含了能够代表签名者特有身份的关键信息。

○3可验证性:通过验证算法能够准切地验证一个数字签名的真伪。

○4不可伪造性:伪造一个签名者的数字签名不仅在计算上不可行,而且希望通过重用或者拼接的方法伪造签名也是行不通的。

○5可用性:数字签名的生成,验证和识别的处理过程相对简单,能够在普通的设备上快速完成,甚至可以在线处理,签名的结果可以存储和备份。

52. 安全特性:

○1单向性:对于给定的数字签名算法,签名者使用自己的签名密钥sk对消息m进行数字签名是计算上容易的,但给定一个消息m和它的一个数字签名s,希望推

导出签名者的签名密钥sk是计算上不可行的。

○2无碰撞性:对于两个不同消息,在相同的签名密钥下的数字签名相等的概率是可以忽略的。

○3无关性:对于两个不同的消息,从某个签名者对其中一个消息的签名推导出对另一个消息的签名是不可能的。

53. 数字签名的实现方法:

54. 基于公钥密码的数字签名体制

55. 数字签名的分类:

○1直接数字签名体制

○2可仲裁的数字签名体制

56. 对RSA数字签名算法进行选择密文攻击可以实现三个目的,即:

※消息破译※骗取仲裁签名※骗取用户签名

59. 数字签名标准DSS

实质:是ElGamal签名体制

1密码学-DES实验报告

南京信息工程大学实验(实习)报告实验(实习)名称对称密码实验(实习)日期得分指导教师 系计软院专业网络工程年2011 班次 1 姓名学号20111346026 一.实验目的 1.理解对称加密算法的原理和特点 2.理解DES算法的加密原理 二.实验内容 第一阶段:初始置换IP。在第一轮迭代之前,需要加密的64位明文首先通过初始置换IP 的作用,对输入分组实施置换。最后,按照置换顺序,DES将64位的置换结果分为左右两部分,第1位到第32位记为L0,第33位到第64位记为R0。 第二阶段:16次迭代变换。DES采用了典型的Feistel结构,是一个乘积结构的迭代密码算法。其算法的核心是算法所规定的16次迭代变换。DES算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥Ki作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。用下面的规则来表示这一过程(假设第i次迭代所得到的结果为LiRi): Li = Ri-1; Ri = Li-1⊕f(Ri-1,Ki);在最后一轮左与右半部分并未变换,而是直接将R16 L16并在一起作为未置换的输入。 第三阶段:逆(初始)置换。他是初始置换IP的逆置换,记为IP-1。在对16次迭代的结果(R16 L16)再使用逆置换IP-1后,得到的结果即可作为DES加密的密文Y输出,即Y = IP-1 (R16 L16) 三.流程图&原理图

流程图

DES原理图

现代密码学考试重点总结 (1)

古典密码 1.密码的基本概念 ○1作为数学的一个分支,是密码编码学和密码分析学的统称 ○2密码编码学:使消息保密的技术和科学 研究内容:1、序列密码算法的编码技术 2、分组密码算法的编码技术 3、公钥密码体制的编码技术 ○3密码分析学:破译密文的科学和技术 研究内容:1、密码算法的安全性分析和破译的理论、方法、技术和实践 2、密码协议的安全性分析的理论与方法 3、安全保密系统的安全性分析和攻击的理论、方法、技术和实践2.密码体制的5构成要素: ○1M:明文消息空间,表示所有可能的明文组成的有限集。 ○2C:密文消息空间,表示所有可能的密文组成的有限集。 ○3K:密钥空间,表示所有可能的密钥组成的有限集。 ○4E:加密算法集合。 ○5D:解密算法集合 3.密码体制的分类: ○1对称密匙密码系统加密密钥=解密密钥钥匙是保密的依赖密钥选择 ○2非对称密匙密码系统加密密钥≠解密密钥 加密密钥为公钥(Public Key)解密密钥为私钥(Private Key) 4.古典密码体制的算法 ○1棋盘密码希腊作家Polybius提出密钥空间:25 ○2移位密码 ○3代换密码 ○4维吉尼亚密码 ○5仿射密码:仿射密码是移位密码的一个推广,其加密过程中不仅包含移位操作,而且使用了乘法运算 例题: 1-1mod26=1 3-1mod26=9 5- 1mod26=21 7-1mod26=15 11-1mod26=19 17-1mod26=23 25- 1mod26=25 ○6置换密码 ○7Hill密码 例题: 5.密码分析的Kerckhoffs原 则:攻击者知道所用的加密算法的内部机理,不知道的仅仅是加密算法所采用的加密密钥 6.常用的密码分析攻击分为以下四类:

(完整版)北邮版《现代密码学》习题答案.doc

《现代密码学习题》答案 第一章 1、1949 年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理 论基础,从此密码学成了一门科学。 A、Shannon B 、Diffie C、Hellman D 、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥 5 部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要 的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A 无条件安全 B计算安全 C可证明安全 D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为 4 类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B 、已知明文攻击 C 、选择明文攻击D、选择密文攻击 5、1976 年,和在密码学的新方向一文中提出了公开密钥密码的思想, 从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通

信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 对9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为 称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对( B )算法最有效。 A、置换密码 B 、单表代换密码C、多表代换密码D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A 仿射密码 B维吉利亚密码C轮转密码 D希尔密码 3、重合指数法对( C)算法的破解最有效。 A 置换密码 B单表代换密码C多表代换密码 D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是 (C )。

密码学实验报告

密码学实验报告 学院:计算机科学与技术 班级: 学号: 姓名: 指导老师:

密码学 实验日志 实验题目: DES (或AES )分组密码 实验目的: 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; 分组密码将明文分成一组一组,在密钥的控制下,经过加密变换生成一组一组的密文。具体而言,分组密码就是将明文消息序列 ,,,,21i m m m 划分成等长的消息组 ),,,,(),,,,(22121n n n n m m m m m m ++在密钥t k k k k ,,,21 =的控制下按固定的加密算法一组一 组进行加密,输出一组一组密文 ),,,,(),,,,(22121l l l l c c c c c c ++。 下面的实验以DES 算法为例,DES 算法明文分组长为64bit ,加密后得到64bit 的密文,输入初始种子密钥为64bit ,第8、16、24、32、40、48、56、64为奇偶校验位,实际的密钥长为56bit 。DES 加密过程由三个阶段来完成: (1) 初始置换IP ,用于重排明文分组的64bit 数据; (2) 相同结构的16轮迭代,每轮中都有置换和代换运算,第16轮变换的输出分为左右两半,并交换次序。 (3) 逆初始置换IP -1 (为IP 的逆)后,产生64bit 的密文。 实验要求: (1) Windows 系列操作系统; (2) VC6.0编程环境。 (3) 提交完整的程序代码清单和详细的注释; (4) 要求有程序运行结果显示。当加密成功时,得到密文;输入相同的密钥,能将密文恢复成明文。 实验主要步骤: (1) 熟悉分组密码加解密算法的基本原理,加深对所提供的部分源程序的理解; (2) 分析源程序中密码算法的加解密和子密钥生成等典型模块的主要功能,并对源程序加上注释; (3) 在已提供的部分源程序的基础上,添加源程序省缺的部分; (4) 对给定的消息分组进行加解密运算和验证。 源代码: #include #include #include typedef bool (*PSubKey)[16][48]; enum {ENCRYPT,DECRYPT}; //选择:加密;解密 static bool SubKey[2][16][48]; // 16圈子密钥 static bool Is3DES; // 3次DES 标志 static char Tmp[256], deskey[16]; //暂存字符串,密钥串

现代密码学考试总结

密码主要功能: 1.机密性:指保证信息不泄露给非授权的用户或实体,确保存储的信息和传输的信息仅能 被授权的各方得到,而非授权用户即使得到信息也无法知晓信息容,不能使用。 2.完整性:是指信息未经授权不能进行改变的特征,维护信息的一致性,即信息在生成、 传输、存储和使用过程中不应发生人为或非人为的非授权篡改(插入、替换、删除、重排序等),如果发生,能够及时发现。 3.认证性:是指确保一个信息的来源或源本身被正确地标识,同时确保该标识的真实性, 分为实体认证和消息认证。 消息认证:向接收方保证消息确实来自于它所宣称的源; 实体认证:参与信息处理的实体是可信的,即每个实体的确是它所宣称的那个实体,使得任何其它实体不能假冒这个实体。 4.不可否认性:是防止发送方或接收方抵赖所传输的信息,要求无论发送方还是接收方都 不能抵赖所进行的行为。因此,当发送一个信息时,接收方能证实该信息的确是由所宣称的发送方发来的;当接收方收到一个信息时,发送方能够证实该信息的确送到了指定的接收方。 信息安全:指信息网络的硬件、软件及其系统中的数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露、否认等,系统连续可靠正常地运行,信息服务不中断。 信息安全的理论基础是密码学,根本解决,密码学理论 对称密码技术——分组密码和序列密码——机密性; 消息认证码——完整性,认证性; 数字签名技术——完整性,认证性,不可否认性; 1949年Shannon发表题为《保密系统的通信理论》 1976年后,美国数据加密标准(DES)的公布使密码学的研究公开,密码学得到了迅速发展。1976年,Diffe和Hellman发表了《密码学的新方向》,提出了一种新的密码设计思想,从而开创了公钥密码学的新纪元。 置换密码 置换密码的特点是保持明文的所有字符不变,只是利用置换打乱了明文字符的位置和次序。列置换密码和周期置换密码 使用密码设备必备四要素:安全、性能、成本、方便。 密码体制的基本要求: 1.密码体制既易于实现又便于使用,主要是指加密函数和解密函数都可以高效地计算。 2.密码体制的安全性是依赖密钥的安全性,密码算法是公开的。 3.密码算法安全强度高,也就是说,密码分析者除了穷举搜索攻击外再找不到更好的攻击 方法。 4.密钥空间应足够大,使得试图通过穷举密钥空间进行搜索的方式在计算上不可行。 密码算法公开的意义: 有利于增强密码算法的安全性;

实验报告_密码学

信息安全实验报告 学号: 学生姓名: 班级:

实验三密码学实验 一、古典密码算法实验 一、实验目的 通过编程实现替代密码算法和置换密码算法,加深对古典密码体制的了解,为深入学习密码学奠定基础。 二、编译环境 运行windows 或linux 操作系统的PC 机,具有gcc(linux)、VC (windows)等C语言编译环境。 三、实验原理 古典密码算法历史上曾被广泛应用,大都比较简单,使用手工和机械操作来实现加密和解密。它的主要应用对象是文字信息,利用密码算法实现文字信息的加密和解密。下面介绍两种常见的具有代表性的古典密码算法,以帮助读者对密码算法建立一个初步的印象。 1.替代密码 替代密码算法的原理是使用替代法进行加密,就是将明文中的字符用其它字符替代后形成密文。例如:明文字母a、b、c、d ,用D、E、F、G做对应替换后形成密文。 替代密码包括多种类型,如单表替代密码、多明码替代密码、多字母替代密码、多表替代密码等。下面我们介绍一种典型的单表替代密码,恺撒(caesar)密码,又叫循环移位密码。它的加密方法,就是将明文中的每个字母用此字符在字母表中后面第k个字母替代。它的加密过程可以表示为下面的函数:E(m)=(m+k) mod n 其中:m 为明文字母在字母表中的位置数;n 为字母表中的字母个数;k 为密钥;E(m)为密文字母在字母表中对应的位置数。例如,对于明文字母H,其在字母表中的位置数为8,设k=4,则按照上式计算出来的密文为L:E(8) = (m+k) mod n = (8+4) mod 26 = 12 = L

2.置换密码 置换密码算法的原理是不改变明文字符,只将字符在明文中的排列顺序改 变,从而实现明文信息的加密。置换密码有时又称为换位密码。 矩阵换位法是实现置换密码的一种常用方法。它将明文中的字母按照给的 顺序安排在一个矩阵中,然后用根据密钥提供的顺序重新组合矩阵中字母,从而 形成密文。例如,明文为attack begins at five,密钥为cipher,将明文按照每行 6 列的形式排在矩阵中,形成如下形式: a t t a c k b e g i n s a t f i v e 根据密钥cipher中各字母在字母表中出现的先后顺序,给定一个置换: 1 2 3 4 5 6 f = 1 4 5 3 2 6 根据上面的置换,将原有矩阵中的字母按照第 1 列,第 4 列,第 5 列,第 3 列, 第2列,第 6 列的顺序排列,则有下面形式: a a c t t k b i n g e s a I v f t e 从而得到密文:abatgftetcnvaiikse 其解密的过程是根据密钥的字母数作为列数,将密文按照列、行的顺序写出,再根据由密钥给出的矩阵置换产生新的矩阵,从而恢复明文。 四、实验内容和步骤 1、根据实验原理部分对替代密码算法的介绍,自己创建明文信息,并选择 一个密钥k,编写替代密码算法的实现程序,实现加密和解密操作。 2、根据实验原理部分对置换密码算法的介绍,自己创建明文信息,并选择一个密钥,编写置换密码算法的实现程序,实现加密和解密操作。 五、总结与思考 记录程序调试过程中出现的问题,分析其原因并找出解决方法。记录最终实现的程序执行结果。

密码学知识点总结----考试复习专用

1 密码学分类 2 攻击分类 3 安全业务 4 算法输入输出位数 5 密钥分配管理 6 密钥分配 7 公钥分配 8 三重DES 9 杂凑的要求 10 欧几里得 11 本原根 12勒让德符号 13数字签名的执行方式 14强单向杂凑 15模运算性质 16 同余式 17 DES 18 AES 19 RSA 20 MD5 21费尔马定理 22 欧拉定理 23 中国剩余定理 24 四种工作模式 1 密码学分类 单钥体制双钥体制 2 攻击分类 唯密文攻击已知明文攻击选择明文攻击选择密文攻击 3 安全业务 认证业务保密业务完整性业务不可否认业务访问控制 4 算法输入输出位数 DES 64比特明文56比特密钥输出64比特密文 AES 128 192 256 比特 RSA 输入664比特 MD5 输入512比特分组128比特输出 5 密钥分配管理 两个用户A和B获得共享密钥的方法包括: ①密钥由A选取并通过物理手段发送给B。 ②密钥由第三方选取并通过物理手段发送给A和B。

③如果A、B事先已有一密钥,则其中一方选取新密钥后,用已有的密钥加密新密钥并发送给另一方。 ④如果A和B与第三方C分别有一保密信道,则C为A、B选取密钥后,分别在两个保密信道上发送给A、B 6 密钥分配 ①A向KDC发出会话密钥请求 ②KDC为A的请求发出应答。 ②A存储会话密钥,并向B转发EKB[KS‖IDA]。 ④B用会话密钥KS加密另一个一次性随机数N2,并将加密结果发送给A。 ⑤A以f(N2)作为对B的应答,其中f是对N2进行某种变换(例如加1)的函数,并将应答用会话密钥加密后发送给B。 7 公钥分配 ①用户A向公钥管理机构发送一个带时戳的消息,消息中有获取用户B的当前公钥的请求。 ②管理机构对A的请求作出应答,应答由一个消息表示,该消息由管理机构用自己的秘密钥SKAU加密,因此A能用管理机构的公开钥解密,并使A相信这个消息的确是来源于管理机构。 ③A用B的公开钥对一个消息加密后发往B,这个消息有两个数据项: 一是A的身份IDA,二是一个一次性随机数N1,用于惟一地标识这次业务。 ④B以相同方式从管理机构获取A的公开钥(与步骤①、②类似)。这时,A和B都已安全地得到了对方的公钥,所以可进行保密通信。然而,他们也许还希望有以下两步,以认证对方。 ⑤B用PKA对一个消息加密后发往A,该消息的数据项有A的一次性随机数N1和B产生的一个一次性随机数N2。因为只有B能解密③的消息,所以A收到的消息中的N1可使其相信通信的另一方的确是B。 ⑥A用B的公开钥对N2加密后返回给B,可使B相信通信的另一方的确是A。

密码学实验第三组实验报告

云南大学数学与统计学实验教学中心实验报告 课程名称:密码学实验学期:2013-2014学年第一学期成绩: 指导教师:陆正福学生姓名:卢富毓学生学号:20101910072 实验名称:零知识证明实验要求:必做实验学时:4学时 实验编号: No.3 实验日期:2013/9/28完成日期:2012/10/18 学院:数学与统计学院专业:信息与计算科学年级: 2010级 一、实验目的: 了解零知识证明,同时掌握FFS识别方案。 二、实验内容: 1. 理解零知识证明 2. 基于GMP实现FFS零知识证明方案 三、实验环境 Linux平台 Code::Block IDE https://www.360docs.net/doc/014949372.html, 网络在线编程平台(本实验是在此平台中完成的,效果一样) 四、实验过程(请学生认真填写): 1. 预备知识: “零知识证明”它指的是证明者能够在不向验证者提供任何有用的信息的情况下,使验证者相信某个论断是正确的。零知识证明实质上是一种涉及两方或更多方的协议,即两方或更多方完成一项任务所需采取的一系列步骤。证明者向验证者证明并使其相信自己知道或拥有某一消息,但证明过程不能向验证者泄漏任何关于被证明消息的信息。 2. 实验过程 A、原理分析: Feige-Fait-Shamir是一种并行的认证形式。具体做法如下 首先:选择大素数q 和p, 计算n=pq ,Peggy 拥有密钥s1, s2, ...,sk 接着做如下UML图中的内容:

//缺点有:首先在编写好程序后才发现,无法模拟伪造者来进行。这个由结果就能看出来。 //同时,此程序仅仅模拟,做不到并行认证。 五、实验总结 1.遇到的问题、分析并的出方案(列出遇到的问题和解决办法,列出没有解决的问题):遇到问题: 主要是对于算法的不熟悉,不能清晰的认识整个算法运作。 分析并解决: 仔细揣摩,并且动手写了一下算法的UML图。得到了加深。 2.体会和收获。 收获: 加深了GMP中函数的运用。 在学习零知识证明的知识后,了解了什么是零知识证明,同时会了一点零知识证明的方法。这是比较大的收获——毕竟以前从没有想过这方面的东西,接触之后才恍然。 当然这个FFS算法也并不是一定的安全。也存在着一定的缺陷和漏洞,例如验证次数、对于vi的猜测等等。 六、参考文献 GMP_Document 《应用密码学》林岱岳 《密码学概论》wade trape 七、教师评语:

现代密码学考试总结

现代密码学考试总结 https://www.360docs.net/doc/014949372.html,work Information Technology Company.2020YEAR

密码主要功能: 1.机密性:指保证信息不泄露给非授权的用户或实体,确保存储的信息和传输的信息仅 能被授权的各方得到,而非授权用户即使得到信息也无法知晓信息内容,不能使用。 2.完整性:是指信息未经授权不能进行改变的特征,维护信息的一致性,即信息在生 成、传输、存储和使用过程中不应发生人为或非人为的非授权篡改(插入、替换、删除、重排序等),如果发生,能够及时发现。 3.认证性:是指确保一个信息的来源或源本身被正确地标识,同时确保该标识的真实 性,分为实体认证和消息认证。 消息认证:向接收方保证消息确实来自于它所宣称的源; 实体认证:参与信息处理的实体是可信的,即每个实体的确是它所宣称的那个实体,使得任何其它实体不能假冒这个实体。 4.不可否认性:是防止发送方或接收方抵赖所传输的信息,要求无论发送方还是接收方 都不能抵赖所进行的行为。因此,当发送一个信息时,接收方能证实该信息的确是由所宣称的发送方发来的;当接收方收到一个信息时,发送方能够证实该信息的确送到了指定的接收方。 信息安全:指信息网络的硬件、软件及其系统中的数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改、泄露、否认等,系统连续可靠正常地运行,信息服务不中断。 信息安全的理论基础是密码学,根本解决,密码学理论 对称密码技术——分组密码和序列密码——机密性; 消息认证码——完整性,认证性; 数字签名技术——完整性,认证性,不可否认性; 1949年Shannon发表题为《保密系统的通信理论》 1976年后,美国数据加密标准(DES)的公布使密码学的研究公开,密码学得到了迅速发展。 1976年,Diffe和Hellman发表了《密码学的新方向》,提出了一种新的密码设计思想,从而开创了公钥密码学的新纪元。 置换密码 置换密码的特点是保持明文的所有字符不变,只是利用置换打乱了明文字符的位置和次序。 列置换密码和周期置换密码 使用密码设备必备四要素:安全、性能、成本、方便。 密码体制的基本要求: 1.密码体制既易于实现又便于使用,主要是指加密函数和解密函数都可以高效地计算。 2.密码体制的安全性是依赖密钥的安全性,密码算法是公开的。 3.密码算法安全强度高,也就是说,密码分析者除了穷举搜索攻击外再找不到更好的攻 击方法。 4.密钥空间应足够大,使得试图通过穷举密钥空间进行搜索的方式在计算上不可行。

现代密码学期终考试试卷和答案

一.选择题 1、关于密码学的讨论中,下列(D )观点是不正确的。 A、密码学是研究与信息安全相关的方面如机密性、完整性、实体鉴别、抗否认等的综 合技术 B、密码学的两大分支是密码编码学和密码分析学 C、密码并不是提供安全的单一的手段,而是一组技术 D、密码学中存在一次一密的密码体制,它是绝对安全的 2、在以下古典密码体制中,属于置换密码的是(B)。 A、移位密码 B、倒序密码 C、仿射密码 D、PlayFair密码 3、一个完整的密码体制,不包括以下(?C?? )要素。 A、明文空间 B、密文空间 C、数字签名 D、密钥空间 4、关于DES算法,除了(C )以外,下列描述DES算法子密钥产生过程是正确的。 A、首先将DES 算法所接受的输入密钥K(64 位),去除奇偶校验位,得到56位密钥(即经过PC-1置换,得到56位密钥) B、在计算第i轮迭代所需的子密钥时,首先进行循环左移,循环左移的位数取决于i的值,这些经过循环移位的值作为下一次 循环左移的输入 C、在计算第i轮迭代所需的子密钥时,首先进行循环左移,每轮循环左移的位数都相同,这些经过循环移位的值作为下一次循 环左移的输入 D、然后将每轮循环移位后的值经PC-2置换,所得到的置换结果即为第i轮所需的子密钥Ki 5、2000年10月2日,NIST正式宣布将(B )候选算法作为高级数据加密标准,该算法是由两位比利时密码学者提出的。 A、MARS B、Rijndael C、Twofish D、Bluefish *6、根据所依据的数学难题,除了(A )以外,公钥密码体制可以分为以下几类。 A、模幂运算问题 B、大整数因子分解问题 C、离散对数问题 D、椭圆曲线离散对数问题 7、密码学中的杂凑函数(Hash函数)按照是否使用密钥分为两大类:带密钥的杂凑函数和不带密钥的杂凑函数,下面(C )是带密钥的杂凑函数。 A、MD4 B、SHA-1

密码学实验报告模板总结模板计划模板.doc

密码学应用与实践课程实验报告 实验 1:实现 DES密码体制 一、实验目的 1.编写程序实现 DES的加、解 密:1)编程构造 DES的密钥; 2)应用上述获得的密钥将一段英文或文件进行加、解密。 2.用 DES算法实现口令的安全 二、实验内容 1.DES原理 DES综合运用了置换,代换,移位多种密码技术,是一种乘积密码。在算法结构上采用迭代 结构,从而使其结构清晰,调理清楚,算法为对合运算,便于实现,运行速度快。DES使用了初始置换IP 和 IP-1 各一次(相应的置换看算法描述图表)置换P16 次,安排使用这 3 个置换的目的是把数据彻底打乱重排。选择置换 E 一方面把数据打乱重排,另一方面把32 位输入扩展为48 位,算法中除了S- 盒是非线性变换外,其余变换均为显示变换,所以保密 的关键是选择S- 盒。符合以下 3 条准则: (1)对任何一个 S- 盒而言,没有任何线性方程式等价于此S-盒的输出输入关系,即是S- 盒是非线性函数。 (2)改变 s- 盒的任何一位输入,都会导致两位以上的输出改变,即满足" 雪崩效应 " 。(3)当固定某一个位的输入时,S- 盒的 4 个出位之间,其中0 和 1 的个数之差小。这个准 则的本质是数据压缩,把四位输入压缩为 4 位输出。选择 S-盒函数的输入中任意改变数位, 其输出至少变化两位。因为算法中使用了16 次迭代,大大提高了保密性。 2.DES算法由加密、解密和子密钥的生成三部分组成 1)加密 DES算法处理的数据对象是一组64 比特的明文串。设该明文串为m=m1m2m64 (mi=0 或 1) 。明文串经过64 比特的密钥K 来加密,最后生成长度为64 比特的密文E。其加密过程图示如下:

(完整版)密码学学习心得

密码学认识与总结 专业班级信息112 学号201112030223 姓名李延召报告日期. 在我们的生活中有许多的秘密和隐私,我们不想让其他人知道,更不想让他们去广泛传播或者使用。对于我们来说,这些私密是至关重要的,它记载了我们个人的重要信息,其他人不需要知道,也没有必要知道。为了防止秘密泄露,我们当然就会设置密码,保护我们的信息安全。更有甚者去设置密保,以防密码丢失后能够及时找回。密码”一词对人们来说并不陌生,人们可以举出许多有关使用密码的例子。现代的密码已经比古代有了长远的发展,并逐渐形成一门科学,吸引着越来越多的人们为之奋斗。 一、密码学的定义 密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。 密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。 密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。 本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容 密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信

密码学实验讲义及实验报告2014

密码学基础 实验指导书 黑龙江大学计算机科学技术学院 2013年3月

目录 前言........................................................................................................................... - 2 -要求与评分标准....................................................................................................... - 3 -1要求. (3) 2评分标准 (3) 实验1 古典密码的实现(3学时) .................................................................... - 4 -实验2 对称密钥密码体制的实现(6学时) .................................................... - 4 -实验3 公开密钥密码算法的实现(6学时) .................................................... - 5 -实验4 数字签名算法的实现(3学时) ............................................................ - 5 -附录1:实验报告格式 ........................................................................................... - 7 -

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

现代密码学学习报告

现代密码学学习报告 第一章 概论 1.1信息安全与密码技术 信息的一般定义属于哲学范畴。信息是事物运动的状态与方式,是事物的一种区别于物质与能量的属性。 “信息”——数据。 机密性——拥有数据的一方或交换数据的各方不希望局外人或对手获得、进而读懂这些数据。 完整性——数据在交换及保存中不被未授权者删除或改动,或者合法的接受者能方便的判断该数据是否已经被篡改。 认证性——也称“不可否认性”或“抗抵赖”,包括信息源和接收端认证性,即信息系统中的实体不能否认或抵赖曾经完成的发送消息或接收消息的操作。利用信息源证据可以检测出消息发送方否认已发送某消息的抵赖行为,利用接收端证据可以检测出消息接收方否认已接收某消息的抵赖行为。此类证据通常还包括时间/时序或“新鲜性”证据。 可用性——授权用户能对信息资源有效使用。显然,信息系统可靠性是其支撑之一。 公平性——信息具有的社会或经济价值只能在交互中体现。公平性就是指交换规则或交互协议要使得参与信息交互的各方承担安全风险上处于相同或相当的地位。 可控性——是指对信息的传播及传播的内容以至信息的机密性具有控制能力的特性。一般指信息系统或(社会)授权机构根据某种法规对信息的机密性、信息的传播通道、特定内容信息的传播具有控制能力的特性,以及获取信息活动审计凭证能力的特性,如“密钥托管”、“匿名撤销”、实时内容检测与过滤、计算机犯罪或诉讼的司法取证等。 1.2密码系统模型和密码体制 密码系统基本模型: 密码体制的分类:对称密码体制的古典算法有简单代换、多名代换、多表代换等。 非对称密码体制:使用非对称密码体制的每一个用户一个是可以公开的,称为公开密钥,简称公钥,用pku 表示;另外一个则是秘密的,称为秘密秘钥,简称私钥,用sku 表示。非对称密码体制又称为双钥密码体制或公钥密码体制。 公钥密码体制的主要特点是将加密能力分开并分别并分别授予不同的用户,因而可以实现信 源M 加密器() c m =1k E 非法接入者密码分析员 (窃听者)搭线信道 (主动攻击) 搭线信道(被动攻击)解密器接收者 ()m c =2k D 密钥源密钥源1K 2 K m m 'm c ' c 1 k 2k 信道密钥信道

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

信息安全学习总结10-密码学基础

(十)密码学基础 作者:山石1.密码学的起源 1949年之前:密码学是一门艺术 1949-1975年:密码学成为科学 1976年以后:密码学的新方向——公钥密码学 2.通信系统典型攻击 窃听:信息从被监视的通信过程中泄露出去。 完整性破坏:数据的一致性通过对数据进行未授权的创建、修改或破坏受到损坏。 业务流分析:通过对通信业务流模式进行观察而造成信息被泄露给未授权的实体。 消息篡改:当所传送的内容被改变而未发觉,并导致一种非授权后果时出现消息篡改。包括:内容修改,消息内容被插 入、删除、修改;顺序修改,插入、删除或重组消息序列; 时间修改,消息延迟或重放 旁路:攻击者发掘系统的缺陷或安全脆弱性 服务拒绝:当一个实体不能执行它的正当功能,或它的动作妨碍了别的实体执行它们的正当功能的时候便发生服务拒 绝。 冒充:就是一个实体(人或系统)假装成另一个不同的实体,从一个假冒信息源向网络中插入消息。冒充经常和某些别的

攻击形式一起使用,特别是消息的重演与篡改。 重演:当一个消息或部分消息为了产生非授权效果而被重复时出现重演。 抵赖:在一次通信中涉及到的那些实体之一不承认参加了该通信的全部或一部分。接受者否认收到消息;发送者否认发 送过消息。 陷阱门:当系统的实体受到改变致使一个攻击者能对命令,或对预订的事件或事件序列产生非授权的影响时,其结果就 称为陷阱门。 特洛伊木马:对系统而言的特洛伊木马,是指它不但具有自己的授权功能,而且还具有非授权的功能。 3.基本概念和术语 (1)密码学概念 密码学(Cryptology):研究信息系统安全保密的科学。 密码编码学(Cryptography):研究对信息进行编码,实现对信息的隐蔽。 密码分析学(Cryptanalytics):研究加密消息的破译或消息的伪造。 (2)密码学术语 明文(Plaintext):消息被称为明文。 密文(Ciphertext):被加密的消息称为密文。 加密(Encryption):用某种方法伪装消息以隐蔽它的内容的

密码学实验报告总结

密码学实验报告(本文档为Word版本,下载后可自由编辑) 项目名称:××××××××× 项目负责人:××× 联系电话:××××× 编制日期:×××××

密码学实验报告 实验目的:掌握Caesar密码加密解密原理,并利用VC++编程实现。 实验内容:Caesar密码的加密原理是对明文加上一个密钥(偏移值)而得到密文。假设密钥为3,那么字母“a”对应的ASCII码为97,加上3得100正好是字母“d”的ASCII码值, 实验说明:加密实现的两种方式,只限定英文字母(区分大小写),加密时,根据明文字符是小(大)写字母,采用加密运算: 密文字符=“a”或“A”+(明文字符-“a”或“A”+password%26+26)%26 如果输入其他字符,则直接原样输出,不作处理 可以是任意字符 加密时,我们不做任何区分,直接利用Caesar密码算法 密文字符=明文字符+password 解密反之。 实验结果: void CCaesarDlg::OnButton1() //加密按钮 { UpdateData(TRUE); //从界面上的输入的值传入成员变量 m_crypt=m_plaintxt; //密文进行初始化,它与明文的长度是相同的 for(int i=0;i=48&&m_plaintxt.GetAt(i)<=57) //如果输入的字符是数字 { m_crypt.SetAt(i,'0'+(m_plaintxt.GetAt(i)-'0'+m_password%10 +10)%10);

现代密码学学习系的体会

题目:加密解密最新技术 姓名: 学号: 年级:

加密解密最新技术 摘要本学期开设了现代密码学这门选修课,现代密码学在信息高速发展的当今社会有很重要的意义。我就这个领域的最新科技展开讲一下,密码在今天很多领域都有应用,比如银行卡、电脑帐户、手机服务密码、股票买卖、保险箱、保险锁等,凡是与电子、数码、甚至机械相关的都可能与密码相关。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。密码学进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照规定的图形和线路,改变明文字母或数码等的位臵成为密文;代替--用一个或多个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用,以编制出各种复杂度很高的实用密码。 关键字 chacha20、poly1305、chrome、android、skype最新加密算法 密码学是研究信息系统安全的一门学科。它主要包括两个分支,即密码编码学和密分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。现代密码学研究信息从发端到收端的安全传输和安全存储,是研究“知己知彼”的一门科学。其核心是密码编码学和密码分析学。 1、现代密码学在尖端科技的应用 最近发展很火的android手机开发也应用了这一理论,根据谷歌anti-abuse 研究团队主管Elie Bursztein在博客文章发布的信息,谷歌最近通过控制浏览器及其访问的站点来加速Android平台安全网页的浏览,谷歌推行了更快的新型加密算法,这两种名为ChaCha20和Poly1305的加密算法加入到了Chrome浏览

相关文档
最新文档