第三章 纤维的力学性质

第三章  纤维的力学性质
第三章  纤维的力学性质

第三章纤维的力学性质

第一节纤维的拉伸与疲劳性能

一、拉伸曲线的基本特征

表示纤维在拉伸过程中强力和伸长的关系曲线称为拉伸曲线(强力-伸长曲线、应力-应变曲线)。

纤维在拉伸过程中的行为表现和它的结构在拉伸过程中所发生的变化和破坏是有联系的,这样的本构关系可以通过对拉伸曲线的分析加以表述。拉伸从O′点开始:

(1)自O′至O——如果拉伸前纤维未完全伸直,纤维将通过O′O逐渐伸直。

(2)自O至M——曲线基本上是直线段,表示纤维发生的是导致强力与伸长间呈直线相关的虎克变形,纤维中主要是发生了分子内或分子间键角键长的变形。

(3)自M至Q——强力与伸长间关系进入非直线相关阶段,表明纤维中非晶区内大分子链开始发生构象的变化,链与链之间的关系改变。

(4)自Q至S——Q点可称为屈服点,但大多数纤维都没有明晰的屈服点,因为屈服点是结晶物质的特征点,而纤维只有部份结晶态(区)、甚至没有结晶态只有有序区。自Q点开始,原存在于分子内或分子间的氢键等次价力联系开始破坏,首先是非晶区中大分子的错位滑移,所以,这一阶段,伸长增长快于强力。

(5)自S至A——随拉伸的进行,错位滑移的分子基本伸直平行,并可能在伸直的分子链间创造形成新次价力的机会,同时,纤维的结晶区也开始被破坏。拉断结晶区与非晶区中分子间联系,需要较大的外力,所以这一阶段强力上升很快,到A点,纤维断裂。

纤维的应力-应变曲线和强力-伸长曲线的特征相似。

表3-1 常见纤维的拉伸性质指标

二、表征纤维拉伸断裂特征的指标

1.强力

强力是指纤维能够承受的最大拉伸力,又名绝对强力、断裂强力。

2.相对强度

相对强度是应力指标,简称为强度,用纤维被拉断时单位横截面上承受的拉伸力来表示。根据采用的表征纤维截面积的指标不同,强度指标有以下几种:

(1)断裂应力σ

又名强度极限,它是指纤维单位截面积上所能承受的最大拉伸力,单位为N /mm 2(即兆帕)。

(2)比强度tex P

指每特纤维所能承受的最大拉伸力,又称断裂强度,单位为N /tex 或cN/dtex 。

(3)断裂长度L

它是设想将纤维连续地悬吊起来,直到它因本身重力而断裂时的长度,也就是重力等于强力时的纤维长度,单位为千米。

3.伸长率与断裂伸长率

纤维拉伸时产生的伸长占原来长度的百分率称为伸长率或延伸率,拉伸至断裂时的伸长率称为断裂伸长率。它表示纤维承受拉伸变形的能力。其计算式为:

(%)1000

0?-=L L L ε (%)1000

0?-=L L L p ε 式中的ε为纤维的伸长率(%),p ε为纤维的断裂仲长率(%),L 为拉伸后的纤维长度(mm ),L 0为拉伸前的纤维长度(mm ),L 0为断裂时的纤维长度(mm )。

4.断裂功、断裂比功和功系数

(1)断裂功

它是指拉断纤维所作的功,也就是纤维受拉伸到断裂时所吸收的能量。在强力-伸长曲线上,断裂功就是曲线下所包含的面积(图3-3)。

(2)断裂比功

指拉断单位线密度(即ltex )、单位长度(即lcm )纤维所需的能量。

断裂比功实际上反映的是应力一应变曲线下的面积,能对粗细和长度不同纤维的结构对断裂能量水平的贡献作比较分析。

(3)功系数

功系数是指断裂功对断裂强力与断裂伸长乘积的比值。

功系数W e 值越大,被拉伸的纤维可转换或可利用的能量越多,如果是刚性材料,功系数应为0.5,各种纤维的功系数大致在0.36~0.65之间,不同纤维在变形中可转换利用的能量水平是不同的。

(4)柔顺性系数

将纤维在应变5%时的应力和10%时的应力代入下式,即可得到纤维的柔顺性系数C :

51012

σσ-=C

式中的C 为纤维柔顺性系数,10σ为应变为10%时的应力(N/tex ),5σ为应变为5%时的应力(N/tex )。

柔顺性系数可用来表征纤维在低应变阶段时,应力——应变关系的线性化程度,一般说来,线性化程度高的,柔顺性系数C ≈0,纤维应表现出有较好的弹性体特征。刚性纤维和低延伸性纤维,如玻璃纤维、韧皮纤维等的C ≈0;某些在一定伸长范围内仍具有较好弹性的纤维,如聚酰胺纤维的C <0;可塑性越大的纤维,C 值越高。

三、表征纤维拉伸变形特征的指标

1.初始模量

初始模量是指纤维拉伸曲线上起始一段直线部分的应力应变比值,即产生单位应变(100%伸长率)时的应力值。

如果从强力-伸长曲线上取初始模量,可在曲线起始部分的直线段上任取一点:

t

N L L P E ???=

式中的E为初始模量(N/tex),P为该点的负荷(N),L

为M点的伸长(mm),

L为试样拉伸前长度(mm),

t

N试样线密度(tex)。

由于应力一应变曲线上起始段的直线不明显,通常取相当于1%伸长率为时的应力、应变值来求初始模量。

2.屈服应力与屈服伸长率

屈服点:在拉伸曲线的坡度由较大转向较小时的转折点,屈服点处对应的应力和伸长率就是屈服应力和屈服伸长率。

屈服点的确定:首先在纤维的拉伸曲线上坡度较大的部分和坡度较小部分分别作两根切线,然后按以下方法之一确定屈服点Y:

(1)作两切线l、2交角的分角线,交拉伸曲线于Y点,取该点作为屈服点,如图3-4(a)所示;

(2)从两切线l、2的交点作横坐标的平行线,交拉伸曲线于Y点,取该点作为屈服点,如图3-4(b)所示;

(3)在拉伸曲线上,作坐标原点O和断裂点A的连线,再作这一连线的平行线与拉伸曲线转折区域相切的Y点,取该点作为屈服点,如图3-4(c)所示。

一般而言,屈服点高的纤维,不易产生塑性变形,其制品的尺寸稳定性也较好。

四、纤维变形的时间依存性

纤维变形的时间依存性,表现为纤维受力后发生的变形或释去外力后恢复的变形,总是随时间的增加而增加,而且不管是发生变形还是恢复变形,最后还总是会留下一部分不能恢复的变形。所以,可以把这种随时间而变化的变形分解为三个部分(以恢复变形为例):

待恢复的变形

急弹性变形——可立即恢复的变形

可恢复的变形

缓弹性变形——需经一定时间才能恢复的

变形

不可恢复的变形——塑性变形,即不能恢复的变形

产生这三种变形的结构机理:

(1)急弹性变形——来自纤维大分子中键角、键长的变化,瞬时发生,瞬时恢复。

(2)缓弹性变形——来自外力作用下纤维大分子构象的变化,和基于这一变化的大分子重排。由于这个过程是通过克服分子间和分子内各种远近程次价力来实现的,所以过程缓慢,即使是去除外力,分子链为重新取得卷曲构象,变形恢复也需要很长的时间。如果在外力的作用下,一部分伸展的分子链之间曾形成新的次价力,那么在变形恢复的过程中,尚须切断这部分作用力,这样,变形的恢复时间将会更长。

(3)塑性变形——来自外力作用下纤维大分子链之间不可逆的相对滑移。如分子间大部分原有氢键的断裂和在新位置上形成的新氢键;或者虽然只有部分氢链断裂,但在新位置上形成的氢键结合力大于要求恢复卷曲的回缩力,它们都能引起大分子间不可恢复的变形。

三种变形同时发生,只是各自发生的速度不同:急弹性变形发生的速度很快;缓弹性变形则以比较缓慢的速度逐渐发生,并因分子间相互作用条件的不同而变化很大;塑性变形必须克服纤维中大分子之间更多的联系作用才能发生,因此比缓弹性变形更加缓慢。

纤维三种变形的相对比例,随纤维的种类、加负荷的大小以及负荷作用时间的不同而不同。测定时,须选用一定的时间作为区分三种变形值的依据。一般规定:去除负荷后5s (或30s )内能够恢复的变形,作为急弹性变形:去除负荷后2min (0.5h 或更长时间)还不能恢复的变形,为塑性变形;在上述两种时间限值之间能够恢复的变形,即作为缓弹性变形。

五、纤维变形恢复能力的表征

纤维的变形恢复能力称为弹性。表征弹性的常用指标是弹性回复率(或称回弹率),它是指急弹性变形和一定时间内可恢复的缓弹性变形之和占总变形的百分率,其表达式如下:

%1000

121?--=L L L L R ε 式中的εR 为弹性回复率(%),0L 为纤维在预张力下不伸长时的长度(mm ),

1L 为纤维加负荷伸长后的长度(mm )

,2L 为纤维去负荷后在预张力下的长度(mm )。

六、纤维的疲劳破坏

疲劳破坏:纤维在远低于断裂应力或断裂应变的条件下,经受反复施力而破坏。

疲劳的受力形式就是不断的“加载荷”和不断的“去载荷”,即不断接受高变应力(应变)的作用。

图3-5:(拉伸)疲劳的反复拉伸示意图。

由图可见,在这一循环中,外力对纤维的净功面积为oabe ,释去外力后,纤维立即释出的功面积为cbe ,它对净功面积之比可表征纤维在反复拉伸中的急弹性恢复能力,称为拉伸功恢复系数R W :

oabe

abe R W 面积面积 每一个拉伸循环的净功之和应远大于纤维在一次拉伸断裂中表现出来的拉伸断裂功值,这和纤维可以利用回缩的停顿使被破坏的分子间结合得到修补有关。

由于缓弹性变形的恢复需要时间,所以,如果连续地反复拉伸,每一个循环的面积就会逐渐减小,即急弹性变形部分逐渐减少,并且循环会逐渐叠加。如果施加的外力很小,停顿回缩的时间足够长,最后,循环甚至能完全重合,这种状态称为疲劳极限,相应的应力称为临界应力。

随着反复拉伸的进行,拉伸循环不断右移,说明纤维中不可恢复的变形逐渐累积,当变形累积到结构全部破坏时,纤维即告断裂。

表征纤维疲劳特性的指标是耐久度或坚牢度,即指纤维能承受“加负荷、去负荷”反复循环的次数。纤维的坚牢度与纤维的弹性回复率、屈服应力和断裂强度有一定关系。弹性回复率、屈服应力和断裂强度大和剩余变形小的纤维,坚牢度就大;所加负荷小和加负荷时间短的,坚牢度也大;去负荷时间长时坚牢度也大。当负荷小于一定值时,从理论上讲,甚至可以不出现疲劳损坏。

第二节纤维拉伸曲线的基本特征与断裂机理

一、拉伸曲线的基本特征

按断裂伸长和断裂强力之间对比关系的不同,纺织纤维的拉伸断裂曲线可分三类:

第一类:强力很高、伸长率很小,如棉、麻等天然纤维素纤维。原因:取向度和结晶度、聚合度都比较高,大分子属刚性分子链之故;

第二类:强力不高、伸长率很大,如羊毛、醋酯。这类纤维的大分子柔曲性较高,结晶度与取向度较差,虽然聚合度并不一定低,但因为分子间不能形成良好的排列,过长的分子链反而增加了自身的卷曲,

第三类:强力与伸长率都介乎这二者之间。多数纤维的拉伸曲线属于这一种类型。

蚕丝的拉伸曲线(图3-6)属第三类型。但桑蚕丝与柞蚕丝的拉伸曲线仍有很大的差别:柞蚕丝模量较桑蚕丝为低,到曲线的中间部位时斜率变小,即伸长率增长较快,且断裂点低于桑蚕丝。这主要是因为柞蚕丝分子的特点是侧基大、活泼性基团多和弯曲缠结的分子链比较多,所以对外表现为模量小,易变形,而且只要伸长率超过一定数值(湿态时仅2~3%),就会由于卷曲分子缠结点的打开使伸长很快增长,从而对应力的反应变得十分敏感。在这以后,则和桑蚕丝一样,由于伸直了的分子链之间可在活泼基团的作用下建立起相当的作用力,而使曲线末端的模量增大。但最后终因柞蚕丝的结晶度不及桑蚕丝高,使断裂点较桑蚕丝为低。

二、纤维的拉伸断裂机理

纤维在整个拉伸变形过程中的情况是很复杂的,

受力前,纤维中分子状态如图3-7(a)所示;

纤维受力开始时,首先是结晶区之间的非晶区内长度最短的大分子伸直,并接近于与纤维轴线平行如图3-7(b)。

以后伸直的大分子将因受力而被拉伸,使键长与键角增大。在这个过程中,最伸展、最紧张的大分子链或基原纤将逐步被从结晶区抽拨出来,同时,也有可

能有个别大分子主要链被拉断。这样,在结晶区间将逐步产生相对移动而使相互间距离增加和沿纤维轴取向,因此这时不仅大分子间长度差异减小、受力大分子根数增加,而且非结晶区中大分子取向度也提高如图3-7(c)、(d)。结晶区的排列方向,当然亦逐渐顺向纤维轴。

继之,大分子被抽拔得越来越多,拉断的大分子也逐步增加,受力到一定程度后,由于结晶区中大分子之间结构力受到破坏,便产生了大批分子抽拔,于是伸长变形迅速增加(相当于图3-1中的Q—S段)。

当纤维中大分子多数因抽伸滑移作用而沿轴向平行排列以后(如图3-7(e)),随着结晶区的逐步松散,大分子之间的结合力可能又有所增加,这时拉伸曲线的斜率会有所上升。

再继续拉伸,结晶区将更加松散,许多大分子由于不断的抽拔,头端已逐渐被拔出结晶区而成为游离态,从而形成了这部分分子的拉断。当最后纤维在最薄弱的截面上断开时,就达到了拉伸曲线上的断裂点,相当于图3-1中的A点。

三、影响纤维拉伸性质的因素

(一)纤维的内部结构

1.分子的取向度

取向度高,有较多的大分子排列在平行于纤维轴的方向上,因而可以有较多的大分子来承担较大的断裂应力,因此断裂强力高。

麻纤维内部分子绝大部分都和纤维轴平行,强力大;而棉纤维的大分子因呈螺旋形排列,其强力则较麻低;人造纤维的取向度随制造条件而改变,一般在同类纤维纺丝中,牵伸倍数愈大,分子取向度愈高。

2.大分子聚合度

纤维的强度随纤维大分子聚合度的增加而增加,但当聚合度增加到一定值后,再继续增加时,纤维的强度就不再增加,这是由于纤维的断裂决定于大分子的相对滑移和分子链的断裂两个方面。在聚合度较小时,纤维的断裂主要是由于大分子的滑移而引起,随着聚合度的增加,大分子间的抱合长度越长,大分子愈不易滑移,所以纤维的断裂强度就愈高。但当断裂强度达到了足以使分子链断裂时,再增加聚合度对纤维的强力就不起作用了(图3-9)。

3.结晶度

纤维中大分子排列愈规整、缝隙孔洞较少且较小时,分子间结合力愈强,纤维的断裂强度、屈服应力和初始模量也都比较高,但脆性可能增加。(图3-10)

(二)外部试验条件

1.试样长度

试样越长,测得强度越低。纤维愈长,可能出现最薄弱环节的机会越多,所以强力越小,截面积均匀的人造纤维,其强度随试样长度而减低的程度较小。

2.试样根数

由束纤维试验所得的平均单纤维强力比单纤维试验时的强力为低,并且束纤维根数越多,差异越大。

这是由于在束纤维中,各根纤维的强力,特别是断裂伸长率和原始伸长状态不一致,因此在外力的作用下,其中较伸直的、强力低的和断裂伸长率小的纤维必首先断裂,这样,其他纤维所受的力就会较这部分纤维断裂前增大,以至于提前断裂,所以最后由束纤维测得的强力必因这种断裂的不同时性而小于单根纤维测定时的纤维强力之和。

3.拉伸速度对纤维强力与变形的影响较大,拉伸速度大(即拉伸至断裂经历的时间长),纤维强力偏高;拉伸速度小,强力低。此外,拉伸过程的类型不同(例如应力等速增加型、拉伸力等速增加型、伸长率等速增加型、拉伸运动等速移动型、各种不等速型等),也会带来试验结果的差异。

第三节纤维的流变学特征

流变学特征:纤维的应力应变关系会随外力作用时间的变化而变化,这是纤维高聚物粘弹性行为的一种表现形式。

一、蠕变松弛行为的表现与机理

(一)蠕变的表现与机理

蠕变:在应力保持一定的条件下,变形随着外力作用时间的增加而逐渐加大的过程。

纤维的变形主要来自两方面:一方面是来自分子或分子链本身的伸长;另一方面则是分子链的伸直及其取向的改善,以及大分子在结晶区中的被抽拔,这些变化都会伴生分子链间的相对滑移,但这种滑移现象并非瞬时就能完成,因为有粘流的性质,滑移实际上在外力作用的整个时间中都在进行,外力作用的时间愈长,相对滑移的程度就愈大,纤维的蠕变愈充分。

图3-11纤维的蠕变曲线

(二)松弛的表现与机理

松弛:在拉伸变形恒定的条件下,纤维内力随时间的延续而逐渐下降的现象。

图3-12纤维的松弛曲线

实际上,纤维的蠕变与松弛是一个问题的两种表现,它们都是由于纤维中大分子在外力的作用下发生了构象和重排上的变化所致。例如,可以认为松弛是在宏观应变引发的应力作用下,使分子间次价键逐渐破坏,自由的分子链有因热运动而力图卷曲(稳定状态)的热力学功能,致使宏观应变引发的纤维内力在这一卷曲中被逐步消除。

既然蠕变与松弛同是分子链运动的结果,因此凡是能影响分子链运动的因素,也就是影响蠕变与松弛的因素。

(1)纤维本身的化学及物理结构

(2)能使分子链之间作用力增大或使链段长度(分子链活动单元)增大的因素(例如分子量增加,分子链的极性、交联、结晶增加等)。

(3)应力大小及温湿度条件等也都会对蠕变、松弛有影响,温度与回潮率

的增加会使蠕变与松弛剧增,所以生产中常用高温高湿进行各种定型处理,即是为了加速应力的松弛过程。

二、蠕变松弛的模拟应用(略)

第三章 纤维的力学性质

第三章纤维的力学性质 第一节纤维的拉伸与疲劳性能 一、拉伸曲线的基本特征 表示纤维在拉伸过程中强力和伸长的关系曲线称为拉伸曲线(强力-伸长曲线、应力-应变曲线)。 纤维在拉伸过程中的行为表现和它的结构在拉伸过程中所发生的变化和破坏是有联系的,这样的本构关系可以通过对拉伸曲线的分析加以表述。拉伸从O′点开始: (1)自O′至O——如果拉伸前纤维未完全伸直,纤维将通过O′O逐渐伸直。 (2)自O至M——曲线基本上是直线段,表示纤维发生的是导致强力与伸长间呈直线相关的虎克变形,纤维中主要是发生了分子内或分子间键角键长的变形。 (3)自M至Q——强力与伸长间关系进入非直线相关阶段,表明纤维中非晶区内大分子链开始发生构象的变化,链与链之间的关系改变。 (4)自Q至S——Q点可称为屈服点,但大多数纤维都没有明晰的屈服点,因为屈服点是结晶物质的特征点,而纤维只有部份结晶态(区)、甚至没有结晶态只有有序区。自Q点开始,原存在于分子内或分子间的氢键等次价力联系开始破坏,首先是非晶区中大分子的错位滑移,所以,这一阶段,伸长增长快于强力。 (5)自S至A——随拉伸的进行,错位滑移的分子基本伸直平行,并可能在伸直的分子链间创造形成新次价力的机会,同时,纤维的结晶区也开始被破坏。拉断结晶区与非晶区中分子间联系,需要较大的外力,所以这一阶段强力上升很快,到A点,纤维断裂。 纤维的应力-应变曲线和强力-伸长曲线的特征相似。 表3-1 常见纤维的拉伸性质指标

二、表征纤维拉伸断裂特征的指标 1.强力 强力是指纤维能够承受的最大拉伸力,又名绝对强力、断裂强力。 2.相对强度 相对强度是应力指标,简称为强度,用纤维被拉断时单位横截面上承受的拉伸力来表示。根据采用的表征纤维截面积的指标不同,强度指标有以下几种: (1)断裂应力σ 又名强度极限,它是指纤维单位截面积上所能承受的最大拉伸力,单位为N /mm 2(即兆帕)。 (2)比强度tex P 指每特纤维所能承受的最大拉伸力,又称断裂强度,单位为N /tex 或cN/dtex 。 (3)断裂长度L 它是设想将纤维连续地悬吊起来,直到它因本身重力而断裂时的长度,也就是重力等于强力时的纤维长度,单位为千米。 3.伸长率与断裂伸长率 纤维拉伸时产生的伸长占原来长度的百分率称为伸长率或延伸率,拉伸至断裂时的伸长率称为断裂伸长率。它表示纤维承受拉伸变形的能力。其计算式为: (%)1000 0?-=L L L ε (%)1000 0?-=L L L p ε 式中的ε为纤维的伸长率(%),p ε为纤维的断裂仲长率(%),L 为拉伸后的纤维长度(mm ),L 0为拉伸前的纤维长度(mm ),L 0为断裂时的纤维长度(mm )。 4.断裂功、断裂比功和功系数 (1)断裂功 它是指拉断纤维所作的功,也就是纤维受拉伸到断裂时所吸收的能量。在强力-伸长曲线上,断裂功就是曲线下所包含的面积(图3-3)。 (2)断裂比功

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

第三章 纤维的力学性质(原文)讲解

第三章纤维的力学性质 第一节纤维的拉伸性质 纺织纤维在纺织加工和纺织品的使用过程中,会受到各种外力的作用,要求纺织纤维具有一定的抵抗外力作用的能力。纤维的强度也是纤维制品其他物理性能得以充分发挥的必要基础,因此,纤维的力学性质是最主要的性质,它具有重要的技术意义和实际意义。纺织纤维的长度比直径大1000倍以上,这种细长的柔性物体,轴向拉伸是受力的主要形式,其中,纤维的强伸性质是衡量其力学性能的重要指标。 一、拉伸曲线及拉伸性质指标 1.纤维的拉伸曲线特征 纤维的拉伸曲线由拉伸试验仪得到,图3-1是一试样长度为20cm,线密度为0.3 tex,密度为

1.5R/cm3的纤维在初始负荷为零开始一直拉伸至断裂时的一根典型的纤维拉伸曲线。它可以分成3个不同的区域:A为线性区(或近似线性区);B为屈服区,在B区负荷上升缓慢,伸长变形增加较快;C为强化区,伸长变形增加较慢,负荷上升较快,直至纤维断裂。

图3-1 纤维的拉伸曲线

纤维的拉伸曲线可以是负荷-伸长曲线,也可以将它转换成应力-应变曲线,图形完全相同,仅坐标标尺不同而已。纤维拉伸曲线3个不同区域的变形机理是不同的。当较小的外力作用于纤维时,纤维产生的伸长是由于分子链本身的伸长和无定形区中缚结分子链伸展时,分子链间横向次价键产生变形的结果。所以,A区的变形是由于分子链键长(包括横向次价键)和键角的改变所致。变形的大小正比于外力的大小,即应力-应变关系是线性的,服从虎克定律。当外力除去,纤维的分子链和横向连接键将回复到原来位置,是完全弹性回复。由于键的变形速度与原子热振动速率相近,回复时间的数量级是10-13s,因此,变形的时间依赖性是可以忽略的,即变形是瞬时的。 当施加的外力增大时,无定形区中有些横向连接键因受到较大的变形而不能承受施加于它们的力而发生键的断裂。这样,允许卷曲分子链伸直,接着分子链之间进行应力再分配,使其他的横向连接键受力增加而断裂,分子链进一步伸展。在这一阶段,纤维伸长变得较容易,而应力上升很缓慢。应力-应变曲线具有较小的斜率,这是B区产生的屈服现象。当外力除去后,变形的回复是不完全的。因为许多横向连接键已经断裂不能回到原来的位置,或者在新的位置上已经重新形成新的横向次价键变成较稳定的结构状态。

纺织材料学习题库

纺织材料学习题库 (注:部分习题有答案) 一.名词解释 聚集态结构链结构形态结构几何异构体交联高分子旋光异构大分子结构序列结构聚合度构型链段构象结晶态结构结晶度取向度非晶区非晶态结构两相结构高分子柔性晶格原纤原纤结构巨原纤再生有机纤维接枝共聚反应原棉皮辊棉锯齿棉黄棉细绒棉长绒棉粗绒棉棉短绒 原棉杂质手感目测配棉天然转曲成熟度成熟系数韧皮纤维叶鞘纤维 工艺纤维精干麻同质毛被毛毛丛细羊毛两型毛粗腔毛兔毛马海毛骆驼毛净毛率羊毛卷曲缩绒性品质支数双侧结构山羊绒蚕茧茧丝绢纺纱茧层率丝素丝胶丝鸣茧的解舒生丝精炼丝人造纤维合成纤维化学纤维差别化纤维无机纤维芳纶异型纤维超细纤维碳纤维金属纤维膜裂纤维中长纤维包覆溶融纺丝复合纤维改性纤维干法纺丝湿法纺丝熔体纺丝融液纺丝法成纤高聚物预取向丝(POY)平均长度品质长度手扯长度比表面积纤度特公制支数纤维密度吸湿性回潮率含水率实际回潮率平衡回潮率标准回潮率公定回潮率标准重量(公定重量)标准状态吸湿等温线吸湿等湿线吸湿滞后性直接吸着水间接吸着水吸湿膨胀吸湿放热吸湿微分热吸湿积分热吸湿平衡机械性质绝对强度相对强度断裂强度断裂应力断裂长度比强度勾接强度打结强度断裂伸长率预张力初始模量屈服点断裂功断裂比功功系数急弹性变形缓弹性变形塑性变形弹性恢复率弹性功率流变性蠕变松弛疲劳抗弯刚度抱合力抗

扭刚度摩擦力负荷—伸长曲线抱合长度动态机械性质初始模量屈服应力压缩弹性恢复率比热容导热系数绝热率玻璃化温度粘流温度熔点温度分解点温度热塑性热收缩耐热性热稳定性极限氧指数闪光效应耐光性闪色效应纤维色泽纤维光泽光致发光纤维介电系数纤维介电损耗纤维介质损耗因素微波加热纤维的比电阻纤维静电电位序列永久性抗静电纤维单纱股线混纺纱混纺比混合纱花色纱变形纱膨体纱弹力丝包缠纱自捻纱自由端纱公称特数与设计特数重量不匀率条干均匀度重量偏差支数偏差随机不匀率波长图不匀率指数牵伸波纱线结构纤维径向分布纱线体积重量捻向捻幅临界捻度捻回角捻系数捻缩滑脱长度纱线毛羽棉纱品质指标机织物织物组织交织织物织物经、纬纱密度织物经、纬向紧度织物重量纱线紧密系数织物结构相针织物经编针织物纬编针织物成形针织物线圈长度编织系数针织物的脱散性针织物的卷边性针织物的歪斜性非织造布纤维网织物撕破强力织物顶破强力织物风格手感免烫性防寒性褶裥保持性 舒适性热阻克罗值(CLO)抗熔孔性织物保暖性织物悬垂性 1. 吸湿平衡:具有一定回潮率的纤维,放在一个新的大气条件下,它将立刻放湿或吸湿,经过一定时间后,它的回潮率逐渐趋向于一个稳定的值,这种现象称为吸湿平衡。 2. 蠕变、松弛:蠕变是指在一定拉伸力作用下,变形随时间而变化的现象。松驰是指在拉伸变形(伸长)恒定的条件下,内部应力(张力)随时间的延续继续不断下降的现象。 3.极限氧指数:是材料点燃后在氧-氮大气里维持燃烧所需要的最低的含氧量的体积百分数。 4.断裂伸长度:纤维和纱线拉伸到断裂时的伸长率(应变率)叫断裂伸长率,或称断裂伸长度。

纤维力学性能

第七章纺织纤维和纱线的 力学性质 讨论纺织纤维与纱线的拉伸性质及其对时间依赖性、纤维基本力学模型,纤维弹性、动态力学性质及疲劳,以及纤维的弯曲、扭转、压缩等力学性能。 第一节纤维的拉伸性质 一、纤维的拉伸曲线与性能指标 1.拉伸曲线 纤维的拉伸曲线有两种形式,即负荷p-伸长△l 曲线和应力σ-应变ε曲线。 2.拉伸性能指标 (1)强伸性能指标 强伸性能是指纤维断裂时的强力或相对强度和伸长(率)或应变。 图7-1 纺织纤维的拉伸曲线 a.强力P :又称绝对强力、断裂强 b 力。它是指纤维能承受的最大拉伸外

力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。 b.断裂强度(相对强度) Pb:简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex,常用cN/dtex(或cN/d)。 c.断裂应力σb:为单位截面积上纤维能承受的最大拉力,标准单位为 N/m2(即帕)常用N/mm2(即兆帕Mpa)表示。 :纤维重力等于其断d.断裂长度L b 裂强力时的纤维长度,单位为km。 (2)初始模量 初始模量是指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即σ- ε曲线在起始段的斜率。 (5-10) 初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。 (3)屈服应力与屈服伸长率 图7-2 纤维屈服点的确定 纤维在屈服以前产生的变形主要是纤维大分子链本身的键长、键角的伸长和分子链间次价键的剪切,所以基本上是可恢复的急弹性变形。而屈服点以后产生的变形中,有一部分是大分子链段间相互滑移而产生的不可恢复的塑性 变形。 (4)断裂功指标 a.断裂功W:是指拉伸纤维至断

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

岩体的力学性质及分类doc

―――岩体力学作业之二 一、名词释义 l.结构面:①指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 ②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、褶皱、断层、层面、节理和片理等。 2.原生结构面:在成岩阶段形成的结构面,根据岩石成因的不同,可分为沉积结构面、岩浆(火成)结构面和变质结构面三类。 3.构造结构面:指在构造运动作用下形成的各种结构面,如劈理、节理、断层面等。 4.次生结构面:指在地表条件下,由于外力(如风力、地下水、卸荷、爆破等)的作用而形成的各种界面,如卸荷裂隙、爆破裂隙、风化裂隙、风化夹层及泥化夹层等。 5.结构面频率:即裂隙度,是指岩体中单位长度直线所穿过的结构面数目。 6.结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一、大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体。 7.结构效应:是指岩体中结构面的方向、性质、密度和组合方式对岩体变形的影响。 8.剪胀角(angle of dilatancy):岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值。 9.节理化岩体:是指被各种节理、裂隙切割呈碎裂结构的岩体。 10.结构面产状的强度效应:指结构面与作用力之间的方位关系对岩体强度所产生的影响。 11.结构面密度的强度效应:指结构面发育程度(数量)对岩体强度所产生的影响。 12.岩体完整性指标:是指岩体弹性纵波与岩石弹性纵波之比的平方。 13.岩体基本质量:岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度决定。 14.自稳能力:在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 15.体积节理数:是指单位岩体体积内的节理(结构面)数目。 16.岩石质量指标(RQD):长度在10cm(含10 cm)以上的岩芯累计长度占钻孔总长的百分比,称为岩石质量指标RQD(Rock Quality Designation)。 二、填空题 1.岩体是指经历过多次反复地质作用,经受过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地质环境中的地质体。因此,岩体力学性质与岩体中的、以及 2 密切相关。 2.岩体由结构面和结构体组成,结构面根据形成原因通常可分为三种类型:、 和。 3.在工程岩体范围内,结构面按贯通情况可分为、以及三种类型。 4.在岩体中被各种结构面切割而成的岩石块体称为结构体。结构体的形状主要有、、1 以及菱形和锥形等,如果风化强烈或挤压严重,也可形成、、 1 等。 5.岩体抵抗外力作用的能力称为岩体的力学性质。它包括岩体的特征、特征和1 特征等。 6.岩体结构面的剪切变形与、和有关。 7.岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:、、、 以及和。 8.岩体的力学性质不仅取决于岩石本身及结构面的力学性质,也与密切相关。 9.岩体的强度不仅与组成岩体的的性质有关,而且与岩体内的有关,此外还与岩体有关。 10.岩体中存在各种结构面,结构面的变形大小主要由和控制的。

纺织纤维的力学性质

第四章纺织纤维的力学性质 ●一、名词解释 1. 断裂强力 2. 断裂强度 3. 断裂长度 4. 断裂伸长率 5. 初始模量 6. 弹性 7. 急弹性变形 8. 缓弹性变形 9. 塑性变形10. 蠕变11. 松弛12. 疲劳 ●二、填空题 1. 纺织纤维的力学性质包 括①、②、③、④、⑤、⑥、⑦等。 2. 纺织纤维初始模量小,表示纤维在小负荷作用下具有①等性能。 3. 影响纤维强伸度的因素分①、②两大类。 4. 纺织纤维受到拉伸力的作用后,其变形有①、② 和③三种。 5. 纺织工艺对纤维的摩擦抱合的要求是① 。 问答题 1. 影响纤维强伸度的内因是什么? 2. 影响纤维强伸度的外因是什么? 3. 测试束纤维强力时,修正系数0.675表示什么意思?为什么要修正? 4. 试述对纤维弯曲性能的要求。 答案: 第四章纺织纤维的力学性质 一、名词解释 1. 纺织材料断裂时,所能承受的最大外力,又称绝对强力。 2. 是指单位线密度纤维或纱线所能承受的绝对强力。 3. 重力等于强力时的纤维长度。 4. 伸长的长度占原来长度的百分率。 5. 表示纺织材料拉伸曲线起始段直线部分的斜率,用来描述纺织材料在较小外力作用下变形难易程度的指标。 6. 指纤维变形的恢复能力。 7. 加上拉伸力,几乎立即产生的伸长变形;除去拉伸力,几乎立即产生的回缩变形。 8. 是在拉伸力不变的情况下,纺织材料缓慢产生的伸长或回缩变形。 9. 材料受力时产生变形,除去外力后,材料的变形不能恢复的部分。

10. 纺织材料在一定拉伸条件下,变形随时间而变化的现象。 11. 拉伸变形保持一定,材料内应力随时间延续而减小的现象。 12. 纺织材料在较小外力长时间反复作用下,塑性变形不断积累,当积累的塑性变形值达到断裂伸长时,材料最后出现整体破坏的现象。 二、填空题 1. ①拉伸②压缩③弯曲④扭转⑤摩擦⑥磨损⑦疲劳 2. ①容易变形,刚性较差,其制品比较柔软。 3. ①内因②外因 4. ①急弹性变形②缓弹性变形③塑性变形 5. ①纤维相互间抱合性能要好,但摩擦系数不能太大。 三、问答题 1. ⑴大分子结构:当聚合度高,纤维强度高伸长小⑵超分子结构:当结晶度、取向度高,纤维强度高伸长小⑶纤维形态结构:大分子内裂缝和孔洞多,纤维强度下降。 2. ⑴温湿度高,大分子热动能增加,分子间结合力下降,纤维强度降低,伸长增加。 ⑵试验条件有:试样长度、束纤维根数、拉伸速度。 3. 束纤维强力换算成单纤维强力的修正系数,用束纤维法测强力由于纤维断裂的不一致性和测定时的其它因素,束纤维强力小于单纤维强力总和,使求得的单纤维强力偏小。 4. 要求纤维具有良好的弯曲性能,一方面要耐弯曲而不被破坏;另一方面要求具有一定的抗弯钢度。弯曲钢度小的纤维制成的织物柔软贴身,软糯舒适,但织物容易起球;抗弯钢度大的纤维制成的织物比较挺爽。

各类纤维材料物理力学性能--修正

一、PE纤维 PE纤维是超高分子量聚乙烯纤维(ultra-high molecular weight polyethylene fiber DOYENTRONTEX Fiber)的简称,是世界上最坚韧的纤维。 ①强度达2.2~3.5Gpa,具有很好的耐疲劳性和耐摩擦性,耐冲击性能强于芳纶、碳纤维、聚酯等,仅小于尼龙,在高强纤维中,是最高的; ②优良的耐化学腐蚀性和耐光性,熔点144℃; ③密度较小,一般为0.97g/cm3,断裂伸长为3%~6%, 国外超高分子量聚乙烯性能 二、碳纤维 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软;④耐磨、耐疲劳、减振吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低; ⑨生物相容性好,生理适应性强。 碳纤维有通用型(GP)、高强型(HT)、高模型(HM)、高强高模(HP)等多种规格,其性能指标见下表。

岩石力学性质试验指导书

实验一岩石单轴抗压强度试验 1.1 概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2 试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3 试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4 主要仪器设备 试样加工设备:钻石机、锯石机、磨石机或其他制样设备。 量测工具与有关检查仪器: 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 加载设备: 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。 1.5 试验程序 (1)根据所要求的试样状态准备试样。 (2)将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受力。

碳纤维的力学性能

第一小节碳纤维的力学性能 碳纤维的主要力学性能要求 纤维复合材料的力学特点是其应力应变量完全线弹性,不存在屈服点或塑性区。所以是结构加固补强的理想材料。 优点:高强、轻质、耐腐蚀、耐疲、现场施工便捷。所以是加固补强的理想材料。较高的防磁、防辐射性能。 缺点:由于碳纤维片材受拉时呈线弹性性能直至破坏的性质,所以在粘贴碳纤维片材的结构设计中不能将碳纤维片材作为钢筋的替代物。而且三种FRP中,CFRP是电导体。 原因: 1、碳纤维片材不具备钢筋的延性,加固后结构的延性将受到限制; 2、由于碳纤维片材的延性缺乏,构件中的应力重分布将受到约束。因此在设计时,必须考虑碳纤维片材的脆性特点。

第二小节材料 <1>底层涂料(底涂胶) 在处理好的混凝土表面上,涂一层很薄的底层胶,目的是使其浸入混凝土层,强化混凝土表面强度,改进胶结性能,提高混凝土与碳纤维布之间的粘接性能。 要求: 1、很低的粘度,使其能渗入混凝土内部。 2、与混凝土有良好的粘结性能,有利于纤维布的粘贴。 <2>整平材料(找平胶) 工程实践表明,碳纤维布只有与被加固的混凝土表面紧密接触,才能产生良好的补强效果。但混凝土表面的锐利突起物、错位和转角部位等都可能使碳纤维布产生损伤,并引起强度降低。混凝土表面小的模板错位及混凝土气孔很难通过基底处理一道工序彻底清理。因此,在涂敷的底层涂料指触干燥后,必须用找平胶进行找平,同时将矩形断面直角打磨后补成圆弧状。 要求: 1、优良的塑性触变性能。 2、较高的韧性和粘结性能。 3、施工时易于干燥固化,随时间的延长不会出现明显的变形, 防止胶的滴挂。

<3>浸渍树脂(粘贴主胶) 浸渍树脂是粘结材料的主体,它连接底胶与碳纤维布。它的作用是将碳纤维布粘附于混凝土表面,经过碾压,使浸渍树脂很容易浸透碳纤维布,与混凝土形成一个整体,共同抵抗外力作用。 要求: 1、良好的渗透性,利于浸透碳纤维布. 2、一定的初粘力,防止粘贴的碳纤维布塌落形成空洞或空隙。 3、胶粘剂与碳纤维的相容性和粘接力必须极好,才能满足碳纤维布和混凝土形成预定的复合材料。 <4>防护材料(罩面胶) 主要目的: 1、保护碳纤维布,防止粘贴层的老化。 2、美化施工表明。 基本要求: 1、不脱层、不掉落,能长期在冷热干湿的空气中保持稳定。 2、防止紫外线对粘贴层的直接照射。 它的选择范围较大,丙烯酸体系、聚氨脂体系、不饱和聚酯体系、有机硅、有机氟体系等都适合。 实际工作中,纤维布厂商会提供相应的系列粘结材料,设计者很少自行选择。

岩石的基本物理力学性质

岩石的基本物理力学性质 岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩体力学中研究最早、最完善 的力学性质。 岩石密度:天然密度、饱和密度、 质量指标密度、重力密度 岩石颗粒密度 孔隙性孔隙比、孔隙率 含水率、吸水率 水理指标 渗透系数 抗风化指标软化系数、耐崩解性指数、膨胀率 抗冻性抗冻性系数 单轴抗压强度 单轴抗拉强度 抗剪强度 三向压缩强度 岩石的基本物理力学性质 ◆岩石的变形特性 ◆岩石的强度理论 试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。 第二章岩石的基本物理力学性质 第一节岩石的基本物理性质 第二节岩石的强度特性 第三节岩石的变形特性

第四节岩石的强度理论 回顾----岩石的基本构成 岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。 岩石是构成岩体的基本组成单元。相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。 岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。 回顾----岩石的基本构成 一、岩石的物质成分 ●岩石是自然界中各种矿物的集合体。 ●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。 ●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。 ●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。 回顾----岩石的基本构成 二、岩石的结构 是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。 回顾----岩石的基本构成 ●岩石结构连结 结晶连结和胶结连结。 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。 胶结连结:指颗粒与颗粒之间通过胶结物在一起的连结。对于这种连结的岩石,其强度主要取决于胶结物及胶结类型。从胶结物来看,硅质铁质胶结的岩石强度较高,钙质次之,而泥质胶结强度最低。 回顾----岩石的基本构成 ●岩石中的微结构 岩石中的微结构面(或称缺陷),是指存在于矿物颗粒内部

纺织纤维的基本性能

纤维(fiber )的定义 纤维是纺织品的基本原料,是构成服装功能的基础。 纤维 1 具有足够的细度(直径≤100 um ); 2 足够的长径比(长度/直径>500); 3 具有一定的柔韧性; 纺织纤维 1 具有可纺性:长度>10 mm ; 2 具有服用性:强度、柔软性、吸湿性、抗皱性; 纺织纤维的分类:天然纤维 化学纤维 合成纤维 一、纤维的力学性质 宏观上指在拉伸、压缩、弯曲、剪切和扭转等作用下所表现出的各种行为;微观上可视为在力场中分子运动的表现。纤维的力学性质是纺织服装加工中选择纤维材料的主要依据之一。 1、断裂强度 是指纤维受力被拉伸至断裂时所能承受的最大外力。常用单位有[N /tex ]、[CN /dtex ]。 2、断裂延伸度(断裂伸长率)是指断裂时的伸长与纤维原长之比的百分数即 式中: L0-纤维的原长; L -纤维伸长至断裂时的长度; 3、抗弯刚度 是指纤维抵抗弯曲变形的能力。弯曲刚度小的纤维易于弯曲,形成的织物手感柔软,垂感好; 4、弹性 是指纤维在外力作用下发生形变,撤消外力后,恢复形变的能力。弹性好的织物做成的服装不易形成折皱,外观保型性好。 二纤维的吸湿性 纺织纤维放置在大气中会不断和大气进行水分的交换,这种吸收和放出水分的性能称为纺织纤维的吸湿性(hygroscopicity )。 1、回潮率(moisture regain ) G G W%100%G ?00 -回潮率= L L 100%L ?00-断裂伸长率=

2、含水率(water content ) G G M%100%G 0-含水率= 式中:G -表示纤维的湿重; G o-表示纤维的干重; 1)标准回潮率 指在规定的标准大气压下,温度为200C ,相对湿度为65%,将纤 维放置一定时间所测得的回潮率。 2)实际回潮率 纤维在实际所处环境条件下具有的回潮率。其值和公定回潮率相近。 三、纤维的细度及其表征方法 长度与细度是衡量纤维品质的重要指标,也是影响成纱质量和最终产品性能的重要因素。 纤维越长、越细,成纱质量越好,易制作光洁、柔软轻薄的产品;若较短、较粗,不宜纺出优质的纱线,易形成厚实、丰满、粗犷的外观。 1、线密度(T t)在公定回潮率下,1000m长纤维所具有的质量(克)。简称特(tex )。 特作为纤维的细度指标单位太大,故常用分特(dtex )来表示。 1tex = 10dtex tex 数在实际生产中过去被称为号数。如30号纱等。 2、旦[尼尔](denier ) 在公定回潮率下,9000m长纤维所具有的质量(克)。 数值越大,纤维越粗。常用于化纤长丝和蚕丝细度的表征。 1tex =10dtex = 9denier 3、公支支数(N m) 在公定回潮率下,1克重纤维所具有的长度(米),为线密度的倒数。通常将其称为支数( 如32S ),支数赿高,纤维赿细。 4、英支支数(Ne ) 在公定回潮率下,1磅重(1b)的纤维所具有的长度码(yd)数,通常将其称为英支(s)。 1磅=0.45kg; 1码=0.91m 四纤维的热学性质 1、比热容 是指单位质量的纤维在其温度变化10C 所吸收或放出的热量,标准单位为J/(kg ·k)。 2、导热性 指纤维材料传导热量的能力,它直接影响产品的保暖性和触感。 导热性好的材料,手感凉爽、保暖性差;导热性差的材料,手感温暖、保温性好。材料的导热性能通常用导热系数(热导率)来表示,若导热系数大,导热性好。

纺织材料学教案10 纤维的力学性质

第十章纤维的力学性质 教学目标: 1、使学生了解纤维的基本力学性质。 2、使学生掌握纤维力学性质的表征指标及其表征方法。 3、使学生掌握纤维力学性质的诸多影响因素。 教学重点与难点: 教学重点:1、纤维各种力学现象形成机理、力学性能指标及影响因素。 2、基本力学模型 3、纤维的力学性质特征曲线及表征。 教学难点:纤维的拉伸变形曲线、纤维蠕变及蠕变回复曲线的理解和掌握 教学与学习建议: 1、教学建议 授课形式:讲解与讨论,实验 理论讲解织物的多种力学现象形成机理、力学性能指标及影响因素;通过举例详细讲解纤维的力学性质特征曲线及其表征; 充分做好实验准备。 2、学习建议 通过实验室力学实验掌握纤维力学现象形成机理; 通过记忆和理解,掌握纤维的力学性能指标及其影响因素; 通过实验与理论的结合掌握纤维的力学性质特征曲线及其表征。

第十章 纤维的力学性质 第一节 拉伸性质 一、纤维拉伸断裂性能的基本指标: 1.拉伸断裂强力 断裂强力b p :又称绝对强力。它是指纤维能承受的最大拉伸外力,或单根纤维受外力拉伸到断裂时所需要的力,单位为牛顿(N)。 2.相对强度 纤维粗细不同时,强力也不同,因而对于不同粗细的纤维,强力没有可比性。为了便于比较,可以将强力拆合成规定粗细时的力,这就是相对强度。常用的有三种: (1)断裂应力b σb σ:为单位截面积上纤维能承受的最大拉力,标准单位为N/m 2(即帕)常用N/mm 2(即兆帕a Mp )表示。 (2)断裂强度(相对强度)b p :简称比强度或比应力,它是指每特(或每旦)纤维能承受的最大拉力,单位为N/tex ,常用cN/dtex (或cN/d )。 (3)断裂长度L b :纤维重力等于其断裂强力时的纤维长度,单位为km 。 (4)以上三类相对强度的表达式分别为 b b A P = σ den b den tex b tex N P p N P p == g m b b N P L ?= 3.断裂伸长 任何材料在受力作用的同时一般都会产生变形,这两者总是同时存在、同时发展的。在拉伸力的作用下,材料一般要伸长。纤维拉伸到断裂时的伸长率(应变率),叫断裂伸长率,或者断裂伸长度,用a ε表示,单位为百分数。 100(%)a a L L L ε-= ? 4.拉伸变形曲线和相关指标 (1)拉伸变形曲线 纤维的拉伸曲线有两种形式,即负荷p -伸长△l 曲线和应力σ-应变ε曲线。如图5-1所示: (2)相关指标 a .屈服点:图10-1中曲线上的Y 点叫屈服点,这一点对应的拉伸应力叫屈服应力。 b. 初始模量:指纤维拉伸曲线的起始部分直线段的应力与应变的比值,即-σε曲线在起始段的斜率。初始模量的大小表示纤维在小负荷作用下变形的难易程度,即纤维的刚性。 c.断裂功W :是指拉伸纤维至断裂时外力所作的功,是纤维材料抵抗外力破坏所具有的能量。 d .断裂比功v W :一是拉断单位体积纤维所需作的功v W ,单位为N/mm 2 。另一定义是重量断裂比功w W ,是指拉断单位线密度与单位长度纤维材料所需做的功。 e .功系数η:指纤维的断裂功与断裂强力(b p )和断裂伸长(lb ?)的乘积之比。 其中c 、d 、e 都属于断裂功指标,断裂功是强力和伸长的综合指标,它可以有效地评定纤维材料的坚牢度和耐用性能。

常用土层和岩石物理力学性质

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

碳纤维布力学性能

碳纤维布力学性能 一、卡本碳纤维布加固技术优点 1、自重轻,厚度小,加固后基本不增加基体厚度; 2、良好的柔韧性,适用于梁、柱、板、管道和墙体等各种形状的构件; 3、耐酸、碱、物理腐蚀,适用各种不同环境; 4、施工便捷,周期短; 5、无公害,符合绿色环保要求; 6、贮存寿命长,质量保证期长。 二、卡本碳纤维布力学性能 1、碳纤维布设计计算指标 性能项目 单向织物(布) 高强度Ⅰ级高强度Ⅱ级 抗拉强度设计值f t(MPa) 重要构件1600 1400 一般构件2300 2000 弹性模量设计值E f(MPa) 重要构件 2.3×105 2.0×105一般构件 抗应变设计值εf 重要构件0.007 0.007 一般构件0.01 0.01 2、碳纤维布原材料力学指标 纤维类别性能项目抗拉强度(MPa)弹性模量(GPa)伸长率(%)碳纤维 高强度Ⅰ级≥4900≥240≥2.0 高强度Ⅱ级≥4100≥210≥1.8 3、碳纤维布安全性能指标 性能项目CFS-I-300CFS-I-200CFS-II-300CFS-II-200 强度级别高强I级高强I级高强II级高强II级克重(g/m2)300 200 300 200 理论厚度(mm) 0.167 0.111 0.167 0.111 抗拉强度(MPa) 国标安全指标3400 3400 3000 3000 卡本?测试数据3647 3696 3202 3249 弹性模量(GPa) 国标安全指标240 240 210 210 卡本?测试数据241 241 213 212 伸长率(%) 国标安全指标 1.70 1.70 1.50 1.50

相关文档
最新文档