LED陶瓷散热基板

LED陶瓷散热基板
LED陶瓷散热基板

LE D 陶瓷散热基板

一. 引言

LED 产品具有节能、省电、高效率、反应时间快、寿命周期长、具有环保效益等优点,是近年来最受瞩目的产业之一,图1为2006-2009年高亮度LED 市场增长趋势图。

销售收入/亿美元图1 2006-2009年高亮度LED 市场增长

随着LED 照明的需求日趋迫切,高功率LED 的散热问题益发受到重视,因为过高的温度会导致LED 发光效率衰减,通常LED 高功率产品输入功率约为15%能转换成光,剩下85%的电能均转换为热能。LED 运作所产生的废热若无法有效散出,将会使LED 结面温度过高,进而影响产品生命周期、发光效率、稳定性,对LED 的寿命造成致命性的影响。图2为LED 结面温度与发光效率的关系图,当结面温度由25℃上升至100℃时,其发光效率将会衰退20%到75%不等,其中又以黄色光衰退75%最为严重。此外,当操作温度由63℃升到74℃时,LED 平均寿命将会减少3/4。因此,散热问题是LED 产业永远无法逃避的重要课题,要提升LED 的发光效率,必须要解决散热问题。

-40-20020406080100120

结温/℃

图2 LED 结面温度与发光效率关系图

二. LED散热途径

在了解LED散热问题之前,必须先了解其散热途径,进而针对散热瓶颈进行改善。依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法如图3所示:

图3 LED各种散热途径

散热途径说明:

①从空气中散热

②热能直接由System circuit board导出

③经由金线将热能导出

④若为共晶及Flip chip制程,热能将经由通孔至系统电路板而导出

一般而言,LED颗粒(Die)以打金线、共晶或覆晶方式连结于其基板上(Substrate of LED Die)而形成LED芯片(chip),而后LED芯片固定于系统的电路板上(System circuit board)。因此,LED可能的散热途径为直接从空气中散热(如图3途径①所示),或经由LED颗粒基板至系统电路板再到大气环境。而散热由系统电路板至大气环境的速率取决于整个发光灯具或系统的设计。

然而,现阶段的整个系统的散热瓶颈,多数发生在将热量从LED颗粒传导至其基板再到系统电路板为主。此部分的可能散热途径:其一为直接由晶粒基板散热至系统电路板(如图3途径②所示),在此散热途径里,其LED颗粒基板材料的热散能力是很重要的参数。另一方面,LED所产生的热也会经由电极金属导线至系统电路板,一般而言,利用金线方式做电极接合下,散热受金属线本身较细长的几何形状而受限(如图3途径③所示);因此,近来有共晶 (Eutect ic) 或覆晶(Flip chip)接合方式,这种设计大幅减少导线长度,并大幅增加导线截面积,如此一来,由LED电极导线至系统电路板的散热效率将有效提升(如图3途径④所示)。

经由以上散热途径解释,可得知散热基板材料的选择与其LED颗粒的封装方式在LED 热散管理上占了极重要的一环。

三. LED散热基板

LED散热基板主要是利用其散热基板材料本身具有较佳的热传导性,将热源从LED晶粒导出。因此,我们从LED散热途径叙述中,可将LED散热基板分为两大类别,分别为LED晶粒基板与系统电路板,此两种不同的散热基板分别承载着LED晶粒与LED晶片将LED晶粒发光时所产生的热能,经由 LED晶粒散热基板至系统电路板,而后由大气环境吸收,以达到热散的效果。

系统电路板

系统电路板主要是作为LED散热系统中,最后将热能传导至散热鳍片、外壳或大气中的材料。近年来印刷电路板(PCB)的生产技术已非常纯熟,早期LED产品的系统电路板多以PCB 为主,但随着高功率LED的需求增加,PCB材料散热能力有限,使其无法应用于高功率产品,为了改善高功率LED散热问题,近期已发展出高热导系数铝基板(MCPCB),利用金属材料散热特性较佳的特色,以达到高功率产品散热的目的。然而随着LED亮度与效能要求的持续发

展,尽管系统电路板能将LED 晶片所产生的热有效的散热到大气环境,但是LED晶粒所产生的热能却无法有效的从晶粒传导至系统电路板,当LED功率往更高效提升时,整个LED的散热瓶颈将出现在LED晶粒散热基板。

LED晶粒基板

LED晶粒基板主要是作为LED 晶粒与系统电路板之间热能导出的媒介,以打线、共晶或覆晶的制程与LED 晶粒结合。而基于散热考虑,目前市面上LED晶粒基板主要以陶瓷基板为主,以线路制备方法不同可分为:厚膜陶瓷基板、低温共烧多层陶瓷、以及薄膜陶瓷基板三种,传统高功率LED元件,多以厚膜或低温共烧陶瓷基板作为晶粒散热基板,再以打金线方式将LED晶粒与陶瓷基板结合。如前言所述,此金线连结限制了热量沿电极接点散失的能力。因此,近年来,国内外大厂无不朝向解决此问题而努力。其解决方式有二种,其一为寻找高散热系数的基板材料,以取代氧化铝,包含了矽基板、碳化矽基板、阳极化铝基板或氮化铝基板,其中矽及碳化矽基板材料的半导体特性,使其现阶段遇到较严苛的考验,而阳极化铝基板则因其阳极化氧化层强度不足而容易因碎裂导致导通,使其在实际应用上受限,因而,现阶段较成熟且普通接受度较高的为以氮化铝作为散热基板;然而,目前受限于氮化铝基板不适用传统厚膜制程(材料在银胶印刷后须经850℃大气热处理,使其出现材料信赖性问题),因此,氮化铝基板线路需以薄膜制程制备。以薄膜制程制备的氮化铝基板大幅加速了热量从LED晶粒经由基板材料至系统电路板的效能,因此大幅降低热量由LED晶粒经由金属线至系统电路板的负担,进而达到高热散的效果。

另一种热散的解决方案为将LED晶粒与其基板以共晶或覆晶的方式连结,如此一来,大幅增加经由电极导线至系统电路板的散热效率。然而此制程对于基板的布线精确度与基板线路表面平整度要求极高,这使得厚膜及低温共烧陶瓷基板的精准度受制程网板张网问题及烧结收缩比例问题而不易使用。现阶段多以导入薄膜陶瓷基板,以解决此问题。薄膜陶瓷基板以黄光微影方式制备电路,辅以电镀或化学镀方式增加线路厚度,使得其产品具有高线路精准度与高平整度的特性。共晶/覆晶制程辅以薄膜陶瓷散热基板势必将大幅提升LED的发光功率与产品寿命。

四. LED陶瓷散热基板及差异分析

基本上,LED散热基板主要分为金属与陶瓷基板。金属基板以铝或铜为材料,由于技术成熟,且具成本优势,目前为一般LED产品所采用。而陶瓷基板线路对位精确度高,为业界公认导热与散热性能极佳材料,是目前高功率LED散热最适方案,虽然成本比金属基板来得高,但照明要求的散热性及稳定性高于笔记本电脑、电视等电子产品,因此,包括Cree、欧司朗、飞利浦及日亚化等国际大厂,都使用陶瓷基板作为LED晶粒散热材质。

如今生产上通用的大功率LED散热基板结构如图4所示,其一般为铝质基板:最下层为铝金属层,其厚度约为1.3mm;铝层之上为高分子绝缘层,厚约0.1mm;最上层为铜线路以及焊接电路。虽然铝的导热系数比较高,但是绝缘层导热系数极低,因此绝缘层成为该结构基板的散热瓶颈,影响整个基板的散热效果;同时由于绝缘层的存在,使得其无法承受高温焊接,从而影响了封装工艺的实施,限制了封装结构的优化,因此不利于LED散热。

图 4 铝金属基板截面示意图

由于高分子绝缘材料的导热系数较低,同时耐热性能较差,如果要提高铝金属基板的

整体导热性能及耐热性能,需要替换掉绝缘材料,但是绝缘材料的启用,使得铜线路无法在铝金属基板之上布置,所以目前直接提高铝金属基板的导热系数还无法实现。而陶瓷散热基板,其具有新的导热材料和新的内部结构,以消除铝金属基板所具有的缺陷,从而改善基板的整体散热效果。表1 为陶瓷散热基板与金属散热基板比较。

表1 陶瓷散热基板与金属散热基板比较

项目 陶瓷基板(氧化铝、氮化铝) 金属基板(铝、铜及其合金) 热导率W/M*K 2,3-41/150-170 230-450不等(但综合热导率,约为

陶瓷基板的1/10.) 绝缘性 好 差,需表面处理出一层绝缘膜 热稳定性 好 一般

自身热辐射能力 强 一般 价格 较高 不高 应用领域 大功率小尺寸LED应用较多 小功率大尺寸LED

现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC

属于较早期发展的技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。而DBC与DPC则为近几年才开发成熟,且能量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。DBC是利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生的问题,这使得该产品的产能与良率受到较大的挑战,而DPC 技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,该工艺结合了材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高,下文针对四种陶瓷散热基板的生产流程做进一步的说明,进而更加了解四种陶瓷散热基板制造过程的差异。

LTCC (Low-Temperature Co-fired Ceramic)

LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计开导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层叠层压制,放置于850~900℃的烧结炉中烧结成型,即可完成。主要工艺为:配料、制浆、流延、切割、冲孔、丝印填孔、丝印、叠压、脱脂烧结、划片(金刚石和CBN切刀,激光等设备)。

HTCC (High Temperature Co-Fired Ceramic)

HTCC又称为高温共烧多层陶瓷,生产制造过程与LTCC极为相似,主要的差异点在于HTCC的陶瓷粉没有加入玻璃材质,因此,HTCC的必须再高温1300~1600℃环境下烧结成胚,接着同样钻上导通孔,以网版印刷技术填孔与印制线路,因其共烧温度较高,使得金属导体材料的选择受限,其主要的材料为熔点较高但导电性却较差的钨、钼、锰等金属,最后再叠层烧结成型。

DBC (Direct Bonded Copper)

DBC直接接合铜基板,将高绝缘性的Al2O3或AlN陶瓷基板的单面或双面覆上铜金属后,经由高温1065~1085℃的环境加热,使铜金属因高温氧化、扩散与Al2O3材质产生共晶熔体,使铜与陶瓷基板粘合,形成陶瓷复合金属基板,烧结形成铝酸铜界面,最后依据线路设计,以蚀刻方式制备线路。

DPC(Direct Plate Copper)

目前市场上的陶瓷散热基板种类很多,工艺也不尽相同,厂家根据LED产品的散热需要选择合适的散热基板,最终在散热性能和成本上达到最好的综合效果。陶瓷散热基板根据材料分有主要有氧化铝基板和氮化铝基板,根据结构分主要有单层基板和多层基板(两层),根据覆膜工艺分有厚膜技术和薄膜技术,整体制作工艺介绍分类如表2及表3所示。

表2 陶瓷散热基板特性比较

Item LTCC HTCC DBC DPC

热导率W/MK 氧化铝2-3 氧化铝16-24 氧化铝 20-26;

氮化铝130-220氧化铝 20-26;氮化铝130-220

工艺温度℃ 850-1000 1300-1600 1050-1100 250-350

线路制作方式 印刷 印刷 微影工艺 微影工艺

表面金属材质 银、铜、金等 钨、钼、锰等 铜 铜

通孔填充方式 印刷 印刷 电镀或化学镀,

焊接

电镀或化学镀,焊接

在LED上的运用 大功率大尺寸或

小功率产品 成本较高,很少

存在工艺问题,

有一定市场

高功率LED领域使用

最广

优势 工艺成熟,成本

低 相比HTCC产品

强度较高

对位精准,无烧

结收缩差异问题

对位精准,无烧结收

缩差异问题,可制作

最细10-50μm的线

缺点 对位精度差,线

路表面粗糙 对位精度差,线

路表面粗糙,成

本高

覆铜解析度太

大,需加工处理

表3 薄膜与厚膜工艺产品差异分析

项目薄膜制程厚膜制程

线路精准度精准度较高,误差低于±1% 以印刷方式成形,误差较高±

10%

镀层材料材料稳定性较高易受浆料均匀性影响

镀层表面表面平整度高<0.3μm 平整度低,误差约为1~3μm 设备维护维护较不易,费用较高生产设备维护上较为建议

镀层附着性无须高温烧结,不会有氧化物

生产,附着性佳附着性受基板材质影响,AlN 基板犹差

线路位置使用曝光显影,相对位置精确

度高受钢板张力及印刷次数影响,相对位置精度较低

以上我们已将LED散热基板在两种不同工艺上做出差异分析,薄膜工艺制备陶瓷散热基板具有较高的设备与技术,需整合材料开发门槛,如曝光、真空沉积、显影、蒸镀、溅镀

电镀与无电镀等技术,以目前的市场规模,薄膜产品的相对成本较高,但是一旦市场规模达到一定程度时,必定会反映在成本结构上,相对的在价格上与厚膜工艺的差异将会有大幅度的缩短。

五. LED陶瓷基板的应用及发展趋势

陶瓷散热基板会因应需求及应用上的不同,外型亦有所差别。另一方面,各种陶瓷基板也可依产品制造方法的不同,作出基本的区分。LTCC散热基板在LED产品的应用上,大多以大尺寸高功率以及小尺寸低功率产品为主,基本上外观大多呈现凹杯状,且依客户端的需求可制作出有导线架和没有导线架两种散热基板,凹杯形状主要是针对封装工艺采用较简易的点胶方式封装成型所设计,并利用凹杯边缘作为光线反射的路径,但LTCC本身即受限于工艺因素,使得产品难以制备成小尺寸,再者,采用了厚膜制作线路,使得线路精准度不足以符合高功率小尺寸的LED产品。而与LTCC工艺与外观相似的HTCC,在LED散热基板这一块,尚未被普遍的使用,主要是因为HTCC采用1300~1600℃高温干燥硬化,使生产成本的增加,相对的HTCC基板费用也高,因此对极力朝低成本趋向迈进LED产业而言,面临了较严苛的考验。

另一方面, DBC与DPC则与LTCC/HTCC不仅有外观上的差异,连LED产品封装方式亦有所不同,DBC/DPC均是属于平面式的散热基板,而平面式散热基板可采用蚀刻或激光加工工艺制备金属线路加工,再根据客户需求切割成小尺寸产品,辅以共晶/覆晶工艺,结合已非常纯熟的萤光粉涂布技术及高阶封装工艺技术铸模成型,可大幅的提升LED的发光效率。然而,DBC产品因受工艺能力限制,使得线路解析度上限仅为150~300um,若要特别制作细线路产品,必须采用研磨方式加工,以降低铜层厚度,但却造成表面平整度不易控制与增加额外成本等问题,使得DBC产品不能满足共晶/覆晶工艺高线路精准度与高平整度的要求。DPC利用薄膜微影工艺制备金属线路加工,具备了线路高精准度与高表面平整度的特性,非常适用于覆晶/共晶接合方式的工艺,能够大幅减少LED产品的导线截面积,进而提升散热的效率。各种陶瓷散热基板图片与其应用范围如下表4。

表4 陶瓷散热基板应用范围

ITEM 应用范围

LTCC LED散热基板、手机通讯、蓝牙、无线网络与全球卫星定位系统等

HTCC 工农业技术、军事、科学、通讯、医疗、环保、宇航等

DBC LED散热基板、太阳能电池组件、通讯、车用电子等

DPC 高功率LED陶瓷散热基板、覆晶/共晶封装基板、微波无线通讯、半导

体设备、军事电子、各式感测器基板等

目前LED产品发展的趋势,可从LED各封装大厂近期所发表的LED产品功率和尺寸观察得知,高功率、小尺寸的产品为目前LED产业的发展重点,且均使用陶瓷散热基板作为其LED晶粒散热的途径。因此,陶瓷散热基板在高功率,小尺寸的LED产品结构上,已成为相当重要的一环。虽然LTCC、HTCC、DBC与DPC等陶瓷基板都已广泛使用与研究,然而,在高功率LED陶瓷散热领域而言,DPC在目前发展趋势看来,可以说是最适合高功率且小尺寸LED发展需求的陶瓷散热基板。

在高效能、高产品品质要求与高功率LED陶瓷基板的发展趋势之下,高散热效果、高精准度的薄膜工艺陶瓷基板的选择,将成为趋势,以克服目前厚膜工艺产品所无法突破的瓶颈。可预期的薄膜陶瓷基板将逐渐应用在高功率LED上,并随着高功率LED的快速发展而达经济规模,此时不论高功率LED芯片、薄膜型陶瓷散热基板、封装工艺成本等都将大幅降低,进而更加速高功率LED产品的量化。

LED陶瓷散热基板

LE D 陶瓷散热基板 一. 引言 LED 产品具有节能、省电、高效率、反应时间快、寿命周期长、具有环保效益等优点,是近年来最受瞩目的产业之一,图1为2006-2009年高亮度LED 市场增长趋势图。 销售收入/亿美元图1 2006-2009年高亮度LED 市场增长 随着LED 照明的需求日趋迫切,高功率LED 的散热问题益发受到重视,因为过高的温度会导致LED 发光效率衰减,通常LED 高功率产品输入功率约为15%能转换成光,剩下85%的电能均转换为热能。LED 运作所产生的废热若无法有效散出,将会使LED 结面温度过高,进而影响产品生命周期、发光效率、稳定性,对LED 的寿命造成致命性的影响。图2为LED 结面温度与发光效率的关系图,当结面温度由25℃上升至100℃时,其发光效率将会衰退20%到75%不等,其中又以黄色光衰退75%最为严重。此外,当操作温度由63℃升到74℃时,LED 平均寿命将会减少3/4。因此,散热问题是LED 产业永远无法逃避的重要课题,要提升LED 的发光效率,必须要解决散热问题。 -40-20020406080100120 结温/℃ 图2 LED 结面温度与发光效率关系图

二. LED散热途径 在了解LED散热问题之前,必须先了解其散热途径,进而针对散热瓶颈进行改善。依据不同的封装技术,其散热方法亦有所不同,而LED各种散热途径方法如图3所示: 图3 LED各种散热途径 散热途径说明: ①从空气中散热 ②热能直接由System circuit board导出 ③经由金线将热能导出 ④若为共晶及Flip chip制程,热能将经由通孔至系统电路板而导出 一般而言,LED颗粒(Die)以打金线、共晶或覆晶方式连结于其基板上(Substrate of LED Die)而形成LED芯片(chip),而后LED芯片固定于系统的电路板上(System circuit board)。因此,LED可能的散热途径为直接从空气中散热(如图3途径①所示),或经由LED颗粒基板至系统电路板再到大气环境。而散热由系统电路板至大气环境的速率取决于整个发光灯具或系统的设计。 然而,现阶段的整个系统的散热瓶颈,多数发生在将热量从LED颗粒传导至其基板再到系统电路板为主。此部分的可能散热途径:其一为直接由晶粒基板散热至系统电路板(如图3途径②所示),在此散热途径里,其LED颗粒基板材料的热散能力是很重要的参数。另一方面,LED所产生的热也会经由电极金属导线至系统电路板,一般而言,利用金线方式做电极接合下,散热受金属线本身较细长的几何形状而受限(如图3途径③所示);因此,近来有共晶 (Eutect ic) 或覆晶(Flip chip)接合方式,这种设计大幅减少导线长度,并大幅增加导线截面积,如此一来,由LED电极导线至系统电路板的散热效率将有效提升(如图3途径④所示)。 经由以上散热途径解释,可得知散热基板材料的选择与其LED颗粒的封装方式在LED 热散管理上占了极重要的一环。 三. LED散热基板 LED散热基板主要是利用其散热基板材料本身具有较佳的热传导性,将热源从LED晶粒导出。因此,我们从LED散热途径叙述中,可将LED散热基板分为两大类别,分别为LED晶粒基板与系统电路板,此两种不同的散热基板分别承载着LED晶粒与LED晶片将LED晶粒发光时所产生的热能,经由 LED晶粒散热基板至系统电路板,而后由大气环境吸收,以达到热散的效果。 系统电路板 系统电路板主要是作为LED散热系统中,最后将热能传导至散热鳍片、外壳或大气中的材料。近年来印刷电路板(PCB)的生产技术已非常纯熟,早期LED产品的系统电路板多以PCB 为主,但随着高功率LED的需求增加,PCB材料散热能力有限,使其无法应用于高功率产品,为了改善高功率LED散热问题,近期已发展出高热导系数铝基板(MCPCB),利用金属材料散热特性较佳的特色,以达到高功率产品散热的目的。然而随着LED亮度与效能要求的持续发

七大方面解析氮化铝陶瓷基板的分类和特性

七大方面解析氮化铝陶瓷基板的分类和特性 氮化铝陶瓷基板在大功率器件模组,航天航空等领域备受欢迎,那么氮化铝陶瓷基板都有哪些种分类以及氮化铝陶瓷基板特性都体现在哪些方面? 一,什么是氮化铝陶瓷基板以及氮化铝陶瓷基板的材料 氮化铝陶瓷基板是以氮化铝(AIN)为主晶相的陶瓷基板,也叫氮化铝陶瓷基片。热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是大功率集成电路和散热功能的重要器件。 二,氮化铝陶瓷基板分类 1,按电镀要求来分 氮化铝陶瓷覆铜基板(氮化铝覆铜陶瓷基板),旨在氮化铝陶瓷基板上面做电镀铜,有做双面覆铜和单面覆铜的。 2,按应用领域分 LED氮化铝陶瓷基板(氮化铝led陶瓷基板),主要用于LED大功率灯珠模块,极大的提高了散热性能。 igbt氮化铝陶瓷基板,一般用于通信高频领域。 3,按工艺来分 氮化铝陶瓷基板cob(氮化铝陶瓷cob基板),主要用于Led倒装方面。 dpc氮化铝陶瓷基板,采用DPC薄膜制作工艺,一般精密较高。 dpc氮化铝陶瓷基板(AlN氮化铝dbc陶瓷覆铜基板),是一种厚膜工艺,一般可以实现大批量生产。 氮化铝陶瓷基板承烧板 3,按地域分

有的客户对特定的氮化铝陶瓷基板希望是特定地域的陶瓷基板生产厂家,因此有了: 日本氮化铝陶瓷基板 氮化铝陶瓷基板台湾 氮化铝陶瓷基板成都 福建氮化铝陶瓷基板 东莞氮化铝陶瓷基板 台湾氮化铝陶瓷散热基板 氮化铝陶瓷基板珠海 氮化铝陶瓷基板上海 4,导热能力来分 高导热氮化铝陶瓷基板,导热系数一般较高,一般厚度较薄,一般导热大于等于170W的。 氮化铝陶瓷散热基板,比氧化铝陶瓷基板散热好,大于等于50W~170W. 三,氮化铝陶瓷基板特性都有哪一些? 1,氮化铝陶瓷基板pcb优缺点 材料而言:陶瓷基板pcb是陶瓷材料因其热导率高、化学稳定性好、热稳定性和熔点高等优点,很适合做成电路板应用于电子领域。许多特殊领域如高温、腐蚀性环境、震动频率高等上面都能适应。氮化铝陶瓷基板,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。硬度较高,交工难度大,压合非常难,一般加工成单双面面陶瓷基板pcb. 2,氮化铝陶瓷基板产品规格(尺寸/厚度、脆性) 氮化铝陶瓷基板的产品规格尺寸厚度,有不同的尺寸对应不同个的厚度,具体如下: 氮化铝陶瓷基板尺寸一般最大在140mm*190mm,氮化铝陶瓷基板厚度一般在

陶瓷散热基板与MCPCB的散热差异分析比较

陶瓷散热基板与MCPCB的散热差异分析比较 随着科技日新月异的发展,近年来全球环保的意识抬头,如何有效开发出节能省电的科技产品已成为现今趋势。就LED产业而言,慢慢这几年内成为快速发的新兴产业之一,在2010年的中国世博会中可看出LED的技术更是发光异彩,从上游到下游的生产制造,每一环节都是非常重要的角色。 针对LED的发光效率会随着使用时间的增长与应用的次数增加而持续降低,过高的接面温度会加速影响其LED发光的色温品质致衰减,所以接面温度与LED发光亮度呈现反比的关系。此外,随着LED芯片尺寸的增加与多晶LED封装设计的发展,LED载板的热负荷亦倍增,此时除载板材料的散热能力外,其材料的热稳定性便左右了LED产品寿命。简单的说,高功率LED产品的载板材料需同时具备高散热与高耐热的特性,因此封装基板的材质就成为关键因素。 在传统LED散热基板的应用上,Metal Core PCB(MCPCB)与陶瓷散热基板应用范围是有所区别的,MCPCB主要使用于系统电路板,陶瓷散热基板则是应用于LED芯片基板,然而随着LED需求的演化,二者逐渐被应用于COB(Chip on board)的工艺上,下文将针对此二种材料作进一步讨论与比较。 MCPCB MCPCB主要是从早期的铜箔印刷式电路板(FR4)慢慢演变而成,MCPCB与FR4之间最大的差异是,MCPCB以金属为核心技术,采用铝或铜金属作为电路板之底材,在基板上附着上一层铜箔或铜板金属板作线路,用以改善散热不佳等问题。MCPCB的结构图如图1所示: 图1 MCPCB结构图 因铝金属本身具有良好的延展性与热传导,结合铜金属的高热传导率,理当有非常良好的导热/散热效果。

陶瓷基板的发展概况

陶瓷基板在L E D电子领域应用现状与发展简要分析 摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 关键词: 前文摘要:陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子、混合微电子与多模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1 塑料和陶瓷材料的比较 塑料尤其是环氧树脂由於比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等優點。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2 各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机

械、热、电性能上相對於大多数其他氧化物陶瓷,強度及化學穩定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低, 最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺點是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。 综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、混合微电子、功率模块等领域还是处于主导地位而被大量运用。 3 陶瓷基板的制造 制造高純度的陶瓷基板是很困难的,大部分陶瓷熔点和硬度都很高,这一点限制了陶瓷机械加工的可能性,因此陶瓷基板中常常掺杂熔点较低的玻璃用于助熔或者粘接,使最终产品易于机械加工。Al2O3、BeO、AlN基板制备过程很相似,将基体材料研磨成粉直径在几微米左右,与不同的玻璃助熔剂和粘接剂(包括粉体的MgO、CaO)混合,

陶瓷基板的现状与发展分析

陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1、塑料和陶瓷材料的比较 塑料尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2、各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,

陶瓷散热基板与MCPCB的散热差异分析比

陶瓷散热基板与MCPCB的散热差异分析比 随着科技日新月异的发展,近年来全球环保的意识抬头,如何有效开发出 节能省电的科技产品已成为现今趋势。就LED 产业而言,慢慢这几年内成为 快速发的新兴产业之一,在2010 年的中国世博会中可看出LED 的技术更是发光异彩,从上游到下游的生产制造,每一环节都是非常重要的角色。 针对LED 的发光效率会随着使用时间的增长与应用的次数增加而持续降低,过高的接面温度会加速影响其LED 发光的色温品质致衰减,所以接面温度与LED 发光亮度呈现反比的关系。此外,随着LED 芯片尺寸的增加与多晶LED 封装设计的发展,LED 载板的热负荷亦倍增,此时除载板材料的散热能力外,其材料的热稳定性便左右了LED 产品寿命。简单的说,高功率LED 产品的载 板材料需同时具备高散热与高耐热的特性,因此封装基板的材质就成为关键因素。 在传统LED 散热基板的应用上,Metal Core PCB(MCPCB)与陶瓷散热基板应用范围是有所区别的,MCPCB 主要使用于系统电路板,陶瓷散热基板则是应 用于LED 芯片基板,然而随着LED 需求的演化,二者逐渐被应用于 COB(Chip ON board)的工艺上,下文将针对此二种材料作进一步讨论与比较。MCPCB MCPCB 主要是从早期的铜箔印刷式电路板(FR4)慢慢演变而成,MCPCB 与FR4 之间最大的差异是,MCPCB 以金属为核心技术,采用铝或铜金属作为电 路板之底材,在基板上附着上一层铜箔或铜板金属板作线路,用以改善散热不 佳等问题。MCPCB 的结构图如图1 所示: 图1 MCPCB 结构图 因铝金属本身具有良好的延展性与热传导,结合铜金属的高热传导率,理当

LTCC基板材料

1、陶瓷基板 现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC属于较早期发展之技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。而DBC与DPC则为近几年才开发成熟,且能量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。DBC乃利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。 2、现阶段LED散热情况 LED 散热技术随着高功率LED产品的应用发展,已成为各家业者相继寻求解决的议题,而LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为(一)系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC)。(二)LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板(DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。 3.对四种陶瓷散热基板的生产流程做进一步的说明,进而更加瞭解四种陶瓷散热基板制造过程的差异。 2-1 LTCC (Low-Temperature Co-fired Ceramic) LTCC 又称为低温共烧多层陶瓷基板,此技术须先将无机的氧化铝粉与约30%~50%的玻璃材料加上有机黏结剂,使其混合均匀成为泥状的浆料,接着利用刮刀把浆料刮成片状,再经由一道干燥过程将片状浆料形成一片片薄薄的生胚,然后依各层的设计钻导通孔,作为各层讯号的传递,LTCC内部线路则运用网版印刷技术,分别于生胚上做填孔及印制线路,内外电极则可分别使用银、铜、金等金属,最后将各层做叠层动作,放置于850~900℃的烧结炉中烧结成型,即可完成。详细制造过程如图1 LTCC生产流程图。

LED陶瓷基板

LED陶瓷基板的技术分析与现状 ——本资料由·东莞市中实创半导体照明有限公司/ 工程部·整理与撰写—— 摘要: 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。本文简要介绍了目前LED封装陶瓷基板的技术现状与以后的发展。 关键字:LED陶瓷基板 LED产业 (一)前言: 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、LED封装、多芯片模块等领域。LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为:①系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC);②LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板 (DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。 (二)陶瓷基板的定义和性能: 1.定义:陶瓷基板是以电子陶瓷为基的,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。按照陶瓷基片应用领域的不同,又分为HIC(混合集成电路)陶瓷基片、聚焦电位器陶瓷基片、激光加热定影陶瓷基片、片式电阻基片、网络电阻基片等;按加工方式的不同,陶瓷基片分为模压片、激光划线片两大类。 2.陶瓷基板的性能: (1)机械性质 ?有足够高的机械强度,除搭载元件外,也能作为支持构件使用; ?加工性好,尺寸精度高;容易实现多层化; ?表面光滑,无翘曲、弯曲、微裂纹等。 (2)电学性质 ?绝缘电阻及绝缘破坏电压高; ?介电常数低; ?介电损耗小; ?在温度高、湿度大的条件下性能稳定,确保可靠性。 (3)热学性质 ?热导率高; ?热膨胀系数与相关材料匹配(特别是与Si的热膨胀系数要匹配); ?耐热性优良。 (4)其它性质 ?化学稳定性好;容易金属化,电路图形与其附着力强; ?无吸湿性;耐油、耐化学药品;α射线放出量小; ?所采用的物质五公害、无毒性;在使用温度范围内晶体结构不变化; ?原材料丰富;技术成熟;制造容易;价格低。 (三)陶瓷基板与金属基板的比较: LED散热基板主要分为金属基板与陶瓷基板。金属基板以铝或铜为材料,由于技术成熟,且具低成本优势,目前为一般LED产品所采用。而陶瓷基板线路对位精确度高,为业界公认导热与散热

LED封装领域用陶瓷基板现状与发展简要分析(附图)

LED封装领域用陶瓷基板现状与发展简要分析(附图) 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1、塑料和陶瓷材料的比较 塑料尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2、各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,最重要的是由于其毒性限制了自身的发展。 2.3 AlN AlN有两个非常重要的性能值得注意:一个是高的热导率,一个是与Si相匹配的膨胀系数。缺点是即使在表面有非常薄的氧化层也会对热导率产生影响,只有对材料和工艺进行严格控制才能制造出一致性较好的AlN基板。目前大规模的AlN生产技术国内还是不成熟,相对于Al2O3,AlN价格相对偏高许多,这个也是制约其发展的瓶颈。综合以上原因,可以知道,氧化铝陶瓷由于比较优越的综合性能,在目前微电子、功率电子、混合微电子、功率模块等领域还是处于主导地位而被大量运用。 陶瓷基板材料以其优良的导热性和气密性,广泛应用于功率电子、电子封装、混合微电子与多芯片模块等领域。本文简要介绍了目前陶瓷基板的现状与以后的发展。 1、塑料和陶瓷材料的比较 塑料尤其是环氧树脂由于比较好的经济性,至目前为止依然占据整个电子市场的统治地位,但是许多特殊领域比如高温、线膨胀系数不匹配、气密性、稳定性、机械性能等方面显然不适合,即使在环氧树脂中添加大量的有机溴化物也无济于事。 相对于塑料材料,陶瓷材料也在电子工业扮演者重要的角色,其电阻高,高频特性突出,且具有热导率高、化学稳定性佳、热稳定性和熔点高等优点。在电子线路的设计和制造非常需要这些的性能,因此陶瓷被广泛用于不同厚膜、薄膜或和电路的基板材料,还可以用作绝缘体,在热性能要求苛刻的电路中做导热通路以及用来制造各种电子元件。 2、各种陶瓷材料的比较 2.1 Al2O3 到目前为止,氧化铝基板是电子工业中最常用的基板材料,因为在机械、热、电性能上相对于大多数其他氧化物陶瓷,强度及化学稳定性高,且原料来源丰富,适用于各种各样的技术制造以及不同的形状。 2.2 BeO 具有比金属铝还高的热导率,应用于需要高热导的场合,但温度超过300℃后迅速降低,

常见LED散热基板材料介绍

常见LED散热基板材料介绍 概述 在LED产品应用中,通常需要将多个LED组装在一电路基板上。电路基板除了扮演承载LED模块结构的角色外,另一方面,随着LED输出功率越来越高,基板还必须扮演散热的角色,以将LED晶体产生的热传派出去,因此在材料选择上必须兼顾结构强度及散热方面的要求。 传统LED由于LED发热量不大,散热问题不严重,因此只要运用一般的铜箔印刷电路板(PCB)即可。但随着高功率LED越来越盛行PCB已不足以应付散热需求。因此需再将印刷电路板贴附在一金属板上,即所谓的Metal Core PCB,以改善其传热路径。另外也有一种做法直接在铝基板表面直接作绝缘层或称介电层,再在介电层表面作电路层,如此LED模块即可直接将导线接合在电路层上。同时为避免因介电层的导热性不佳而增加热阻抗,有时会采取穿孔方式,以便让LED模块底端的均热片直接接触到金属基板,即所谓芯片直接黏着。接下来介绍了几种常见的LED基板材料,并作了比较。 印刷电路基板(PCB) 常用FR4印刷电路基板,其热传导率0.36W/m.K,热膨胀系数在13 ~ 17ppm/K。可以单层设计,也可以是多层铜箔设计(如图2)。优点:技术成熟,成本低廉,可适用在大尺寸面板。缺点:热性能差,一般用于传统的低功率LED。 图1 多层PCB的散热基板 金属基印制板(MCPCB) 由于PCB的热导率差﹑散热效能差,只适合传统低瓦数的LED。因此后来再将印刷电路基板贴附在一金属板上,即所谓的Metal Core PCB。金属基电路板是由金属基覆铜板(又称绝缘金属基板)经印刷电路制造工艺制作而成。

根据使用的金属基材的不同,分为铜基覆铜板、铝基覆铜板、铁基覆铜板,一般对于LED散热大多应用铝基板。如下图: 图2 金属基电路板的结构 MCPCB的优点: (1)散热性 常规的印制板基材如FR4是热的不良导体,层间绝缘,热量散发不出去。而金属基 印制板可解决这一散热难题。 (2)热膨胀性 热胀冷缩是物质的共同本性,不同物质CTE(Coefficient of thermal expansion)即热 膨胀系数是不同的。印制板(PCB)的金属化孔壁和相连的绝缘壁在Z轴的CTE相差很大,产生的热不能及时排除,热胀冷缩使金属化孔开裂、断开。金属基印制板可有效地解决散热问题,从而使印制板上的元器件不同物质的热胀冷缩问题缓解,提高了整机和电子设备的耐用性和可靠性。 (3)尺寸稳定性 金属基印制板,显然尺寸要比绝缘材料的印制板稳定得多。铝基印制板、铝夹芯板,从30℃加热至140~150℃,尺寸变化为2.5~3.0%. MCPCB的结构目前市场上采购到的标准型金属基覆铜板材由三层不同材料所构成:铜、绝缘层、金属板(铜、铝、钢板),而铝基覆铜板最为常见。 a)金属基材 以美国贝格斯为例,见下表(图3): b)绝缘层 起绝缘层作用,通常是50~200um。若太厚,能起绝缘作用,防止与金属基

嘉宝瑞氧化铝陶瓷基板简介

氧化铝陶瓷基板简

陶瓷(AL2O3)基板简介 产品简介: 本产品是由贵金属所构成的高传导介质电路与高热传导系数绝缘材料结合而成的高热传导基板。可又效解决PCB与铝基板低导热的问题。达到有效将高热电子元件所产生的热导出,增加元件稳定度及延长使用寿命。 产品特性: ●不需要变更原加工程序 ●优秀机械强度 ●具良好的导热性 ●具耐抗侵蚀 ●具耐抗侵蚀 ●良好表面特性,优异的平面度与平坦度 ●抗热震效果佳 ●低曲翘度 ●高温环境下稳定性佳 ●可加工成各种复杂形状 陶瓷(AL2O3)基板与铝基板比较表 陶瓷(AL2O3)基板铝基板 高传导介378~429W/(m·K)陶瓷(AL2O3)24~51W/(m·K)铜箔390~401W/(m·K)绝缘体0.8~2.2W/(m·K)铝板210~255W/(m·K) 直接导热绝缘层阻绝导热 陶瓷(AL2O3)基板与其他厂陶瓷(AL2O3)基板比较表 陶瓷(AL2O3)基板其他厂陶瓷(AL2O3)基板 高传导介质378~429W/(m·K)陶瓷(AL2O3)板24~51W/(m·K)铜箔390~401W/(m·K)陶瓷(AL2O3)板 24~51W/(m·K) 1.2XX°C-350°C电路正常 2.高温加热锡盘450°C40秒电路正常 3.制作过程不需酸洗,无酸的残留 4.电阻率为1.59x10^-8Ω.m 1.2XX°C-350°C电路剥离或被锡溶解 2.高温加热锡盘450°C40秒电路剥离 3.制作过程需酸洗,会由酸性物质残留, 会造成线路氧化及剥离

应用: ●LED照明用基板、高功率LED基板 ●PC散热、IC散热基板、LED电视散热基板●半导体及体集成电路的散热基板 ●可替代PCB及铝基板 应用实例: ●10W LED球灯经红外线热像测温仪检测 ●点灯时间超过72小时 ●环境温度28.4°C ●内壁温度60°C

IGBT高导热陶瓷基板等高端陶瓷pcb的应用和现状

IGBT高导热陶瓷基板等高端陶瓷pcb的应用和现状随着新能源汽车、高铁、风力发电和5G基站的快速发展,这些新产业所用的大功率IGBT对新一代高强度的氮化硅陶瓷基板需求巨大,日本的京瓷和美国罗杰斯等公司都可以批量生产和提供覆铜蚀刻的氮化硅陶瓷基板;国内起步较晚,近几年大学研究机构和一些企业都在加快研发并取得较大进展,其导热率大于等于90Wm/k,抗弯强度大于等于700mpa,断裂韧性大于等于6.5mpa1/2;但是距离产业化还有一定距离。今天小编要分享的是IGBT高导热氮化铝氮化硅陶瓷基板等高端陶瓷pcb的应用和现状。

目前国内IGBT用高导热率氮化铝氮化硅覆铜板目前还是以进口为主,特别是高铁上的大功率器件控制模块;国内的陶瓷基板覆铜技术不能完全达到对覆铜板的严格考核,列如冷然循环次数。目前,国际上都采用先进的活化金属键合(AMB)技术进行覆铜,比直接覆铜(DBC)具有更高的结合强度和冷热循环特性。 氧化铝陶瓷覆铜板电容压力传感器在各种汽车上用量巨大,市场达近百亿,但是目前氧化铝陶瓷覆铜板主要依赖进口,国内的陶瓷氧化铝板在材料的弹性模量、弹性变形循环次数、使用寿命和可靠性凤方面还有差距,尚未进入商业化实际应用。

在航天发动机、风力发电、数控机床等高端装备所使用的陶瓷转承,不但要求高的力学性能和热学性能,而且要求优异的耐磨性、可靠性和长寿命,目前国产的氮化硅陶瓷轴承球与日本东芝陶瓷公司还有明显差距;与国际上著名的瑞典SKF公司、德国的FAG公司和日本的KOYO等轴承公司相比,我们的轴承还处于产业产业链的中低端,像风电和数控机床等高端产品还依赖进口。 在汽车、冶金、航天航空领域的机械加工大量使用陶瓷刀头,据统计市场需求达数十亿元。陶瓷刀具包括氧化铝陶瓷基、氮化硅基、氧化锆增韧氧化铝、氮碳化钛体系等,要求具有高硬度。高强度和高可靠性。目前国内企业只能生产少量非氧化铝陶瓷刀具,二像汽车缸套加工用量巨大的氧化铝套擦刀具还依赖从瑞典sandvik、日本京瓷、日本NTK公司、德国CeranTec公司进口。 在军工国防用到的透明和透红线陶瓷材料,如果氧化钇、氧化镁、阿隆、镁铝尖晶石)陶瓷以及具有激光特性透明陶瓷。目前我们的技术还限于制备有限的尺寸,对于国际上已经达到半米大尺寸透明陶瓷材料我们还很困难,无论在工艺技术和装备上均有差距。 IGBT陶瓷基板包括氧化硅陶瓷基板和氮化铝陶瓷基板等高功率器件制作的陶瓷吧板材大部分是依赖进口,而且都是应用在非常重要的领域。深圳市金瑞欣特种电路技术有限公司目前做的IGBT陶瓷基板都是优质板料。主要生产中高端陶瓷基板,更多陶瓷电路板打样可以咨询金瑞欣。

为何氮化铝陶瓷基板最适合LED散热基板

为何氮化铝陶瓷基板最适合LED散热基板呢? LED向着高效率、高密度、大功率等方面发展。体国内LED有了突飞猛进的进展,功率也是越来越大,开发性能优越的散热材料已成为解决LED散热问题的当务之急。一般来说,LED发光效率和使用寿命会随结温的增加而下降,当结温达到125℃以上时,LED甚至会出现失效。为使LED结温保持在较低温度下,必须采用高热导率、低热阻的散热基板材料和合理的封装工艺,以降低LED总体的封装热阻。氮化铝陶瓷基板作为LED散热基板实在必行。 LED散热基板市场现状 现阶段常用基板材料有Si、金属及金属合金材料、陶瓷和复合材料等,它们的热膨胀系数与热导率如下表所示。其中Si材料成本高;金属及金属合金材料的固有导电性、热膨胀系数与芯片材料不匹配;陶瓷材料难加工等缺点,均很难同时满足大功率基板的各种性能要求。 LED散热基板三种类型以及特点 功率型LED封装技术发展至今,可供选用的散热基板主要有环氧树脂覆铜基板、金属基覆铜基板、金属基复合基板、陶瓷覆铜基板等。 环氧树脂覆铜基板是传统电子封装中应用最广泛的基板。它起到支撑、导电和绝缘三个作用。其主要特性有:成本低、较高的耐吸湿性、密度低、易加工、易实现微细图形电路、适合大规模生产等。但由于FR-4的基底材料是环氧树脂,有机材料的热导率低,耐高温性差,因此FR-4不能适应高密度、高功率LED封装要求,一般只用于小功率LED封装中。 金属基覆铜基板是继FR-4后出现的一种新型基板。它是将铜箔电路及高分子绝缘层通过导热粘结材料与具有高热导系数的金属、底座直接粘结制得,其热导率约为1.12

W/m·K,相比FR-4有较大的提高。由于具有优异的散热性,它已成为目前大功率LED 散热基板市场上应用最广泛的产品。但也有其固有的缺点:高分子绝缘层的热导率较低,只有0.3W/m·K,导致热量不能很好的从芯片直接传到金属底座上;金属Cu、Al的热膨胀系数较大,可能造成比较严重的热失配问题。 金属基复合基板最具代表性的材料是铝碳化硅。铝碳化硅是将SiC陶瓷的低膨胀系数和金属Al的高导热率结合在一起的金属基复合材料,它综合了两种材料的优点,具有低密度、低热膨胀系数、高热导率、高刚度等一系列优异特性。AlSiC的热膨胀系数可以通过改变SiC的含量来加以调试,使其与相邻材料的热膨胀系数相匹配,从而将两者的热应力减至最小。 陶瓷基板作为LED散热基板的优势 陶瓷基板材料常见的主要有Al2O3、氮化铝、SiC、BN、BeO、Si3N4等,与其他基板材料相比,陶瓷基板在机械性质、电学性质、热学性质具有以下特点: (1)机械性能。机械强度,能用作为支持构件;加工性好,尺寸精度高;表面光滑,无微裂纹、弯曲等。 (2)热学性质。导热系数大,热膨胀系数与Si和GaAs等芯片材料相匹配,耐热性能良好。 (3)电学性质。介电常数低,介电损耗小,绝缘电阻及绝缘破坏电高,在高温、高湿度条件下性能稳定,可靠性高。 (4)其他性质。化学稳定性好,无吸湿性;耐油、耐化学药品;无毒、无公害、α射线放出量小;晶体结构稳定,在使用温度范围内不易发生变化;原材料资源丰富。 氮化铝陶瓷基板为何能成为最适合的LED散热基板? 长期以来,Al2O3和BeO陶瓷是大功率封装两种主要基板材料。但这两种基板材

LED散热用铝基pcb好还是陶瓷pcb呢

LED散热用铝基pcb好还是陶瓷pcb呢 在LED行业,会用到铝基板或者陶瓷pcb,铝基板和陶瓷pcb到底那个更好呢?LED 的散热主要是看芯片,LED散热除了芯片的散热,还有介电常数以及热膨胀系数。今天小编从材质等方面详细阐述一下: 铝基pcb 铝基板是属于金属基板,采用的板材主要有1000系、5000系和6000系,这三系铝材的基本特性如下:

一,5000系列代表5052、5005、5083、5A05系列。5000系列铝板属于较常用的合金铝板系列,主要元素为镁,含镁量在3——5%之间,其又称为铝镁合金。主要特点为密度低、抗拉强度高、延伸率高等。在相同面积下铝镁合金的重量低于其他系列,故常用在航空方面,比如飞机油箱。 二,1000系列代表1050、1060、1070,1000系列铝板又称为纯铝板,在所有系列中1000系列属于含铝量最多的,纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。 三,1000系列代表1050、1060、1070,1000系列铝板又称为纯铝板,在所有系列中1000系列属于含铝量最多的,纯度可以达到99.00%以上。由于不含有其他技术元素,所以生产过程比较单一,价格相对比较便宜,是目前常规工业中最常用的一个系列。

在看一下陶瓷pcb 陶瓷基板——是指铜箔在高温下直接键合到氧化铝(Al2O3)或氮化铝(AlN)陶瓷基片表面(单面或双面)上的特殊工艺板。所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。 陶瓷pcb具有以下一些特点: ◆机械应力强,形状稳定;高强度、高导热率、高绝缘性;结合力强,防腐蚀。 ◆极好的热循环性能,循环次数达5万次,可靠性高。 ◆与PCB板(或IMS基片)一样可刻蚀出各种图形的结构;无污染、无公害。

陶瓷板工艺及技术介绍

陶瓷(AL2O3)基板简介 产品简介: 本产品是由贵金属所构成的高传导介质电路与高热传导系数绝缘材料结合而成的高热传导基板。可又效解决PCB与铝基板低导热的问题。达到有效将高热电子元件所产生的热导出,增加元件稳定度及延长使用寿命。 产品特性: 不需要变更原加工程序 优秀机械强度 具良好的导热性 具耐抗侵蚀 具耐抗侵蚀 良好表面特性,优异的平面度与平坦度 抗热震效果佳 低曲翘度 高温环境下稳定性佳 可加工成各种复杂形状 陶瓷(AL2O3)基板与铝基板比较表 陶瓷(AL2O3)基板铝基板 高传导介378~429W/(m·K) 陶瓷(AL2O3)24~51W/(m·K) 铜箔390~401W/(m·K) 绝缘体0.8~2.2W/(m·K) 铝板210~255W/(m·K) 直接导热绝缘层阻绝导热 陶瓷(AL2O3)基板与其他厂陶瓷(AL2O3)基板比较表 陶瓷(AL2O3)基板其他厂陶瓷(AL2O3)基板 高传导介质378~429W/(m·K) 陶瓷(AL2O3)板24~51W/(m·K) 铜箔390~401W/(m·K) 陶瓷(AL2O3)板24~51W/(m·K) 1.2XX°C-350°C电路正常 2.高温加热锡盘450°C40秒电路正常 3.制作过程不需酸洗,无酸的残留 4.电阻率为1.59x10^-8Ω.m 1.2XX°C-350°C电路剥离或被锡溶解 2.高温加热锡盘450°C40秒电路剥离

3.制作过程需酸洗,会由酸性物质残留,会造成线路氧化及剥离 应用: LED照明用基板、高功率LED基板 PC散热、IC散热基板、LED电视散热基板 半导体及体集成电路的散热基板 可替代PCB及铝基板 应用实例: 10W LED球灯经红外线热像测温仪检测 点灯时间超过72小时 环境温度28.4°C 内壁温度60°C 点编号温度X Y 附注 1 84.57 114 58 全面积最高温 2 84.08 229 119 3 82.27 118 181 4 64.07 168 183 点编号温度X Y 附注 1 53.31 117 143 全面积最高温 2 52.78 138 155 3 45.86 166 186 4 51.89 20 5 159 陶瓷基板与铝基板比较图 陶瓷基板种类及比较: 系统电路板的种类包括: 铝基板(MCPCB) 印刷电路板(PCB) 软式印刷电路板(FPC) 陶瓷基板种类主要有: 高温熔合陶瓷基板(HTFC) 低温共烧多层陶瓷(LTCC) 高温共烧多层陶瓷(HTCC) 直接接合铜基板(DBC) 直接镀铜基板(DPC) 1-1 HTFC(Hight-Temperature Fusion Ceramic)

LED灯散热途径分析与陶瓷基板研究

摘要 led具有节能、省电、高效、反应时间快等特点已得到广泛应用,但是led发光时所产生的热能若无法导出,将会导致led工作温度过高,从而影响led灯的寿命、光效以及稳定性。本文从led温度产生的原因出发,分析led灯的散热途径以及陶瓷散热基板技术。 【关键词】led灯散热陶瓷基板 led半导体照明芯片工作时发的光线是不含紫外线和红外线的,因此它的光线不能带走热量,所以工作时温度就会不断上升。为了降低led工作温度,延长led灯的寿命就必须要把它发光时产生的热能及时导出。led 从芯片到整个散热器的每一个环节都必须充分考虑散热。任何一个环节不当的设计都会引起严重的散热问题。 1 温度对led灯的影响 led的光衰表明了它的寿命,随着使用的时间,亮度会就越来越暗,直到最后熄灭。通常定义衰减30%的时间作为其寿命。led温度与寿命的关系图如图1所示,从图中我们可以看到,led灯的寿命随着工作温度的升高而缩短。 图2是结面温度与发光量之间的关系图,如果结温为25度时发光为率100%的话,那么当结温上升到50度时,发光率下降到95%;100度时下降到80%;150 度就只有68%。 2 led温度产生原因分析 led发热是因为加入的电能只有约20%-30%转换成了光能,而一大部分都转化成了热能。led结温的产生是由于两个因素所引起的。 (1)pn区载流子的复合率并不是100%,也就是电子和空穴复合的时候不全都产生光子,泄漏电流及电压的乘积就是这部分产生的热能。但现在内部光子效率已经接近于90%,因此这部分热能并不是led结温产生的主要因素。 (2)导致led结温的是主要因素是内部复合产生的光子不能全部射出到芯片外部而转化的热能,目前这种外部量子效率只有30%左右,其大部分都转化为热量了。 led散热可以通过以下途径实现: (1)从空气中散热; (2)热能直接由电路板导出; (3)经由金线将热能导出; (4)若为共晶及flip chip 制程,热能将经由通孔至系统电路板而导出。 以上散热途径中,散热基板材料的选择与其led晶粒的封装方式于led热散管理上占了极为重要的一环。 3 陶瓷散热基板 led散热基板有金属和陶瓷基板这两种。目前led产品一般会采用金属基板,因为金属基板的材料主要是铝或铜,成本低,技术也比较成熟。但是,陶瓷基板的导热和散热性能比金属基板好,是目前高功率led散热最合适的方案。照明对散热性及稳定性的要求远高于电视、电脑等电子产品,即使陶瓷基板成本比高于金属基板,包括cree、欧司朗、飞利浦及日亚化等国际大厂也都使用陶瓷基板作为led晶粒散热材质。 现在市面上通用的大功率led散热基板如图3所示,其结构一般都为铝基板:其最下层为厚度约为1.3mm铝金属层;铝层之上为厚约0.1mm高分子绝缘层;最上层为焊接电路以及铜线路。,由于绝缘层导热系数极低,即使铝的导热系数比较高,绝缘层也会成为该结构基板的散热瓶颈,影响整个基板的散热效果;其次绝缘层的存在,导致其无法承受高温焊接,限制了封装结构的优化,影响了封装工艺的实施,不利于led的散热。 陶瓷基板是指在高温下把铜箔直接键合到氮化铝(aln)或氧化铝(al2o3)陶瓷基片表面(单面或双面)上的特殊工艺板。通过这种工艺制作的超薄复合基板具有非常优良的电气

LED陶瓷散热解决方案

LED陶瓷散热方案 1、前言 瑷司柏电子为因应高功率LED照明世代的来临,致力寻求高功率LED的解热方案,近年来,陶瓷的优良绝缘性与散热效率促使得LED照明进入了新瓷器时代。LED 散热技术随着高功率LED产品的应用发展,已成为各家业者相继寻求解决的议题,而LED散热基板的选择亦随着LED之线路设计、尺寸、发光效率…等条件的不同有设计上的差异,以目前市面上最常见的可区分为(一)系统电路板,其主要是作为LED最后将热能传导到大气中、散热鳍片或外壳的散热系统,而列为系统电路板的种类包括:铝基板(MCPCB)、印刷电路板(PCB)以及软式印刷电路板(FPC)。(二)LED芯片基板,是属于LED芯片与系统电路板两者之间热能导出的媒介,并藉由共晶或覆晶与LED芯片结合。为确保LED的散热稳定与LED芯片的发光效率,近期许多以陶瓷材料作为高功率LED散热基板之应用,其种类主要包含有:低温共烧多层陶瓷(LTCC)、高温共烧多层陶瓷(HTCC)、直接接合铜基板(DBC)、直接镀铜基板(DPC)四种,以下本文将针对陶瓷LED芯片基板的种类做深入的探讨。 2、陶瓷散热基板种类 现阶段较普遍的陶瓷散热基板种类共有LTCC、HTCC、DBC、DPC四种,其中HTCC 属于较早期发展之技术,但由于其较高的工艺温度(1300~1600℃),使其电极材料的选择受限,且制作成本相当昂贵,这些因素促使LTCC的发展,LTCC虽然将共烧温度降至约850℃,但其尺寸精确度、产品强度等技术上的问题尚待突破。而DBC与DPC则为近几年才开发成熟,且能量产化的专业技术,但对于许多人来说,此两项专业的工艺技术仍然很陌生,甚至可能将两者误解为同样的工艺。DBC乃利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接披覆技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高,下文将针对四种陶瓷散热基板的生产流程做进一步的说明,进而更加瞭解四种陶瓷散热基板制造过程的差异。 2-1 LTCC (Low-Temperature Co-fired Ceramic)

相关文档
最新文档