加工中心系统参数

加工中心系统参数
加工中心系统参数

第七节 系统参数

系统参数不正确也会使系统报警。另外,工作中常常遇到工作台不能回到零点、位置显 示值不对或是用MDI键盘不能输入刀偏量等数值,这些故障往往和参数值有关,因此维修时若确认PMC信号或连线无误,应检查有关参数。

一.16系统类参数

1.SETTING 参数

参数号 符号 意义 16-T 16-M 0/0 TVC 代码竖向校验 O O

0/1 ISO EIA/ISO代码 O O

0/2 INI MDI方式公/英制 O O

0/5 SEQ 自动加顺序号 O O

2/0 RDG 远程诊断 O O 3216 自动加程序段号时程序段号的间隔O O

2.RS232C口参数

20 I/O通道(接口板):

0,1: 主CPU板JD5A

2: 主CPU板JD5B

3: 远程缓冲JD5C或选择板1的

JD6A(RS-422)

5: Data Server

10 :DNC1/DNC2接口

O O

100/3 NCR 程序段结束的输出码 O O 100/5 ND3 DNC运行时:读一段/读至缓冲器满 O O

I/O 通道0的参数:

101/0 SB2 停止位数 O O 101/3 ASII 数据输入代码:ASCII或EIA/ISO O O 101/7 NFD 数据输出时数据后的同步孔的输出O O 102 输入输出设备号:

0:普通RS-232口设备(用DC1-DC4

码)

3:Handy File(3″软盘驱动器)

O O

103 波特率:

10:4800

11:9600

12:19200

O O

1001/0 INM 公/英制丝杠 O O 1002/2 SFD 是否移动参考点

O O 1002/3 AZR 未回参考点时是否报警(#90号) O 1006/0,1 ROT,ROS 设定回转轴和回转方式 O O 1006/3 DIA 指定直径/半径值编程 O 1006/5 ZMI 回参考点方向

O O 1007/3 RAA 回转轴的转向(与1008/1:RAB 合用) O O 1008/0 ROA 回转轴的循环功能

O O 1008/1 RAB 绝对回转指令时,是否近距回转 O O 1008/2 RRL 相对回转指令时是否规算 O O 1260 回转轴一转的回转量 O O

1010 CNC 的控制轴数(不包括PMC 轴) O O 1020 各轴的编程轴名 O O 1022 基本坐标系的轴指定 O O 1023 各轴的伺服轴号 O O 1410 空运行速度 O O 1420 快速移动(G00)速度 O O 1421 快速移动倍率的低速(Fo) O O 1422 最高进给速度允许值(所有轴一样) O O 1423 最高进给速度允许值(各轴分别设) O O 1424 手动快速移动速度 O O 1425 回参考点的慢速 FL

O O 1620 快速移动G00时直线加减速时间常数 O O 1622 切削进给时指数加减速时间常数 O O 1624 JOG 方式的指数加减速时间常数 O O 1626 螺纹切削时的加减速时间常数 O 1815/1 OPT 用分离型编码器 O O 1815/5

APC 用绝对位置编码器 O O 1816/4,5,6

DM1--3 检测倍乘比DMR O O 1820

指令倍乘比CMR

O

O

I/O 通道1的参数: 111/0 SB2 停止位数

O O 111/3 ASI 数据输入代码:ASCII 或EIA/ISO O O 111/7 NFD 数据输出时数据后的同步孔的输出 O O 112

输入输出设备号: 0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器) O

O

113

波特率:10:4800

11:9600 12:19200

O O

其它通道参数请见参数说明书。

3.进给伺服控制参数

1819/0 FUP 位置跟踪功能生效 O O 1825 位置环伺服增益 O O 1826 到位宽度 O O 1828 运动时的允许位置误差 O O 1829 停止时的允许位置误差 O O 1850 参考点的栅格偏移量 O O 1851 反向间隙补偿量 O O 1852 快速移动时的反向间隙补偿量 O O 1800/4 RBK 进给/快移时反向间补量分开 O O

4.坐标系参数

1201/0 ZPR 手动回零点后自动设定工件坐标系 O O 1250 自动设定工件坐标系的坐标值 O O 1201/2 ZCL 手动回零点后是否取消局部坐标系 O O 1202/3 RLC 复位时是否取消局部坐标系 O O 1240 第一参考点的坐标值 O O 1241 第二参考点的坐标值 O O 1242 第三参考点的坐标值 O O 1243 第四参考点的坐标值 O O

5.行程限位参数

1300/0 OUT 第二行程限位的禁止区(内/外) O O 1320 第一行程限位的正向值 O O 1322 第一行程限位的反向值 O O 1323 第二行程限位的正向值 O O 1324 第二行程限位的反向值 O O 1325 第三行程限位的正向值 O O 1321 第三行程限位的反向值 O O

6.DI/DO参数

3003/0 ITL 互锁信号的生效 O O 3003/2 ITX 各轴互锁信号的生效 O O 3003/3 DIT 各轴各方向互锁信号的生效 O O 3004/5 OTH 超程限位信号的检测 O O 3010 MF,SF,TF,BF滞后的时间 O O 3011 FIN宽度 O O 3017 RST信号的输出时间 O O 3030 M代码位数 O O 3031 S 代码位数 O O 3032 T代码位数 O O 3033 B代码位数 O O

7.显示和编辑

3102/3 CHI 汉字显示 O O 3104/3 PPD 自动设坐标系时相对坐标系清零 O O 3104/4 DRL 相对位置显示是否包括刀长补偿量 O O 3104/5 DRC 相对位置显示是否包括刀径补偿量 O O 3104/6 DRC 绝对位置显示是否包括刀长补偿量 O O 3104/7 DAC 绝对位置显示是否包括刀径补偿量 O O 3105/0 DPF 显示实际进给速度 O O 3105/ DPS 显示实际主轴速度和T代码 O O 3106/4 OPH 显示操作履历 O O 3106/5 SOV 显示主轴倍率值 O O 3106/7 OHS 操作履历采样 O O 3107/4 SOR 程序目录按程序序号显示 O O 3107/5 DMN 显示G代码菜单 O O 3109/1 DWT 几何/磨损补偿显示G/W O O 3111/0 SVS 显示伺服设定画面 O O 3111/1 SPS 显示主轴调整画面 O O 3111/5 OPM 显示操作监控画面 O O 3111/6 OPS 操作监控画面显示主轴和电机的速度 O O 3111/7 NPA 报警时转到报警画面 O O 3112/0 SGD 波形诊断显示生效(程序图形显示无效)O O 3112/5 OPH 操作履历记录生效 O O 3122 操作履历画面上的时间间隔 O O 3203/7 MCL MDI方式编辑的程序是否能保留 O O 3290/0 WOF 用MDI键输入刀偏量 O O 3290/2 MCV 用MDI键输入宏程序变量 O O 3290/3 WZO 用MDI键输入工件零点偏移量 O O 3290/4 IWZ 用MDI键输入工件零点偏移量(自动方式) O

3290/7 KEY 程序和数据的保护键 O O

8.编程参数

3202/0 NE8 O8000—8999程序的保护 O O 3202/4 NE9 O9000—9999程序的保护 O O 3401/0 DPI 小数点的含义 O O 3401/4 MAB MDI方式G90/G91的切换 O 3401/5 ABS MDI方式用该参数切换G90/G91 O

9.螺距误差补偿

3620 各轴参考点的补偿号 O O 3621 负方向的最小补偿点号 O O 3622 正方向的最大补偿点号 O O

3623 螺补量比率 O O 3624 螺补间隔 O O

10.刀具补偿

3109/1 DWT G,W分开 O O 3290/0 WOF MDI设磨损值 O O 3290/1 GOF MDI设几何值 O O 5001/0 TCL 刀长补偿A,B,C O 5001/1 TLB 刀长补偿轴 O 5001/2 OFH 补偿号地址D,H O 5001/5 TPH G45-G48的补偿号地址D,H O 5002/0 LD1 刀补值为刀号的哪位数 O

5002/1 LGN 几何补偿的补偿号 O

5002/5 LGC 几何补偿的删除 O

5002/7 WNP 刀尖半径补偿号的指定 O

5003/6 LVC/LVK 复位时删除刀偏量 O O 5003/7 TGC 复位时删除几何补偿量(#5003/6=1) O

5004/1 ORC 刀偏值半径/直径指定 O

5005/2 PRC 直接输入刀补值用PRC信号 O

5006/0 OIM 公/英制单位转换时自动转换刀补值 O O 5013 最大的磨损补偿值 O

5014 最大的磨损补偿增量值 O

11.主轴参数

3701/1 ISI 使用串行主轴 O O 3701/4 SS2 用第二串行主轴 O O 3705/0 ESF S和SF的输出 O O 3705/1 GST SOR信号用于换挡/定向 O 3705/2 SGB 换挡方法A,B O 3705/4 EVS S和SF的输出 O

3706/4 GTT 主轴速度挡数(T/M型) O 3706/6,7 CWM/TCW M03/M04的极性 O O 3708/0 SAR 检查主轴速度到达信号 O O 3708/1 SAT 螺纹切削开始检查SAR O

3730 主轴模拟输出的增益调整 O O 3731 主轴模拟输出时电压偏移的补偿 O O 3732 定向/换挡的主轴速度 O O 3735 主轴电机的允许最低速度 O 3736 主轴电机的允许最低速度 O 3740 检查SAR的延时时间 O O 3741 第一挡主轴最高速度 O O 3742 第二挡主轴最高速度 O O 3743 第三挡主轴最高速度 O O

3744 第四挡主轴最高速度 O

3751 第一至第二挡的切换速度 O 3752 第二至第三挡的切换速度 O 3771 G96的最低主轴速度 O O 3772 最高主轴速度 O O 4019/7 主轴电机初始化 O O 4133 主轴电机代码 O O

12.其它

6510 图形显示的绘图坐标系 O

7110 手摇脉冲发生器的个数 O O 7113 手脉的倍比m O O 7114 手脉的倍比n O O

13.0i系统的有关参数

8130 总控制轴数 O O 8131/0 HPG 使用手摇脉冲发生器 O O 8132/0 TLF 刀具寿命管理功能 O O 8132/3 ISC 用分度工作台 O 8133/0 SSC G96功能生效 O O 8134/0 IAP 图形功能生效 O O

二.0系统参数

1.SETTING 参数

参数号 符号 意义 0-T 0-M 0000 PWE 参数写入 O O 0000 TVON 代码竖向校验 O O 0000 ISO EIA/ISO代码 O O 0000 INCH MDI方式公/英制 O O 0000 I/O RS-232C口 O O 0000 SEQ 自动加顺序号 O O

2.RS232C口参数

2/0 STP2 通道0停止位 O O 552 通道0波特率 O O 12/0 STP2 通道1停止位 O O 553 通道1波特率 O O 50/0 STP2 通道2停止位 O O 250 通道2波特率 O O 51/0 STP2 通道3停止位 O O 251 通道3 波特率 O O

55/3 RS42 Remote Buffer 口RS232/422 O O 390/7 NODC3 缓冲区满 O O

3.伺服控制轴参数

1/0 SCW 公/英制丝杠 O O 3/0.1.2.4 ZM 回零方向 O O 8/2.3.4 ADW 轴名称 O 30/0.4 ADW 轴名称 O

32/2.3 LIN 3,4轴,回转轴/直线轴 O

388/1 ROAX 回转轴循环功能 O

388/2 RODRC 绝对指令近距离回转 O

388/3 ROCNT 相对指令规算 O

788 回转轴每转回转角度 O

11/2 ADLN 第4轴,回转轴/直线轴 O 398/1 ROAX 回转轴循环功能 O 398/2 RODRC 绝对指令近距离回转 O 398/3 ROCNT 相对指令规算 O 788 回转轴每转回转角度 O

860 回转轴每转回转角度 O

500-503 INPX,Y,Z,4 到位宽度 O O 504-507 SERRX,Y,Z,4 运动时误差极限 O O 508-511 GRDSX.Y,Z,4 栅格偏移量 O O 512-515 LPGIN 位置伺服增益 O O 517 LPGIN 位置伺服增益(各轴增益) O O 518-521 RPDFX,Y,X,4 G00速度 O O 522-525 LINTX,Y,Z,4 直线加/减速时间常数 O O 526 THRDT G92时间常数 O

528 THDFL G92X轴的最低速度 O

527 FEDMX F的极限值 O O 529 FEEDT F的时间常数 O O 530 FEDFL 指数函数加减速时间常数 O O 533 RPDFL 手动快速移动倍率的最低值 O O 534 ZRNFL 回零点的低速 O O 535-538 BKLX,Y,Z,4 反向间隙 O O 593-596 STPEX,Y,Z,4 伺服轴停止时的位置误差极限 O O 393/5 快速倍率为零时机床移动 O O

4.坐标系参数

10/7 APRS 回零点后自动设定工件坐标系 O O 2/1 PPD 自动设坐标系相对坐标值清零 O

24/6 CLCL 手动回零后清除局部坐标系 O 28/5 EX10D 坐标系外部偏移时刀偏量的值(×10)O

708-711 自动设定工件坐标系的坐标值 O 735-738 第二参考点 O O 780-783 第三参考点 O O 784-787 第四参考点 O O

5.行程限位

8/6 OTZN Z轴行程限位检查否 O 15/4 LM2 第二行程限位 O 24/4 INOUT 第三行程限位 O 57/5 HOT3 硬超程-LMX--+LMZ有效 O 65/3 PSOT 回零点前是否检查行程限位 O O 700-703 各轴正向行程 O O 704-707 各轴反向行程 O O 15/2 COTZ 硬超程-LMX--+LMZ有效 O

20/4 LM2 第二行程限位 O

24/4 INOUT 第三行程限位 O

743-746 第二行程正向限位 O 747-750 第二行程反向限位 O 804-806 第三行程正向限位 O 807-809 第三行程反向限位 O 770-773 第二行程正向限位 O

774-777 第二行程反向限位 O

747-750 第三行程正向限位 O

751-754 第三行程反向限位 O

760-763 第四行程正向限位 O

764-767 第四行程反向限位 O

6.进给与伺服电机参数

1/6 RDRN 空运行时,快速移动指令是否有效 O O 8/5 ROVE 快速倍率信号ROV2(G117/7)有效 O 49/6 NPRV 不用位置编码器实现主轴每转进给 O O 20/5 NCIPS 是否进行到位检查 O O 4—7 参考计数器容量 O O 4—7 检测倍比 O O 21/0.1.2.3 APC 绝对位置编码器 O O 35/7 ACMR 任意CMR O O 37/0.1.2.3 SPTP 用分离型编码器 O O 100-103 指令倍比CMR O O

7.DI/DO参数

8/7 EILK Z轴/各轴互锁 O O 9/0.1.2.3 TFIN FIN信号时间 O O 9/4.5.6.7 TMF M,S,T读信号时间 O O

12/1 ZILK Z轴/所有轴互锁 O 31/5 ADDCF GR1,GR2,DRN 地址 O

252 复位信号扩展时间 O O

8.显示和编辑

1/1 PROD 相对坐标显示是否包括刀补量 O O 2/1 PPD 自动设坐标系相对坐标清零 O O 15/1 NWCH 刀具磨损补偿显示W O O 18/5 PROAD 绝对坐标系显示是否包括刀补量 O 23/3 CHI 汉字显示 O O 28/2 DACTF 显示实际速度 O O 29/0.1 DSP 第3,4轴位置显示 O

35/3 NDSP 第4轴位置显示 O 38/3 FLKY 用全键盘 O O 48/7 SFFDSP 显示软按键 O O 60/0 DADRDP 诊断画面上显示地址字 O O 60/2 LDDSPG 显示梯形图 O O 60/5 显示操作监控画面 O O 64/0 SETREL 自动设坐标系时相对坐标清零 O O 77/2 伺服波形显示 O O 389/0 SRVSET 显示伺服设定画面 O O 389/1 WKNMDI 显示主轴调整画面 O O

9.编程参数

10/4 PRG9 O9000-O9999号程序保护 O O 15/7 CPRD 小数点的含义 O O 28/4 EXTS 外部程序号检索 O O 29/5 MABS MDI-B中,指令取决于G90/G91设定 O 389/2 PRG8 O8000-O8999号程序保护 O O 394/6 WKZRST 自动设工件坐标系时设为G54 O

10.螺距误差补偿

11/0.1 PML 螺补倍率 O O 712-715 螺补间隔 O 756-759 螺补间隔 O

1000, 2000 3000, 4000 补偿基准点

O O

1001-1128 2001-2128 3001-3128 4001-4128 补偿值

O O

11.刀具补偿

1/3 TOC 复位时清除刀长补偿矢量 0 O 1/4 ORC 刀具补偿值(半径/直径输入) O

8/6 NOFC 刀补量计数器输入 O

10/5 DOFSI 刀偏量直接输入 O

13/1 GOFU2 几何补偿号(由刀补号或刀号)指定 O

13/2 GMOFS 加几何补偿值(运动/变坐标) 0

14/0 T2D T代码位数 O

14/1 GMCL 复位时是否清几何补偿值 O

14/5 WIGA 刀补量的限制 O

15/4 MORB 直接输入刀补测量值的按钮 O

24/6 QNI 刀补测量B时补偿号的选择 O

75/3 WNPT 刀尖补偿号的指定(在几何还是在磨损中)O

122 刀补测量B时的补偿号 O

728 最大的刀具磨损补偿增量值 O

729 最大的刀具磨损补偿值 O

78/0 NOINOW 用MDI键输入磨损补偿量 O O 78/1 NOINOG 用MDI键输入几何补偿量 O O 78/2 NOINMV 用MDI键输入宏程序变量 O O 78/3 NOINMZ 用MDI键输入工件坐标偏移量 O O 393/2 MKNMDI 在自动方式的停止时,用MDI键输入工

件坐标偏移量

O O

12.主轴参数

13/5 ORCM 定向时,S模拟输出的极性

13/6.7 TCW,CWM S模拟M03,M04的方向 O O 14/2 主轴转速显示 O O 24/2 SCTO 是否检查SAR(G120/4) O O 49/0 EVSF SF的输出 O O 71/0 ISRLPC 串行主轴时编码器信号的接法 O

71/4 SRL2SP 用1或2个串行主轴 O

71/7 FSRSP 是否用串行主轴 O

108 G96或换挡(#3/5:GST=1)或

模拟主轴定向SOR:G120/5:M)=1速度 O

O

110 检查SAR(G120/4)的延时时间 O

516 模拟主轴的增益(G96) O

539 模拟主轴电机的偏移补偿电压(G96) O

551 G96的主轴最的转速 O

556 G96的主轴最高转速 O

540-543 各挡主轴的最高转速 O

3/5 GST 用SOR(G120/5)定向/换挡 O 14/0 SCTA 加工启动时检查SAR信号 O 20/7 SFOUT 换挡时输出SF O 29/4 FSOB G96时输出SF O

35/6 LGCM 各挡最高速的参数号 O 539,541,555 各挡的主轴最高转速 O 542 主轴最高转速 O 543 主轴最低转速 O 585,586 主轴换挡速度(B型) O 577 模拟主轴电机的偏移补偿电压 O 6519/7 主轴电机初始化 O O 6633 主轴电机代码 O O

6501/2 POSC2 用位置编码器 O O 6501/5-7 CAXIS1-3 用高分辨率编码器 O O 6503/0 PCMGSL 定向方法(编码器/磁传感器) O O 6501/1 PCCNCT 内装传感器 O O 6501/4.6.7 位置编码器信号 O O 6504/1 HRPC 高分辨率编码器 O O

13.其它

24/0 IGNPMC 用PMC O O 71/6 DPCRAM 显示PMC操作菜单 O O 123 图形显示的绘图坐标系 O

目录

第三章 FANUC系统的通用故障分析

第一节 FANUC的CNC系统

第二节 故障原因分析方法

一.藉助梯形图诊断故障

二.根据CNC的内部运行状态诊断故障

三.根据报警号分析故障原因

第三节 CNC系统的故障分析

一.各系统的共性故障

(一).数据输入/输出接口不能正常工作

(二).CNC系统不能通电

(三).返回参考点时出现偏差

(四).返回参考点异常

(五). PMC梯形图编程不能正常工作

(六).在手动,自动方式都不能运转

(七).在自动方式系统不能运行

(八).手摇脉冲发生器(MPG)方式下机床不运行

(九).显示器上显示电池电压不足警告(BAT)

(十).加工精度差,表面光洁度不好

(十一).维修使用的一些操作方法

二.各系统的故障分析

(一).0系统故障

(二).16系统故障

(三).10,11,12,15系统故障

(四).Power Mate 系统故障

(五).3,6系统

第四节 伺服系统故障分析

第五节 PMC信号

第六节 系统参数

一.16系统类参数

二.0系统参数

加工中心常用刀具参数

加工中心常用刀具参数(普通机) 刀具转速进刀切削吃刀量退刀 d32r5 1900 1500 1800 0.6 1300 d25r5 2100 1300 1500 0.6 1200 d20r5 2200 1100 1300 0.5 800 d16r0.5 2400 1000 1100 0.4 800 d12r0.5 2600 800 1000 0.35 600 d10r0.5 2800 700 800 0.35 600 d8r0.5 3000 600 600 0.3 500 d6r0.5 3200 450 500 0.25 400 d12 2800 800 1000 0.35 600 d10 2800 700 800 0.35 600 d8 3000 600 600 0.3 500 d6 3200 450 500 0.25 400 d4 3500 300 400 0.2 400 d12r6 3200 800 1000 0.3 600 d10r5 3600 700 800 0.25 600 d6r3 4000 450 500 0.2 400 d4r2 4800 300 400 0.15 400 d2r1 5600 250 300 0.1 300 d1r0.5 6800 200 200 0.08 250 加工中心常用刀具参数(高速机) 刀具转速进刀切削吃刀量退刀 d16r0.5 6500 1000 1100 0.35 800 d12r0.5 7000 800 1000 0.3 600 d10r0.5 7500 700 800 0.3 600 d8r0.5 8000 600 600 0.3 500 d6r0.5 8500 450 500 0.2 400 d12 7000 800 800 0.35 600 d10 7500 600 650 0.3 600 d8 8000 500 600 0.3 500 d6 10000 350 400 0.25 400 d4 12000 200 300 0.2 300 d2 14000 150 250 0.15 250 d1 16000 150 200 0.1 200 d0.8 21000 100 150 0.06 200 d12r6 8500 600 800 0.25 600 d10r5 8800 500 650 0.2 600 1

铣床、加工中心高速、高精加工的参数调整

铣床、加工中心高速、高精加工的参数调整 (北京发那科机电有限公司王玉琪) 使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC的AC 电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 使用αi电机…………………………………………………P 2 使用α电机……………………………………………………P22 补充说明………………………………………………………P24 1 3.4.1伺服HRV控制的调整步骤 ⑴概述 i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。

图 3.4.1(a) 使用伺服HRV控制后的效果 速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。因此可以减小机床的加工形状误差,提高定位速度。 由于这一效果,使得伺服调整简化。HRV2控制可以改善整个系统的伺服性能。伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。 若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。关于这方面的详细叙述,请见3.4.3节“高速、高精加工的伺服参数调整”。 2 图3.4.1(b) 伺服HRV控制的效果实例 ⑵适用的伺服软件系列号及版本号 90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。

加工中心系统参数

第七节 系统参数 系统参数不正确也会使系统报警。另外,工作中常常遇到工作台不能回到零点、位置显 示值不对或是用MDI键盘不能输入刀偏量等数值,这些故障往往和参数值有关,因此维修时若确认PMC信号或连线无误,应检查有关参数。 一.16系统类参数 1.SETTING 参数 参数号 符号 意义 16-T 16-M 0/0 TVC 代码竖向校验 O O 0/1 ISO EIA/ISO代码 O O 0/2 INI MDI方式公/英制 O O 0/5 SEQ 自动加顺序号 O O 2/0 RDG 远程诊断 O O 3216 自动加程序段号时程序段号的间隔O O 2.RS232C口参数 20 I/O通道(接口板): 0,1: 主CPU板JD5A 2: 主CPU板JD5B 3: 远程缓冲JD5C或选择板1的 JD6A(RS-422) 5: Data Server 10 :DNC1/DNC2接口 O O 100/3 NCR 程序段结束的输出码 O O 100/5 ND3 DNC运行时:读一段/读至缓冲器满 O O I/O 通道0的参数: 101/0 SB2 停止位数 O O 101/3 ASII 数据输入代码:ASCII或EIA/ISO O O 101/7 NFD 数据输出时数据后的同步孔的输出O O 102 输入输出设备号: 0:普通RS-232口设备(用DC1-DC4 码) 3:Handy File(3″软盘驱动器) O O 103 波特率: 10:4800 11:9600 12:19200 O O

1001/0 INM 公/英制丝杠 O O 1002/2 SFD 是否移动参考点 O O 1002/3 AZR 未回参考点时是否报警(#90号) O 1006/0,1 ROT,ROS 设定回转轴和回转方式 O O 1006/3 DIA 指定直径/半径值编程 O 1006/5 ZMI 回参考点方向 O O 1007/3 RAA 回转轴的转向(与1008/1:RAB 合用) O O 1008/0 ROA 回转轴的循环功能 O O 1008/1 RAB 绝对回转指令时,是否近距回转 O O 1008/2 RRL 相对回转指令时是否规算 O O 1260 回转轴一转的回转量 O O 1010 CNC 的控制轴数(不包括PMC 轴) O O 1020 各轴的编程轴名 O O 1022 基本坐标系的轴指定 O O 1023 各轴的伺服轴号 O O 1410 空运行速度 O O 1420 快速移动(G00)速度 O O 1421 快速移动倍率的低速(Fo) O O 1422 最高进给速度允许值(所有轴一样) O O 1423 最高进给速度允许值(各轴分别设) O O 1424 手动快速移动速度 O O 1425 回参考点的慢速 FL O O 1620 快速移动G00时直线加减速时间常数 O O 1622 切削进给时指数加减速时间常数 O O 1624 JOG 方式的指数加减速时间常数 O O 1626 螺纹切削时的加减速时间常数 O 1815/1 OPT 用分离型编码器 O O 1815/5 APC 用绝对位置编码器 O O 1816/4,5,6 DM1--3 检测倍乘比DMR O O 1820 指令倍乘比CMR O O I/O 通道1的参数: 111/0 SB2 停止位数 O O 111/3 ASI 数据输入代码:ASCII 或EIA/ISO O O 111/7 NFD 数据输出时数据后的同步孔的输出 O O 112 输入输出设备号: 0:普通RS-232口设备(用DC1-DC4码)3:Handy File(3″软盘驱动器) O O 113 波特率:10:4800 11:9600 12:19200 O O 其它通道参数请见参数说明书。 3.进给伺服控制参数

FANUC高速高精加工的参数调整图文稿

F A N U C高速高精加工 的参数调整 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

铣床、加工中心高速、高精加工的参数调整 (北京发那科机电有限公司王玉琪) 使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC的AC电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 ⑴概述 i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。 图使用伺服HRV控制后的效果 速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。因此可以减小机床的加工形状误差,提高定位速度。 由于这一效果,使得伺服调整简化。HRV2控制可以改善整个系统的伺服性能。伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。 “高速、高精加工的伺服参数调整”。 2

图伺服HRV控制的效果实例 ⑵适用的伺服软件系列号及版本号 90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。 ⑶调整步骤概况 HRV2和HRV3控制的调整与设定大致用以下步骤: ①) 电流回路的周期从以前的250μs降为125μs。电流响应的改善是伺服性能改善的基础。 ②) 进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。 电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。 ③ 机床可在某个频率下产生谐振。此时,用消振滤波器消除某一频率下的振荡是非常有效的。 ④ 当伺服系统的响应较高时,可能会出现加工的形状误差取决于CNC指令的扰动周期的现象。这种现象可用精细加/减速功能消除。 速度环使用尽可能高的回路增益可以改善整个伺服系统的性能。 ⑤ 使用预读功能的前馈,可以消除伺服的时滞,从而可减小加工的形状误差。一般,前馈系数为97%—99%。 ⑥*6)

CNC加工中心刀具的选择与切削用量的确定

CNC加工中心刀具的选择与切削用量 的确定 收藏此信息打印该信息添加:佚名来源:未知 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用C AD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。 现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 1.数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。 根据刀具结构可分为: 1)整体式; 2)镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 3)特殊型式,如复合式刀具,减震式刀具等。

根据制造刀具所用的材料可分为: 1)高速钢刀具; 2)硬质合金刀具; 3)金刚石刀具; 4)其他材料刀具,如立方氮化硼刀具,陶瓷刀具等 从切削工艺上可分为 : 1)车削刀具,分外圆、内孔、螺纹、切割刀具等多种; 2)钻削刀具,包括钻头、铰刀、丝锥等; 3)镗削刀具; 4)铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。 数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: 1)刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; 2)互换性好,便于快速换刀; 3)寿命高,切削性能稳定、可靠; 4)刀具的尺寸便于调整,以减少换刀调整时间; 5)刀具应能可靠地断屑或卷屑,以利于切屑的排除; 6)系列化,标准化,以利于编程和刀具管理。 2.数控加工刀具的选择

加工中心切削参数表

加工中心切削参数表 加工中心切削参数表 种类参切削参数粗加工精加工平面加工备注刀具悬伸长度 刀具直径数 飞刀 2 aa(mm) 0.5 0.2 0.2 E10R0.8 粗加工参数指材料硬度在刀长在50以 下 HRC30-50,对于低于此硬度飞刀 2 ar(mm) 8 0.2 8 E10R0.8 刀长在50以下的材料,切深可增大飞刀 2 F(mm/min) 1000 1000 600 E10R0.8 刀长在50 以下飞刀 2 S(转/min) 3200 3200 3500 E10R0.8 刀长在50以下飞刀 2 寿命(min) 60 \ 60 E10R0.8 刀长在50以下飞刀 2 \ \ \ E10R0.8 金属去除率刀长在50以下飞刀 2 aa(mm) 0.5 0.2 0.2 E12R0.8 粗加工参数指材料硬度在刀长 在60以下 HRC30-50,对于低于此硬度飞刀 2 ar(mm) 10 0.2 10 E12R0.8 刀长在60以 下 的材料,切深可增大飞刀 2 F(mm/min) 1000 1000 700 E12R0.8 刀长在60 以下飞刀 2 S(转/min) 3000 3000 3500 E12R0.8 刀长在60以下飞刀 2 寿命(min) 60 120 60 E12R0.8 刀长在60以下飞刀 2 \ \ \ E12R0.8 金属去除率刀长在60以下飞刀 2 aa(mm) 0.5 0.2 0.2 E16R0.8 粗加工参数指材料硬度在刀 长在90以下 HRC30-50,对于低于此硬度飞刀 2 ar(mm) 13 0.2 13 E16R0.8 刀长在90以 下 的材料,切深可增大飞刀 2 F(mm/min) 900 1800 800 E16R0.8 刀长在90以 下飞刀 2 S(转/min) 2500 3000 3000 E16R0.8 刀长在90以下飞刀 2 寿命(min)

法兰克加工中心K参数FANUCi

法兰克加工中心K参数(FANUC 31i) K0.1=0 : 快速编辑器的上下光标,移动仅限于上下移动。 =1 : 快速编辑器的上下光标,在上下移动后移动到行的开头位置。 K0.2=0 : 工件坐标画面的自动设定为X,Y,轴 =1 : 工件坐标画面的自动设定为 X,Y,X,轴 K0.3=0: 急停不关闭机内清洗冷却剂 =1: 急停关闭机内清洗冷却剂 K0.4=0: 刀具重量3KG =1: 刀具重量2KG

K0.5=0: 诊断报警窗口自动显示功能无效 =1: 诊断报警窗口自动显示功能有效 K0.6=0: 简化NC系统画面的配置 =1: 不简化NC系统画面的配置 K0.7=0: 换刀后不重新启动冷却剂 =1: 换刀后重新启动冷却剂 K1.0=0: 刀具松开时报警 =1: 刀具松开时不报警 K1.1=0: 奇偶校验按偶数进行 =1: 奇偶校验按奇数进行 K1.2=0: 所有轴互锁信号OFF,不停止主轴转动

=1: 所有轴互锁信号OFF,停止主轴转动 K1.3=0: 程式保护状态下禁止转塔恢复动作 =1: 程式保护状态下可执行转塔恢复动作 K1.4=0: 接通电源时进行倍率值的初始化 =1: 接通电源时不进行倍率值的初始化 K1.6=0: 坐标/刀具补偿画面显示中,按下菜单按钮则切换画面 =1: 坐标/刀具补偿画面显示中,即使按下菜单按钮也不切换画面 K1.7=0: 按下复位键不停止主轴冷却剂 =1: 按下复位键停止主轴冷却剂

K2.6=0: 位置开关设定换刀允许区域 =1: 位置开关设定换刀禁止区域 K2.7=0: 换刀禁止区域设定功能无效 =1: 换刀禁止区域设定功能有效 K3.0=0: 主轴气洗为节能控制 =1: 主轴气洗为常开 K3.1=0: 自动激光测量实验用接口无效 =1: 自动激光测量实验用接口有效 K3.2=0: 不使用第四轴的夹紧/松开 =1: 使用第四轴的夹紧/松开 K3.3=0: 在第四轴松开过程中X、Y、Z、轴移动

加工中心的刀具及参数选择

加工中心的刀具及参数选择 刀具的选择和切削用量的确定是数控加工工艺中的重要内容,它不仅影响数控机床的加工效率,而且直接影响加工质量。CAD/CAM技术的发展,使得在数控加工中直接利用CAD的设计数据成为可能,特别是微机与数控机床的联接,使得设计、工艺规划及编程的整个过程全部在计算机上完成,一般不需要输出专门的工艺文件。现在,许多CAD/CAM软件包都提供自动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比如,刀具选择、加工路径规划、切削用量设定等,编程人员只要设置了有关的参数,就可以自动生成NC程序并传输至数控机床完成加工。因此,数控加工中的刀具选择和切削用量确定是在人机交互状态下完成的,这与普通机床加工形成鲜明的对比,同时也要求编程人员必须掌握刀具选择和切削用量确定的基本原则,在编程时充分考虑数控加工的特点。本文对数控编程中必须面对的刀具选择和切削用量确定问题进行了探讨,给出了若干原则和建议,并对应该注意的问题进行了讨论。 一、数控加工常用刀具的种类及特点 数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为: ①整体式; ②镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种;

③特殊型式,如复合式刀具,减震式刀具等。 根据制造刀具所用的材料可分为: ①高速钢刀具; ②硬质合金刀具; ③金刚石刀具; ④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。 从切削工艺上可分为: ①车削刀具,分外圆、内孔、螺纹、切割刀具等多种; ②钻削刀具,包括钻头、铰刀、丝锥等; ③镗削刀具; ④铣削刀具等。 为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%~40%,金属切除量占总数的80%~90%。数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点: ⑴刚性好(尤其是粗加工刀具),精度高,抗振及热变形小; ⑵互换性好,便于快速换刀; ⑶寿命高,切削性能稳定、可靠; ⑷刀具的尺寸便于调整,以减少换刀调整时间; ⑸刀具应能可靠地断屑或卷屑,以利于切屑的排除; ⑹系列化,标准化,以利于编程和刀具管理。 二、数控加工刀具的选择 刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因

加工中心刀具转速-1

普通加工中心钨钢平铣刀的切削参数 切削材料模具钢料(30≤硬度HRC≤40) 刃径(d) 转速(S) 进刀(F) 切削量(H) 0.5 6000-8000 250 0.005 1 6000-8000 300 0.01 1.5 6000-8000 300 0.015 2 6000-8000 350 0.02 2.5 6000-8000 350 0.02 3 3500-4500 500 0.03 4 2500-3500 600 0.05 5 2500-3000 800 0.05 6 1800-2500 1000 0.08 8 1500-2000 1000 0.08-0.15 10 1200-1800 1100 0.1-0.2 12 1000-1500 1200 0.2-0.3 14 1000-1200 1200 0.2-0.3 16 1000-1200 1200 0.25-0.35 切削材料黄铜(硬度HRC≤30 铍铜硬度HRC35-42) 刃径(d) 转速(S) 进刀(F) 切削量 0.5 6000-8000 300 0.01 1 6000-8000 300 0.01 1.5 6000-8000 350 0.01 2 6000-8000 350 0.02 2.5 6000-8000 350 0.02 3 4500-5000 600 0.03 4 4000-4500 800 0.05 5 3500-4000 1000 0.05 6 3000-3500 1000 0.1 8 2500-3000 1000 0.1-0.2 10 2000-2500 1200 0.2-0.3 12 1500-2000 1300 0.3-0.5 14 1500-2000 1500 0.3-0.5 16 1200-1500 1600 0.5 注解: 1 以上参数是以普通加工中心(主轴转速最高8000)的钨钢铣刀为准,它的表面硬度一般是 HRC45-55(洛氏硬度)左右 2 以上参数是以挖槽(又名等高铣,Cavity_Mill)为准,若是铣外形,则可以多点切削量, 如¢12的铣铜,切削量可以给0.8-1MM

加工中心常用代码gm

啊资料大全网址: 代码分组意义格式 G00 01 快速进给、定位 G00 X-- Y-- Z-- G01 直线插补 G01 X-- Y-- Z-- G02 圆弧插补CW(顺时针) XY平面内的圆弧: ZX平面的圆弧: YZ平面的圆弧: G03 圆弧插补CCW(逆时针) G04 00 暂停 G04 [P|X] 单位秒,增量状态单位毫秒,无参数状态表示停止 G05.1 预读控制超前读多个程序段 G07.1(G107) 圆柱插补 G08 预读控制 G09 准确停止 G10 可编程数据输入(g10的意思是用程序输入补偿指令格式有: H的几何补偿值变成格式 g10 L10 P R( H的磨损补偿值变成格式 g10 L11 P R D的几何补偿值变成格式 g10 L12 P R D的磨损补偿值变成格式 g10 L13 P R p指的是机床补偿理所指的番号如 #0001 #0002 等 R则为半径或者是长度方向上的补偿一般我们常用的是L10 和L12 配合g41、g42使用)

(关于数控技术应用的D与H补偿指令的学习,D指令为刀具半径补偿,组成名称为G41和G42组合在一起,H指令为长度补偿指令,组成名称为G43和G44的长度补偿。 G41和G42:G41是刀具半径的左补偿,G42是刀具半径的右补偿;G43是刀具长度的正补偿,G44为刀具长度的负补偿;它们的补偿都要用G40来取消。刀具补偿参数D,H它们都表示数控系统中的补偿寄存器的地址名称,但是具体补偿值是多少,关键是由他们后面的补偿号地址来决定。不过在加工中心钟,为了防止出错,一般认为规定H值为刀具长度补偿地址,不长号码从1~100号。假如有100把刀的加工中心刀库,D为刀具半径补偿地址,补偿号从1~100号。 例如:G00/G01G43/G44 H01 Z100.0 G00/G01G41/G42 D01 X0 Y0 F500;) 如G90G10L2P1X Y Z A G90绝对坐标 G10调用资料 L2文件地址 P0文件名 A0第四轴角度 G90 G10 P1 L12 R25 意思就是写入1号刀刀具半径补偿为25 P1是1号刀,换刀的话P不变改后面数就行 L12是对应着半径补偿 R25指半径。 G90 G10 P1 L2 X12.356 Y842.369 Z-953.284 B0 讲X Y Z X B机床坐标写入到G54坐标中 P1对应G54 P2对应G55 以此类推 G54 P01 对应什么我忘了o(∩_∩)o 这个不太常用,好像是P1 L20吧)

加工中心切削参数

加工中心.数控铣床.刀具名称.转速进给、下刀量例:立铣刀必备知识(按照加工45号钢材) 刀具名称、转速(/min)、进给(mm/min)、下刀量(mm) 63R6(刀片) 600 2500-3000 0.6-1 50R6(刀片) 650-850 2500-3000 0.55-0.7 25R5(刀片) 1200 2000-2500 0.45-0.55 32R6(刀片) 700-1200 2000-2500 0.5-0.65 16R0.8(刀片) 2000-2500 2000-3000 0.25-0.35 16R4(刀片) 2200-2500 2200-3000 0.3-0.4 16(球头刀 2000-2500 2000 0.25-0.35 12(球头刀 2200-2500 2000-3000 0.25 10(球头刀 2500 1800-2000 0.2-0.25 8(球头刀 2500-2800 1500-1800 0.2 6(球头刀 4000 1500-1800 0.1-0.2 4(球头刀 5000-6000 1800 0.1 3(球头刀 7000 1500-1800 0.05-0.08 2(球头刀 12000 1500-2000 0.05-0.08 1.5(球头刀 16000 1200-1500 0.05 1(球头刀 20000 1200 0.05 0.5(球头刀 20000 500 0.02 3.175(球头刀 7000 1500 0.08 30R5(平底立铣) 720-1000 2000-3000 0.3-0.5 40(平底立铣) 300-600 2000-2500 1.0-2.0

加工中心的基本操作

加工中心教案 一.主轴功能及主轴的正、反转 主轴功能又叫S功能,其代码由地址符S和其后的数字组成。用于指定主轴转速,单位为r/min,例如,S250表示主轴转速为250r/min. 主轴正、反转及停止指令M03、M04、M05 M03表示主轴正转(顺时针方向旋转)。所谓主轴正转,是从主轴往Z正方向看去,主轴处于顺时针方向旋转。 M04表示主轴反转(逆时针方向旋转)。所谓主轴反转,是从主轴往Z正方向看去,主轴处于逆时针方向旋转。 M05为主轴停转。它是在该程序段其他指令执行完以后才执行的。 如主轴以每分钟2500转的速度正转,其指令为:M03 S2500。 二.刀具功能及换刀 刀具功能又叫T功能,其代码由地址符T和其后的数字组成,用于数控系统进行选刀或换刀时指定刀具和刀具补偿号。例如T0102表示采用1号刀具和2号刀补。 如需换取01号刀,其指令为:M06 T01。 三.机床坐标系及工件坐标系 机床坐标系:用机床零点作为原点设置的坐标系称为机床坐标系。 机床上的一个用作为加工基准的特定点称为机床零点。机床制造厂对每台机床设置机床零点。机床坐标系一旦设定,就保持不变,直到电源关掉为止。 工件坐标系:加工工件时使用的坐标系称作工件坐标系。工件坐标系由CNC 预先设置。 一个加工程序可设置一个工件坐标系。工件坐标系可以通过移动原点来改变设置。 可以用下面三种方法设置工件坐标系: (1)用G92法 在程序中,在G92之后指定一个值来设定工件坐标系。 (2)自动设置 预先将参数NO。1201#0(SPR)设为1,当执行手动返回参考点后,就自动设定了工件坐标系。

(3)使用CRT/MDI面板输入 使用CRT/MDI面板输入可以设置6个工件坐标系。G54工件坐标系1、G55工件坐标系2、G56工件坐标系3、G57工件坐标系4、G58工件坐标系5、G59工件坐标系6。 工件坐标系选择G54~G59 说明: G54~G59是系统预定的6个工作坐标系(如图5.10.1),可根据需要任意选用。 这6个预定工件坐标系的原点在机床坐标系中的值(工件零点偏置值)可用MDI方式输入,系统自动记忆。 工件坐标系一旦,后续程序段中绝对值编程时的指令值均为相对此工件坐标系原点的值。 G54~G59为模态功能,可相互注销,G54为缺省值。

加工中心的特点、种类、功能和主要技术参数

本项目主要对加工中心的特点、种类、功能和主要技术参数加以概述,使初学者对加工中心有一个基本认识。 项目一加工中心 同类型的加工中心与数控铣床的结构布局相似,主要在刀库的结构和位置上有区别,一般由床身、主轴箱、工作台、底座、立柱、横梁、进给机构、自动换刀装置、辅助系统(气液、润滑、冷却)、控制系统等组成,如图 5-1 所示。加工中心的基本组成: 项目二加工中心分类 加工中心的品种、规格较多,这里仅从结构上对其作一分类。 一、立式加工中心 指主轴轴线为垂直状态设置的加工中心。其结构形式多为固定立柱式,工作台为长方形,无分度回转功能,适合加工盘、套、板类零件。一般具有三个直线运动坐标,并可在工作台上安装一个水平轴的数控回转台,用以加工螺旋线零件。 立式加工中心装夹工件方便,便于操作,易于观察加工情况,但加工时切屑不易排除,且受立柱高度和换刀装置的限制,不能加工太高的零件。 立式加工中心的结构简单,占地面积小,价格相对较低,应用广泛。 二、卧式加工中心 指主轴轴线为水平状态设置的加工中心。通常都带有可进行分度回转运动的工作台。卧式加工中心一般都具有三个至五个运动坐标,常见的是三个直线运动坐标加一个回转运动坐标,它能够使工件在一次装夹后完成除安装面和顶面以外的其余四个面的加工,最适合加工箱体类零件。 卧式加工中心调试程序及试切时不便观察,加工时不便监视,零件装夹和测量不方便,但加工时排屑容易,对加工有利。 与立式加工中心相比,卧式加工中心的结构复杂,占地面积大,价格也较高。 三、龙门式加工中心 龙门式加工中心的形状与龙门铣床相似,主轴多为垂直设置,除自动换刀装置外,还带有可

更换的主轴附件,数控装置的功能也较齐全,能够一机多用,尤其适用于加工大型或形状复杂的零件,如飞机上的梁、框、壁板等。 项目三加工中心主要加工对象 加工中心适用于复杂、工序多、精度要求高、需用多种类型普通机床和繁多刀具、工装,经过多次装夹和调整才能完成加工的具有适当批量的零件。其主要加工对象有以下四类: 一、箱体类零件 箱体类零件是指具有一个以上的孔系,并有较多型腔的零件,这类零件在机械、汽车、飞机等行业较多,如汽车的发动机缸体、变速箱体,机床的床头箱、主轴箱,柴油机缸体,齿轮泵壳体等。 箱体类零件在加工中心上加工,一次装夹可以完成普通机床 60 %~ 95 %的工序内容,零件各项精度一致性好,质量稳定,同时可缩短生产周期,降低成本。对于加工工位较多,工作台需多次旋转角度才能完成的零件,一般选用卧式加工中心;当加工的工位较少,且跨距不大时,可选立式加工中心,从一端进行加工。 二、复杂曲面 在航空航天、汽车、船舶、国防等领域的产品中,复杂曲面类占有较大的比重,如叶轮、螺旋桨、各种曲面成型模具等。 就加工的可能性而言,在不出现加工干涉区或加工盲区时,复杂曲面一般可以采用球头铣刀进行三坐标联动加工,加工精度较高,但效率较低。如果工件存在加工干涉区或加工盲区,就必须考虑采用四坐标或五坐标联动的机床。 三、异形件 异形件是外形不规则的零件,大多需要点、线、面多工位混合加工,如支架、基座、样板、靠模等。异形件的刚性一般较差,夹压及切削变形难以控制,加工精度也难以保证,这时可充分发挥加工中心工序集中的特点,采用合理的工艺措施,一次或两次装夹,完成多道工序或全部的加工内容。 四、盘、套、板类零件 带有键槽、径向孔或端面有分布孔系以及有曲面的盘套或轴类零件,还有具有较多孔加工的板类零件,适宜采用加工中心加工。端面有分布孔系、曲面的零件宜选用立式加工中心,有径向孔的可选卧式加工中心。 项目四加工中心主要技术参数 加工中心的主要技术参数包括工作台面积、各坐标轴行程、摆角范围、主轴转速范围、切削进给速度范围、刀库容量、换刀时间、定位精度、重复定位精度等,其具体内容及作用详见表 5 - 1 。 项目五自动换刀装置 加工中心上的自动换刀装置由刀库和刀具交换装置组成,用于交换主轴与刀库中的刀具或工具。 一、对自动换刀装置的要求 加工中心对自动换刀装置有如下具体要求: 1、刀库容量适当 2、换刀时间短 3、换刀空间小 4、动作可靠、使用稳定 5、刀具重复定位精度高 6、刀具识别准确 二、刀库

最新五轴加工中心参数资料

五轴加工中心参数 1. 设备基本要求: *1.1机床结构:床身采用龙门结构,大理石铸造床身,立式主轴及回转摆动工作台(B,C 轴)的结构形式,具有五轴联动的加工功能; 1.2机床结构设计合理,刚性强,稳定性好,并采用系统具有的动态品质和热稳定性,需能连续稳定工作,精度保持寿命长。 2. 技术规格及要求: 2.1机床要求及主要技术参数 2.1.1工作台尺寸:工作台尺寸≥600×500mm; *2.1.2工作台为单支撑,承重≥400kg; *2.1.3主轴采用全集成电主轴,主轴最高转速≥18000r/min; *2.1.4主轴最大扭矩:≥130Nm; *2.1.5主轴最大功率:≥35KW; 2.1.6主轴锥孔:SK40; *2.1.7工作行程: (1)X轴行程:≥600mm; (2)Y轴行程:≥500mm; (3)Z轴行程:≥500mm; (4)C轴行程:360°; (5)B轴行程:-5~110°; 2.1.8 最小位移增量 (1)X\Y\Z最小位移增量:≤0.001mm; (2)A\C轴最小位移增量:≤0.001° *2.1.9定位精度:X\Y\Z直接测量系统(全闭环)光栅或磁栅; (1)X\Y\Z轴定位精度:≤0.008mm VDI/DGQ 3441标准; (2)B\C轴定位精度:B轴≤10arc sec,C轴≤10arc sec VDI/DGQ 3441标准; *2.1.10快移速度: (1)X\Y\Z轴快移速度:≥50m/min; (2)B\C轴快移速度:≥50r/min; 2.1.11刀库 (1)刀库容量:≥30把,SK40; (2)最大刀具直径(相邻刀位满时)≥80mm; (3)最大刀具直径(相邻刀位空时)≥130mm; (4)最大刀具长度≥300mm; (5)最大刀具重量≥6kg; *2.1.12机床配置标准要求: (1)主轴、驱动、工作台的主动冷却系统; (2)移动电子手轮; (3)海德汉TS 649红外线测头; (4)五轴精度校准工具包; (5)机床具有全封闭防护外罩; (6)自动排屑器; (7)冷却液喷枪; (8)自动化准备:包含自动开合舱门、4通道旋转接头,回转摆动工作台;

加工中心切削参数

加工中心.数控铣床.刀具名称.转速进给、下刀量 例:立铣刀必备知识(按照加工45号钢材) 刀具名称、转速(/min)、进给(mm/min)、下刀量(mm) 63R6(刀片) 600 2500-3000 0.6-1 50R6(刀片) 650-850 2500-3000 0.55-0.7 25R5(刀片) 1200 2000-2500 0.45-0.55 32R6(刀片) 700-1200 2000-2500 0.5-0.65 16R0.8(刀片) 2000-2500 2000-3000 0.25-0.35 16R4(刀片) 2200-2500 2200-3000 0.3-0.4 16(球头刀 2000-2500 2000 0.25-0.35 12(球头刀 2200-2500 2000-3000 0.25 10(球头刀 2500 1800-2000 0.2-0.25 8(球头刀 2500-2800 1500-1800 0.2 6(球头刀 4000 1500-1800 0.1-0.2 4(球头刀 5000-6000 1800 0.1 3(球头刀 7000 1500-1800 0.05-0.08 2(球头刀 12000 1500-2000 0.05-0.08 1.5(球头刀 16000 1200-1500 0.05 1(球头刀 20000 1200 0.05 0.5(球头刀 20000 500 0.02 3.175(球头刀 7000 1500 0.08 30R5(平底立铣) 720-1000 2000-3000 0.3-0.5

40(平底立铣) 300-600 2000-2500 1.0-2.0 20(平底立铣) 600-1000 2000-2500 1.0-2.0 16(平底立铣) 1600 2000-2500 0.3-0.4 12(平底立铣) 2000-2200 2000-2500 0.25-0.35 10(平底立铣) 2200-2500 2000-2500 0.25-0.3 8(平底立铣) 2500 1500-2000 0.2-0.3 6(平底立铣) 3000 1500-2000 0.15-0.2 4(平底立铣) 3500-4000 1500-2000 0.1 3(平底立铣) 6000 1500-1800 0.08-0.1 2(平底立铣) 9000 1500 0.05-0.08 1.5(平底立铣) 12000 1200-1500 0.05-0.08 1(平底立铣) 18000 1000-1500 0.03-0.05 铣刀大体上分为: 1.平头铣刀.进行粗铣.去除大量毛坯.小面积水平平面或者轮廓精铣 2.球头铣刀.进行曲面半精铣和精铣.小刀可以精铣陡峭面/直壁的小倒角。 3.平头铣刀带倒角.可做粗铣去除大量毛坯.还可精铣细平整面(相对于陡峭面)小倒角。 4.成型铣刀.包括倒角刀.T 形铣刀或叫鼓型刀.齿型刀,内R 刀。 5.倒角刀.倒角刀外形与倒角形状相同.分为铣圆倒角和斜倒角的铣刀。 6.T型刀.可铣T型槽. 7.齿型刀.铣出各种齿型.比如齿轮。 8.粗皮刀,针对铝铜合金切削设计之粗铣刀,可快速加工. 铣刀常见有两种材料:

加工中心切削参数

加工中心?数控铳床.刀具名称.转速进给、下刀量 例:立铣刀必备知识(按照加工45号钢材) 进给(mm/min)、下刀量(mm)刀具名称、转速 (/min)、 63R6(刀片)600 2500-3000 0.6-1 50R6(刀片)650-850 2500-3000 0.55-0.7 25R5(刀片)1200 2000-2500 0.45-0.55 32R6(刀片)700-1200 2000-2500 0.5-0.65 16R0.8(刀 2000-2500 2000-3000 0.25-0.35 片) 16R4(刀片)2200-2500 2200-3000 0.3-0.4 16(球头刀2000-2500 2000 0.25-0.35 12(球头刀2200-2500 2000-3000 0.25 10(球头刀2500 1800-2000 0.2-0.25 8(球头刀2500-2800 1500-1800 0.2 6(球头刀4000 1500-1800 0.1-0.2 4(球头刀5000-6000 1800 0.1 3(球头刀7000 1500-1800 0.05-0.08 2(球头刀12000 1500-2000 0.05-0.08 1.5(球头刀16000 1200-1500 0.05 1(球头刀20000 1200 0.05 0.5(球头刀20000 500 0.02 3.175(球头 7000 1500 0.08 刀 30R5(平底立铣)720-1000 2000-3000 0.3-0.5

40(平底立铣)300-600 2000-2500 1.0-2.0 20(平底立铣)600-1000 2000-2500 1.0-2.0 16(平底立铣)1600 2000-2500 0.3-0.4 12(平底立铣)2000-2200 2000-2500 0.25-0.35 10(平底立铣)2200-2500 2000-2500 0.25-0.3 8(平底立铣)2500 1500-2000 0.2-0.3 6(平底立铣)3000 1500-2000 0.15-0.2 4(平底立铣)3500-4000 1500-2000 0.1 3(平底立铣)6000 1500-1800 0.08-0.1 2(平底立铣)9000 1500 0.05-0.08 1.5(平底立铣)12000 1200-1500 0.05-0.08 1(平底立铣)18000 1000-1500 0.03-0.05 铣刀大体上分为: 1.平头铣刀.进行粗铣.去除大量毛坯.小面积水平平面或者轮廓精铣 2.球头铣刀.进行曲面半精铣和精铣.小刀可以精铣陡峭面/直壁的小倒角。 3.平头铣刀带倒角.可做粗铣去除大量毛坯.还可精铣细平整面(相对于陡峭面)小倒角。 4.成型铣刀.包括倒角刀.T 形铣刀或叫鼓型刀.齿型刀,内R刀。 5.倒角刀.倒角刀外形与倒角形状相同.分为铣圆倒角和斜倒角的铣刀。 6.T型刀.可铣T型槽. 7.齿型刀.铣出各种齿型.比如齿轮。 8.粗皮刀,针对铝铜合金切削设计之粗铣刀,可快速加工. 铣刀常见有两种材料:

FANUC高速、高精加工的参数调整

(北京发那科机电有限公司王玉琪) 使用铣床或加工中心机床加工高精度零件(如模具)时,应根据实际机床的机械性能对CNC系统(包括伺服)进行调整。在FANUC的AC 电机的参数说明书中叙述了一般调整方法。本文是参数说明书中相关部分的翻译稿,最后的“补充说明”叙述了一些实际调试经验和注意事项,仅供大家参考。 对于数控车床,可以参考此调整方法。但是车床CNC系统无G08和G05功能,故车床加工精度(如车螺纹等)不佳时,只能调整HRV参数和伺服参数。Cs控制时还可调整主轴的控制参数。 目录 使用αi电机…………………………………………………P 2 使用α电机……………………………………………………P22 补充说明………………………………………………………P24 1 伺服HRV控制的调整步骤 ⑴概述 i系列CNC(15i/16i/18i)的伺服因为使用了HRV2和HRV3控制(21i为选择功能),改善了电流回路的响应,因此可使速度回路和位置回路设定较高而稳定的增益值。

图使用伺服HRV控制后的效果 速度回路和位置回路的高增益,可以改善伺服系统的响应和刚性。因此可以减小机床的加工形状误差,提高定位速度。 由于这一效果,使得伺服调整简化。HRV2控制可以改善整个系统的伺服性能。伺服用HRV2调整后,可以用HRV3改善高速电流控制,因此可进行高精度的机械加工。 若伺服HRV控制与CNC的预读(Look-ahead)控制,AI轮廓控制,AI纳米轮廓控制和高精度轮廓控制相结合,会大大改善加工性能。关于这方面的详细叙述,请见节“高速、高精加工的伺服参数调整”。 2 图伺服HRV控制的效果实例 ⑵适用的伺服软件系列号及版本号 90B0/A(01)及其以后的版本(用于15i,16i,18i和21i,但必须使用320C5410伺服卡)。 ⑶调整步骤概况 HRV2和HRV3控制的调整与设定大致用以下步骤: ①设定电流回路的周期和电流回路的增益(图中的*1 ) 电流回路的周期从以前的250μs降为125μs。电流响应的改善是伺服性能改善的基础。 ②速度回路增益的设定(图中的*2 ) 进行速度回路增益的调整时,对于速度回路的高速部分,应该使用速度环比例项的高速处理功能。 电流环控制周期时间的降低使电流响应得以改善,使用振荡抑制滤波器使可消除机械的谐振,这样可提高速度回路的振荡极限。 ③消振滤波器的调整(图中的*3) 机床可在某个频率下产生谐振。此时,用消振滤波器消除某一频率下的振荡是非常有效的。 ④精细加/减速的设定(图中的*4)

相关文档
最新文档