铅含量测定

铅含量测定
铅含量测定

铅(以Pb计)≤ 1.0

砷(以As计)≤ 0.5

7.2 铅的测定(无火焰原子吸收分光光度法)

7.2.1 原理

样品经消化后,注入原子吸收分光光度计的无火焰原子化器中,升温原子化后,基态原子吸收283.3nm共振线,其吸收量与铅量成正比,与标准系列比较定量。

7.2.2 试剂

7.2.2.1 硝酸(优级纯)。

7.2.2.2 高氯酸(优级纯)。

7.2.2.3 硝酸溶液:c(HNO3)=6mol/L。量取38mL硝酸,加水稀释至100mL。

7.2.2.4 2%磷酸二氢铵:称取2.0g磷酸二氢铵(优级纯),溶于100mL水中。

7.2.2.5 铅标准溶液:精密称取1.0000g高纯金属铅(纯度99.99%以上),溶解于少量c(HNO3)=6mol/L硝酸溶液中,总量不超过37mL,用水准确稀释至1L。此溶液每毫升相当于1mg铅。

7.2.2.6 铅标准使用液:吸取10.0mL铅标准溶液,置于100mL容量瓶中,用3%硝酸溶液稀释至刻度。如此多次稀释至每毫升相当于1μg铅。

7.2.3 仪器

7.2.3.1 高速组织捣碎机;

7.2.3.2 原子吸收分光光度计(附无火焰原子化器)。

7.2.4 操作方法

7.2.4.1 样品处理

称取捣碎均匀的样品匀浆5.0~10.0g(水分多的取10.0g)于50mL烧杯中,加少许水转移至250mL凯氏烧瓶中,在电炉上蒸干水分。加10mL混合酸(HNO3∶HCIO4=5∶1),消化至棕色浓烟产生,溶液将变棕黑色时,加浓硝酸数滴,继续消化至溶液澄清透明,冷却,用去离子水定容至50mL。

7.2.4.2 仪器工作条件

a. 波长:283.3nm;

b. 灰化温度:700℃;

c. 原子化温度:1800℃;

d. 氘灯背景扣除。

7.2.4.3 标准曲线的绘制

配制铅标准系列溶液0、10、30、50、70ng/mL。

在上述仪器工作条件下,取10μL标准溶液,注入无火焰原子化器中。为排除干扰,可随之注入等体积的2%磷酸二氢铵溶液。以吸光度对相应的铅浓度绘制标准曲线。

7.2.4.4 测定

取经消化处理的样液10μL,注入无火焰原子化器中,如出现干扰,可随之注入等体积的2%磷酸二氢铵溶液。与标准曲线比较定量,同时作试剂空白试验。

7.2.5 分析结果的计算

分析结果按下式计算:

(A1-A2)╳50╳1000

X=——————————————————

m╳1000╳1000

式中:X——样品中铅的含量,mg/kg;

A1——测定用样液中铅的含量,ng/mL;

A2——试剂空白液中铅的含量,ng/mL;

50——样品处理后的总体积,mL;m——样品质量,g。

原子吸收法测定重金属废水中的铅含量

原子吸收法测定重金属废水中的铅含量【摘要】含铅重金属废水会给人们的生存环境和人体健康造成了严重威胁。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。文章介绍了利用原子吸收法测定重金属废水中的铅含量,分析了不同条件对铅测定的影响,并得出了一些有益的结论,为重金属废水的铅含量测定提供参考。 【关键词】原子吸收光谱;测定;铅含量;回收试验 随着经济的快速发展,工业生产也得到了较快发展,大量含有重金属的废水未经处理就排放到环境中,对环境和人类的影响极大,这些重金属废水中含有氰化物、酸、碱以及铬、铜、铅、锌、镉、镍等重金属污染物。其中铅是一种较为有害的重金属元素,据测定,当人体内血铅浓度过30微克/100毫升时,就会出现头晕、肌肉关节前、失眠、贫血、腹痛等症状,严重时还会诱发癌症。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。下面,就介绍利用原子吸收法测定重金属废水中的铅含量。 1.试验部分 1.1 主要试剂与仪器 1000μg/mL的铅标准储备溶液;10μg/mL的铅标准工作溶液;1%(v/v)TritonX-114溶液;0.5×10-3mol/L5-Br-PADAP的乙醇溶液;pH=8.0的H2PO4--HPO42-缓冲溶液。 SYC-15超级恒温水浴,TGL-16高速离心机,PHS-3pH计,AA370原子吸收分光光度计;工作条件:测定波长:283.3nm;灯电流:2.5mA;狭缝宽度:5nm;乙炔流量:2.0L/min,空气流量:6.0L/min。 1.2 测定方法 取一定量铅的标准溶液于10mL离心管中,依次加入1%(v/v)TritonX-114溶液0.5mL,0.5×10-3mol/L5-Br-PADAP溶液0.5mL,pH=8.0的缓冲溶液1mL,用超纯水

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

石墨炉原子吸收光谱法测定磷矿石中微量铅和铬

2010年2月February2010 岩矿测试 ROCKANDMINERALANALYSIS V01.29.No.1 51—54 文章编号:0254—5357(2010)01—0051—04 石墨炉原子吸收光谱法测定磷矿石中微量铅和铬 杨小丽1”,王迪民2,汤志勇1 (1.中国地质大学材料科学与化学工程学院,湖北武汉430074; 2.宜昌地质矿产研究所,湖北宜昌443003) 摘要:应用石墨炉原子吸收光谱法测定磷矿石中微量铅和铬,优化了仪器工作参数及石墨炉升温程序,探讨了不同酸溶体系、基体改进剂及共存元素的影响。方法检出限为铅O.25斗g/g,伽.29彬g;测定结果的相对标准偏差(RSD,n=12)在2.2%~7.0%;加标回收率为93.2%一107.7%。方法灵敏度高,干扰少,操作简便,应用于磷矿石中微量铅、铬的测定获得了满意的结果。 关键词:石墨炉原子吸收光谱法;磷矿石;铅;铬 中图分类号:0657.31;P578.92;0614.433;0614.611文献标识码:B DeterminationofMicro—amountofLeadandChromiuminPhosphateOresbyGraphiteFurnaceAtomicAbsorptionSpectrometry YANG瓜∞.1i1”,WANGDi.min2,TANGZhi-yon91 (1.FacultyofMaterialSciencesandChemicalEngineering,UniversityofGeosciences,Wuhan 430074,China;2.YichangInstituteofGeologyandMineralsResources,Yichang443003,China) Abstract:Amethodwasestablishedtodeterminethemicro.amountofleadandchromiuminphosphateoresbygraphitefurnaceatomicabsorptionspectrometry.111einstrumentoperatingparametersandthefurnaceprogramwereoptimized.Somefactorswhichaffectthe determinationresults,suchasaciddigestionsystem,matrixmodifierandinterferencefromconcomitantelementswerediscussed.ThedetectionlimitsofthemethodwereO.25斗g/gforleadand0.29∥gforchromium.,11lerecoveryofthemethodwas93.2%一107.7%withprecisionof2.2%一7.0%RSD(,l=12).Themethodhasbeenappliedtothedeterminationofmicro.amountofleadandchromiuminphosphateoreswithsatisfactoryresults. Keywords:graphitefurnaceatomicabsorptionspectrometry;phosphateore;lead;chromium 磷矿石是磷化工产业的主要原料,我国贵州、云南、湖北等地盛产磷矿石,每年出口量约几百万吨。磷化工产品在工业、国防、尖端科学和人民生活中已被普遍应用,如用作磷肥、含磷农药、家禽和牲畜的饲料及食品添加剂等¨。4]。严格控制磷化工产品中砷、镉、汞、铅、铬等有害元素的含量是保护生态环境的重要环节,因此准确测定磷矿石中铅、铬的含量具有十分重要的意义。国家标准∞1使用分光光度法测定包括铅、铬在内的一系列重金属总量;但是操作繁琐,不适应磷矿石中含量在100∥g以下的铅、铬的快速测定。文献[6一15]报道用石墨炉原子吸收光谱法(GFAAS)测定食用香料、水样、纺织品、土壤等样品中的铅、铬等,结果满意。本文应用GFAAS法测定磷矿石中的微量铅和铬,采用硝酸一高氯酸一氢氟酸混合酸溶解样品,硝酸提取,并在测定过程中在线加入基体改进剂,有效地抑制了基体的干扰。方法快速、准确、灵敏度高、重现性好,应用于磷矿石中微量铅、铬的测定,获得了满意结果。 收稿日期:2009-04-09;修订日期:2009-07—15 作者简介:杨小丽(1979一),女,湖北荆门市人,硕士研究生,工程师,分析化学专业。E-mail:nnbbxxyy502@163.com。 一5l一万方数据

5.茶叶中铅含量测定——详细试验指导

实习四茶叶中铅含量的测定 铅是重金属污染中数量最大的一种,是一种具蓄积性,多亲和性的毒物,能毒害神经系统和造血系统,引起痉挛、精神迟钝、贫血等疾病; 而饮茶是中国的一种传统习惯,茶叶在其生长、采集、制作过程中均易受到铅的污染,故作为茶叶重要卫生指标之一,对其测定具重大意义。常用的铅的检测方法包括食品中铅的测定方法有原子吸收光谱法、电感耦合等离子体光谱法、电感耦合等离子体质谱法、双硫腙分光光度法和原子荧光光谱法等。双硫腙分光光度法为传统的化学分析方法,操作繁琐,试剂消耗量大,基本上被原子光谱法替代。在原子光谱法中,原子吸收光谱法与电感耦合等离子体光谱法使用的仪器设备昂贵,食品检测过程中干扰严重。原子荧光光谱法因仪器设备廉价、操作简便、检测过程受介质干扰少、取样量少及检出限低,是适合基层实验室开展食品痕量铅检测的优选方法。 【实验目的】 1.掌握食品样品微波消解技术,原子荧光光谱法测定食品中铅含量的原理、结果 计算与评价。 2.掌握原子荧光光谱仪的操作程序、试验注意事项。 【实验原理】 样品经过硝酸-过氧化氢体系微波消解后,铅以离子形式存在,将其导入到原子荧光光谱仪中,在酸性介质中,食品中的铅与硼氢化钠( N aBH4 ) 或硼氢化钾( KBH4 ) 反应生成挥发性的氢化物( PbH4 ) 。以氩气为载气, 将氢化物导入电热石英原子化器中原子化, 在特制铅空心阴极灯照射下, 基态铅原子被激发至高能态; 在去活化回到基态时发射出特征波长的荧光, 其荧光强度与铅含量成正比, 根据制备好的铅标准曲线系列进行定量。 【实验器材和试剂】 要求使用去离子水,优级纯或高级纯试剂。 (1)原子荧光光度计。 (2)微波消解仪。 (3)混合酸消化液:每个样品需加入5ml硝酸,1ml双氧水。 (4)盐酸(ρ20=ml),优级纯。 (5)氢氧化钾,优级纯。 (6)载流液:2%盐酸、1%草酸混合液,需要500ml。 (7)还原剂: 称取10 g 硼氢化钾和5 g 铁氰化钾溶于500 ml 2%氢氧化钾溶液中,配制顺序不可颠倒,临用现配。

矿石中铅含量的测定

矿石中铅含量的测定 一、原理 试料用盐酸、硝酸分解,在硫酸存在下,使铅生成硫酸铅沉淀,与其他元素 分离,用乙酸-乙酸钠缓冲液(pH5. 4~pH5.9)溶解硫酸铅,以二甲酚橙为指示剂, 用EDTA 标准溶液滴定。 二、试剂 盐酸(l.19 g/mL),硝酸(l..42 g/mL),无水乙醇,抗坏血酸,硫酸(1+1),硫酸(1+9), 二甲酚橙溶液(2 g/L), 乙酸-乙酸钠缓冲液(pH5. 4~pH5.9): 称取200 g 乙酸钠溶于水后,加9 mL 冰乙酸,加水稀释至1000 mL 。 铅标准溶液[ρ(Pb) =1.00 mg/mL 称取1.0000 g 金属铅(≥99. 99%),置于250 mL 烧杯中,盖上表面皿,沿烧 杯壁加入10 mL 硝酸(1+1)加热溶解后,用少量水洗去表面皿,移入1000 mL 容 量瓶中,用水稀释至刻度,摇匀。 EDTA 标准溶液[c(EDTA) =0. 01 mol/L]的配制和标定: a)EDTA 标准溶液配制:称取3.72 g 乙二胺四乙酸二钠盐溶于1000 mL 水中。 b)EDTA 标准溶液标定:分取20 mL 铅标准溶液三份,分别置于250 mL 烧 杯中,加入50 mL 乙酸-乙酸钠缓冲液,搅拌,加入0.1 g 抗坏血酸,加水稀释至 100 mL ,搅拌后,加入3滴~5滴二甲酚橙溶液,用EDTA 标准溶液滴定至由红 色变为亮黄色为终点。取三份溶液数据的算术平均值。并同时进行空白试验。 按下式计算EDTA 标准溶液对铅的滴定度。 B B 0V T V V ρ=- 式中 T : EDTA 标准溶液相对于铅的滴定度,单位为毫克每毫升(mg /mL); ρB: 铅标准溶液的浓度,单位为毫克每毫升( mg /mL); V B: 分取铅标准溶液的体积,单位为毫升(mL); V: 滴定铅标准溶液所消耗的EDTA 标准溶液的平均体积,单位为毫升(mL); V 0: 滴定空白试验溶液消耗的EDTA 标准溶液的体积,单位为毫升(mL)。

定量分析方法的方法学验证

定量分析方法的方法学验证 定量分析方法的方法学验证 定量分析方法验证的目的是证明采用的含量测定方法适合于相应分析要求,在进行定量分析方法学研究或起草药品质量标准时,分析方法需经验证。 验证内容有:线性、范围、准确度、精密度(包括重复性和重现性)、检测限、定量限和耐用性等。 一,线性 线性是指在设计的范围内,测试结果与试样中被测物质浓度直接呈正比关系的程度。 应在规定的范围内测定线性关系。可用一贮备液经精密稀释,制备一系列供试品的方法进行测定,至少制备五份供试样品;以测得的响应信号对被测物浓度作图,观察是否呈线性,再用最小二乘法进行线性回归。必要时,响应信号可经数学转换,再进行线性回归计算。回归方程的相关系数( r ) 越接近于1 ,表明线性关系越好。 用UV 法测定时,以对照品配制一定浓度范围的对照品系列溶液,吸光度A一般在0.3 ~0.7 ,浓度点n =5 ,用浓度C 对A作线性回归,得一直线方程,方程的截距应接近于零,相关系数r 应大于0.9999 。 用HPLC 法测定时,以对照品配制一定浓度范围的对照品系列溶液,浓度点n =5 ~7 ,用浓度 C 对峰高h 或峰面积A或被测物与内标物的响应值之比进行线性回归或非线性拟合(如HPLC-ELSD ),建立方程,方程的截距应趋于零,相关系数r 应大于0.999 。 线性关系的数据包括相关系数、回归方程和线性图。 二,范围 范围系指能达到一定精密度、准确度和线性,测试方法适用的高低限浓度或量的区间。 范围应根据分析方法的具体应用和线性、准确度、精密度结果及要求确定。对于有毒的、具特殊功效或药理作用的成分,其范围应大于被限定含量的区间。 三,精确度 准确度系指用该方法测定的结果与真实值或参考值接近的程度,一般用回收率( %) 表示。准确度应在规定的范围内测试。用于定量测定的分析方法均需做准确度验证。 1. 测定方法的准确度 可用已知纯度的对照品做加样回收率测定,即于已知被测成分含量的供试品中再精密加入一定量的已知纯度的被测成分对照品,依法测定。用实测值与供试品中含有量之差,除以加入对照品量计算回收率。 在加样回率收试验中须注意对照品的加入量与供试品中被测成分含有量之和必须在标准曲线线性范围之内;加入的对照品的量要适当,过小则引起较大的相对误差,过大则干扰成分相对减少,真实性差。 回收率% = [(C-A)/B]*100% 式中,A为供试品所含被测成分量;B 为加入对照品量;C 为实测值。 2. 数据要求 在规定范围内,取同一浓度的供试品,用 6 个测定结果进行评价;或设计 3 个不同浓度,每个浓度各分别制备 3 份供试品溶液进行测定,用9 个测定结果进行评价,一般中间浓度加入量与所取供试品含量之比控制在l ∶ 1 左右,其他两个浓度分别约为供试品含量的80% 和120% 。应报告供试品取样量、供试品中含有量、对照品加入量、测定结果和回收率( %) 计算值,以及回收率( %) 的相对标准偏差(RSD) 或可信限。 四,精密度 精密度是指在规定的测试条件下,同一个均匀供试品,经多次取样测定所得结果之间接近的程度。 1. 精密度的表示方法 气相色谱法和高效液相色谱法是对同一供试液进行至少五次以上的测定;精密度一般用相对标准偏差(relative standard deviation, RSD) 表示:RSD= 标准偏差/ 平均值′ 100 %

铅含量测定

铅(以Pb计)≤ 1.0 砷(以As计)≤ 0.5 7.2 铅的测定(无火焰原子吸收分光光度法) 7.2.1 原理 样品经消化后,注入原子吸收分光光度计的无火焰原子化器中,升温原子化后,基态原子吸收283.3nm共振线,其吸收量与铅量成正比,与标准系列比较定量。 7.2.2 试剂 7.2.2.1 硝酸(优级纯)。 7.2.2.2 高氯酸(优级纯)。 7.2.2.3 硝酸溶液:c(HNO3)=6mol/L。量取38mL硝酸,加水稀释至100mL。 7.2.2.4 2%磷酸二氢铵:称取2.0g磷酸二氢铵(优级纯),溶于100mL水中。 7.2.2.5 铅标准溶液:精密称取1.0000g高纯金属铅(纯度99.99%以上),溶解于少量c(HNO3)=6mol/L硝酸溶液中,总量不超过37mL,用水准确稀释至1L。此溶液每毫升相当于1mg铅。 7.2.2.6 铅标准使用液:吸取10.0mL铅标准溶液,置于100mL容量瓶中,用3%硝酸溶液稀释至刻度。如此多次稀释至每毫升相当于1μg铅。 7.2.3 仪器 7.2.3.1 高速组织捣碎机; 7.2.3.2 原子吸收分光光度计(附无火焰原子化器)。 7.2.4 操作方法 7.2.4.1 样品处理 称取捣碎均匀的样品匀浆5.0~10.0g(水分多的取10.0g)于50mL烧杯中,加少许水转移至250mL凯氏烧瓶中,在电炉上蒸干水分。加10mL混合酸(HNO3∶HCIO4=5∶1),消化至棕色浓烟产生,溶液将变棕黑色时,加浓硝酸数滴,继续消化至溶液澄清透明,冷却,用去离子水定容至50mL。 7.2.4.2 仪器工作条件 a. 波长:283.3nm; b. 灰化温度:700℃; c. 原子化温度:1800℃; d. 氘灯背景扣除。 7.2.4.3 标准曲线的绘制 配制铅标准系列溶液0、10、30、50、70ng/mL。 在上述仪器工作条件下,取10μL标准溶液,注入无火焰原子化器中。为排除干扰,可随之注入等体积的2%磷酸二氢铵溶液。以吸光度对相应的铅浓度绘制标准曲线。 7.2.4.4 测定 取经消化处理的样液10μL,注入无火焰原子化器中,如出现干扰,可随之注入等体积的2%磷酸二氢铵溶液。与标准曲线比较定量,同时作试剂空白试验。 7.2.5 分析结果的计算 分析结果按下式计算: (A1-A2)╳50╳1000 X=—————————————————— m╳1000╳1000 式中:X——样品中铅的含量,mg/kg; A1——测定用样液中铅的含量,ng/mL; A2——试剂空白液中铅的含量,ng/mL;

含量测定方法学考察

含量测定方法学验证内容及可接受标准 1.准确度 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限

主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 方法:分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、 可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。 8、系统适应性 应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。 有关物质测定方法学验证内容及可接受标准: 1.准确度 该指标主要是通过回收率来反映。验证时一般要求根据有关物质的定量限与质量标准中该杂质的限度分别配制三个浓度的供试品溶液各三份(例如某杂质的限度为0.2%,则可分别配制该杂质浓度为0.1%、0.2%和0.3%的杂质溶液),分别测定其含量,将实测值与理论值比较,计算回收率,并计算9个回收率数据的相对标准差(RSD)。该项目的可接受的标准为:各浓度下的平均回收率均应在80%-120%之间,如杂质的浓度为定量限,则该浓度下的平均回收率可放宽至70%-130%,相对标准差应不大于10%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为:在定量限至

八K2Cr2O7法测定铁矿石中铁的含量

莫尔法测定食盐中NaCl的含量 一、实验目的 1、掌握莫尔法测定可溶性氯化物的原理及方法。 2、学会AgNO3标准溶液的配制和标定方法。 3、学会莫尔法滴定终点的观测。 二、实验原理 某些可溶性氯化物中氯含量的测定常采用莫尔法。在中性或弱碱性条件下,以K2CrO4为指示剂,用AgNO3标准溶液进行滴定,主要反应如下:Ag++ Cl-= AgCl↓(白色) 2 Ag++ CrO42-= Ag2CrO4↓(砖红色) 由于AgCl的溶解度小于Ag2CrO4,根据分步沉淀的原理,溶液中首先析出AgCl沉淀。当AgCl定量沉淀后,稍微过量的Ag+即与CrO42-形成砖红色的Ag2CrO4沉淀,它与白色的AgCl沉淀一起,使溶液略带橙红色即为终点。 滴定必须在中性或弱碱性液中进行,最适宜pH范围为6.5~10.5。如果有铵盐存在,溶液的pH需控制在6.5~7.2之间。 指示剂的用量对滴定准确度有影响,一般以5×10-3mol·L-1为宜。 凡是能与Ag+生成难溶性化合物或络合物的阴离子都干扰测定。如:PO43-、AsO43-、SO32-、CO32-、C2O42-、S2-等。大量Cu2+、Ni2+、Co2+等有色离子将影响终点观察。凡是能与CrO42-指示剂生成难溶化合物的阳离子也干扰测定。如:Ba2+、Pb2+能与CrO42-分别生成BaCrO4和PbCrO4沉淀。Al3+、Fe3+、Bi3+、Sn4+等高价金属离子在中性或弱碱性液中易水解产生沉淀,会干扰测定。 AgNO3标准溶液既可以用直接法配制,也可以用间接法配制。间接法配

制的AgNO3标准溶液可用NaCl基准试剂标定。 三、仪器和试剂 1、仪器:50ml酸式滴定管1支;25ml移液管1支;250ml容量瓶1个;250ml 锥形瓶3个;50~100mL烧杯1个;50~100mL量筒1个;玻璃棒1根;洗耳球1个;小滴瓶1个;洗瓶1个。 2、试剂:AgNO3标准溶液(待标定);待测试液;5%K2CrO4溶液;NaCl基准试剂。 四、实验步骤 1、0.05mol·L-1AgNO3标准溶液的配制(由实验员配制) 称取1.3g AgNO3溶于150mL蒸馏水中,转入棕色试剂瓶中,置于暗处保存,待标定。(试剂量为一人所用) 2、0.05mol·L-1AgNO3标准溶液的标定(由指导老师标定) 准确称取0.60~0.70gNaCl基准试剂于小烧杯中,用蒸馏水溶解后,转入250mL容量瓶中,稀释至刻度摇匀。 用25mL移液管准确移取基准NaCl试液于250mL锥形瓶中,加入20mL 蒸馏水,再加入1mL5%K2CrO4溶液,在不断摇动下,用AgNO3标准溶液滴定至砖红色即为终点。 3、试液中NaCl含量的测定(由学生独立完成) 用25mL移液管移取待测试液于250mL锥形瓶中,加水20mL,混匀。加入1mL5% K2CrO4溶液,在不断摇动下,用AgNO3标准溶液滴定至砖红色即为终点,平行测定三份。 五、问题讨论

HPLC含量测定分析方法验证中数据可接受标准讨论.

HPLC 含量测定分析方法验证中数据可接受标准讨论 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,中国药典2005年版附录规定了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文提出了在对HPLC 含量测定方法进行验证时的可接受标准,供大家讨论。 1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD )应不大于2.0%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制5份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X ),峰面积为纵坐标(Y ),进行线性回归分析。 可接受的标准为:回归线的相关系数(R )不得小于0.998,Y 轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。

3.精密度 1)重复性 配制6份相同浓度或分别配制浓度为80%、100%和120%的供试品溶液各三份的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%。 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限 主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 分别考察流动相比例变化±5%、流动相pH 值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,选择至少三个不同厂家或不同批号的同类色谱柱,每个条件下各测试两次。可接受的标准为:主峰的拖尾因子不得大于

检验方法验证方案(含量测定)

检验方法验证方案 目的:证明所采用的检验方法适于相应的检测要求,具有可靠的准确度、精密度。范围:含量的检定方法的前验证 编定依据:《药品生产质量管理规范》1998年修订版及验证管理办法 职责:验证小组人员 目录 1.概述 2.验证目的 3.职责 3.1验证小组 3.2品质部 3.3化验室 4.验证内容 4.1验证的准备工作 4.2适用性验证 4.2.1准确度试验 4.2.2精密度试验 4.3拟订验证周期 4.4验证结果评定与结论 5.附件

1. 概述 对小容量注射剂的含量测定,本公司采用福林酚测定法,该检验方法具有测量准确、精密度高、专属性强、定量准确可靠、方法简便易行的特点,可满足小容量注射剂含量测定的要求。检验方法标准操作规程。用本方法进行转移因子注射液、胸腺肽注射液的含量测定。 2. 验证目的 为确认对转移因子注射液、胸腺肽注射的含量测定的紫外分光光度法,适合相应的检测要求,特制订本验证方案,进行验证。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书,报验证工作小组批准。 验证前,应首先对验证所需的仪器、设备进行验证,对所需仪器、仪表、量具等进行校正。 3. 职责 3.1 验证工作小组 负责验证方案的审批。 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 负责验证数据及结果的审核。 负责验证报告的审批。 负责发放验证合格证书。 负责再验证周期的确认。 3.2 品质部 负责验证所需仪器、设备的安装、调试,并做好相应的记录。 负责组织验证所需仪器、设备的验证。 负责仪器、仪表、量具等的校正。 负责拟订检验方法的再验证周期 3.3 化验室 负责验证所需的标准品、样品、试剂、试液等的准备。 负责验证方案指定的试验的实施。 负责收集各项验证、试验记录,并对试验结果进行分析后,报验证工作小组。 4. 验证内容 4.1 验证的准备工作 4.1.1 验证所需文件资料 品质部负责提供验证所需的文件资料,包括该检验方法的标准操作规程。以及负责提供验证所需仪器、设备的验证报告以及仪器、仪表、量具等的校正报告。 检查人:日期:

食品中铅的测定方法

食品中铅的测定方法 1.1 原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收283.3nm共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。 1.2 试剂 1.2.1硝酸:优级纯。 1.2.2高氯酸:优级纯。 1.2.3硝酸(0.5mol/L):取3.2ml 硝酸加入50ml水中,稀释至100ml。 1.2.4硝酸(1mol/L):取6.4ml硝酸加入50ml水中,稀释至100ml。 1.2.5磷酸二氢铵溶液(20g/L):称取2.0g磷酸二氢铵,以水溶解稀释至100ml。 1.2.6混合酸:硝酸+高氯酸(4+1)。取4份硝酸与1份高氯酸混合。 1.2.7铅标准储备液:由国家标准物质研究中心提供。 1.2.8铅标准使用液:每次吸取铅标准储备液1.0ml于100ml容量瓶中,加硝酸(0.5mol/L)或硝酸(1mol/L)至刻度。如此经多次稀释成每毫升含10.0,20.0,40.0,60.0,80.0ng铅的标准使用液(可根据样品所含浓度进行配制)。 1.3仪器 所用玻璃仪器均需以硝酸(1+5)浸泡过液,用水反复冲洗,最后用去离子水冲洗干净。 1.3.1原子吸收分光光度计(附石墨炉及铅空心阴极灯)。 1.3.2消化装置 1.3.3可调式电热饭、可调式电炉。 1.4 操作 1.4.1 试样预处理 1.4.1.1 在采样和制备过程中,应注意不使试样污染。 1.4.1.2 粮食、豆类去杂物后,磨碎,过20目筛,储于塑料瓶中,保存备用。 1.4.1.3 蔬菜、水果、鱼类、肉类及蛋类等水分含量高的鲜样,用食品加工机或匀浆机打成匀浆,储于塑料瓶中,保存备用。 1.4.2 试样消化 湿式消解法:称取试样1.00g~5.00g 于锥形瓶或高脚烧杯中,放数粒玻璃珠,加10ml混合酸,加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加混合酸,直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将试样消化液洗入或过滤入(视消化后试样的盐分而定)10ml~25ml容量瓶中,用水少量多次洗涤锥形瓶或高脚烧杯,洗液合并于容量瓶中并定至刻度,混匀备用;同时作试剂空白。 1.4.3 测定 1.4.3.1 仪器条件:根据各自仪器性能调至最佳状态。参考条件为波长283.3nm,狭缝0.2nm~1.0nm,灯电流5mA~7mA,干燥温度120℃,20s;灰化温度450℃,持续15s~20s,原子化温度1700℃~2300℃,持续4s~5s,背景校正为氘灯或塞曼效应。 1.4.3.2 标准曲线绘制:吸取上面配制的铅标准使用液10.0,20.0,40.0,60.0,80.0ng/ml(或μl)各10μL,注入石墨炉,测得其吸光值并求得吸光值与浓度有关系的一元线性回归方程。 1.4.3.3 试样测定:分别吸取样液和试剂空白液各10μl,注入石墨炉,测得其吸光值,代入标准系列的一元线性回归方程中求得样液中铅含量。 1.4.3.4 基体改进剂的使用:对于干扰试样,则注入适量的基体改进剂磷酸二氢铵溶液(20g/L)一般为5μl或与试样同量消除干扰。绘制铅标准曲线时也要加入与试样测定时等量的基体改进剂磷酸二氢铵溶液。

矿石含量检测

稀有矿石检测矿石含量检测 1.钨矿石、钼矿石 钨矿石、钼矿石化学分析方法,钨含量、钼含量、铜含量、铅含量、锌含量、镉含量、钴含量、镍含量、硫含量、砷含量、铋含量、银含量、锡含量、镓含量、锗含量、锡含量、碲含量、铼含量的测定 GB/T14352.1~18-2010钨矿石、钼矿石化学分析方 2.磷矿石 GB/T1868-1995磷矿石和磷精矿采样与样品制备方法 GB/T1870-1995磷矿石和精磷矿中水分的测定重量法 GB/T1871.1~5-1995磷矿石和精磷矿中五氧化二磷、氧化铁、氧化铝、氧化钙、氧化镁含量的测定 GB/T1872~1881-1995磷矿石和精磷矿中氟含量、二氧化硅含量、酸不溶物含量、灼烧失量、二氧化碳含量、氧化锰含量、碘含量、氧化钾含量、三氧化硫含量、氧化锶含量的测定 HG/T2274-1995钙镁磷肥用硅镁质半自熔性磷矿石 项目:五氧化二磷、氧化镁、二氧化硅、氧化铝、粒度 HG/T2673-1995酸法加工用磷矿石 项目:五氧化二磷、氧化镁、三氧化二物、二氧化碳 HG/T2674-1995黄磷用磷矿石 项目:五氧化二磷、二氧化硅/氧化钙、二氧化碳、粒度 HG/T2675-1995钙镁磷肥用磷矿石 项目:五氧化二磷、氧化镁、三氧化二物、粒度 SN/T1097-2002出口磷矿石中五氧化二磷、氧化钙、三氧化二铁、氧化铝、氧化镁、二氧化硅和氧化钾的X-射线荧光光谱测定方法 项目:五氧化二磷、氧化钙、三氧化二铁、氧化铝、氧化镁、二氧化硅、、氧化钾 SN/T2993-2011磷矿石中氟和氯的测定离子色谱法 科标中心以化工行业技术需求和科技进步为导向,以资源整合、技术共享为基础,分析测试、技术咨询载体,致力于搭建产研结合的桥梁。以“专心、专业、专注“为宗旨,致力于实现研究和应用的对接,从而推动化工行业的发展。

含量测定分析方法验证的可接受标准简介

审评四部黄晓龙 摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受 标准,以利于判断该分析方法的可行性。 关键词:含量测定分析方法验证可接收标准 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。 1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的 相对标准差(RSD)应不大于2.0%。 2.线性

线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%。 4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。 5.检测限 主峰与噪音峰信号的强度比应不得小于3。 6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。 7.耐用性 分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、流速相对值变

铅含量的测定实训标准

铅含量的测定实训标准 15.1任务工单 15.1.1实训目的 (1)掌握巩固原子吸收测定金属的原理、操作步骤和数据处理方法。 (2)会使用原子吸收分光光度计测定金属;能够简单维护保养原子吸收;会配制标准系列。 (3)具有较好的安全意识;具备严谨规范的操作意识;具有较好合理安排时间的能力。 15.1.2实训材料 饮料、酒、醋、酱油等样品 15.1.3实训仪器 (1)50ml容量瓶10个、10ml吸量管2个 (2)原子吸收分光光度计 15.1.4实训试剂 硝酸:优级纯、高氯酸:优级纯、硫酸铵、柠檬酸铵、溴百里酚蓝、二乙基二硫代氨基甲酸钠、氨水:优级纯、4-甲基-2戊酮、盐酸:优级纯。 15.2项目指导书 15.2.1实训原理 试样经处理后,铅离子在一定pH条件下与二乙基二硫代氨基甲酸钠(DDTC)形成络合物,经4甲基2戊酮(MIBK)萃取分离,导入原子吸收光谱仪中,经火焰原子化,在283.3mm处测定的吸光度。在一定浓度范围内铅的吸光度值与铅含量成正比,与标准系列比较定量。 15.2.2实训步骤 (1)试剂配制 1硝酸溶液(5+95):量取50mL硝酸,加入到950mL水中,混匀 2硝酸溶液(1+9):量取50mL硝酸,加入到450mL水中,混匀 3硫酸铵溶液(300g/L):称取30g硫酸铵.用水溶解并稀释至100mL.混匀 4柠檬酸铵溶液(250g/L):称取25g柠檬酸铵?用水溶解并稀释至100mL?混匀 5溴百里酚蓝水溶液(1g/L):称取0.lg溴百里酚蓝,用水溶解并稀释至100mL,

混匀 6DDTC溶液(50g/L):称取5 g DDTO,用水溶解并稀释至100mL,混匀 7氨水溶液(1+1):吸取100mL氨水,加入100mL水,混匀 8盐酸溶液(1+11):吸取10mL盐酸,加入110mL水,混匀 (2)标准品 硝酸铅:纯度>9999%。或经国家认证并授予标准物质证书的一定浓度的铅标准溶液 (3)标准溶液配制 1铅标准储备液(l000mg/L):准确称取1.5985g(精确至0.0001g)硝酸铅,用少量硝酸溶液1+9)溶解,移人1000mL容量瓶,加水至刻度,混匀 2铅标准使用液(10.0mg/L):淮确吸取铅标准储备液(1000mg/L)1.00mL于100mL容量瓶中,加硝酸溶液(5+95)至刻度,混匀 (4)样品处理 饮料、酒、醋、酱油等液体样品:直接吸取10.00ml样品,置于50ml容量瓶中,加蒸馏水定容,混匀。 (5)测定条件 灯电流2mA、波长324.7nm、积分时间2秒、灯头高度6mm、空气流量6-8L/min、乙炔流量2L/min (6)标准曲线的制作 分别吸取铅标准使用液0mL、0.250mL,0.500mL、1.00mL、1.0mL和2.00mL(相当0ug、2.5ug、5.00ug、10.0ug、15.0ug和20.0ug铅)于125mL分液漏斗中,补加水至60mL.加2mL柠檬酸铵溶液(250g/L)溴百里酚蓝水溶液(1g/L)3滴~5滴,用氨水溶液(1+1)调pH至溶液由黄变蓝,加硫酸铵溶液(300g/L)10mL,DDTC溶液(1g/L)l0mL,摇匀。放置5min左右,加人10mL MIBK,剧烈振摇提取1min,静置分层后,弃去水层,将MIBK层放人10mL带塞刻度管中,得到标准将标准系列溶液按质量由低到高的顺序分别导入火焰原子化器,原子化后测其吸光度值,以铅的质量为横坐标,吸光度值为纵坐标,制作标准曲线 (7)试样溶液的测定 将试样消化液及试剂空白溶液分别置于125mL分液漏斗中,补加水至60mL.

含量测定分析方法验证的可接受标准简介

含量测定分析方法验证的可接受标准简介 黄晓龙 摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性。 关键词:含量测定分析方法验证可接收标准 在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。 1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。 2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。 3.精密度 1)重复性 配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所

相关文档
最新文档