减速器带式输送机传动系统方案

减速器带式输送机传动系统方案
减速器带式输送机传动系统方案

1. 设计任务书

一、设计已知条件: 1、 输入轴功率P=3.8 KW 2、输入轴转速N=960r /min 3、传动比i= 16(减速器内传动比) 4、单向传动,载荷平稳,中型机械 5、设计寿命:1 0年 二、设计参考图 1、传动系统功能图(图一) 2、齿轮传动减速器结构图(图二) 3、齿轮传动减速器装配图(图三) 三、主要零件选材建议 l 、齿轮 8级精度,小齿轮40Cr 钢,调质齿面硬度250HBS;大齿轮45﹟钢,齿面硬度225HBS 。 2、传动轴 选用45#-钢,正火处理,200HBS ,σb =590Mpa 3、减速器上、下座箱材料:灰口铸铁HT200 4、电动机 J02—32—2 P=4KW ,N =1 500r /min 四.设计要求 1:设计说明书1份,字数在5000—10000字。 2、齿轮和轴的设计内容要详细,包括材料与热处理,齿轮的主要参数及几何尺寸,轴的结构,技术要求,强度和刚度的校核。 3、电动机型号选择,轴承选择,减速器上、下座箱基本尺寸,键、轴盖、皮带轮尺寸等要做简要说明。 4、要求总装图纸一张 (1#)、齿轮轴零件图一张(2#图纸)、齿轮的零件图一张(2图纸) 五.毕业设计说明书按下列要求编写: 1,说明书目录 2,概况 3,各零部件设计结构(附图) 4,设计计算步骤、方法所采用的数据、公式及来源 5,设计结果的评价认识及建议,不尽合理处的改进方法 6,设计小结 2. 传动系统方案的拟定

带式输送机传动系统方案如下图所示。

P=4KW N =1 500r /min

带式输送机由电动机驱动。电动机1通过V 带传动2将动力传入两级 圆柱齿轮减速器3,再经过联轴器4,将动力传至输送机滚筒5,带动输 送机6工作。传动系统中经V 带轮减速之后,再通过两级齿轮减速器,其 结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。

3. 电动机的选择

1)传动系统总效率η η5w —输送机滚筒轴至输送带之间的传动效率; ηc —联轴器效率,ηc =0.99; ηg —闭式圆柱齿轮传动效率,η'g =0.97

ηb —对滚动轴承效率,ηb =0.99; ηb —V 带效率,ηv =0.94; ηcy —输送机滚筒效率,ηcy =0.96; 估算传动系统总效率 η=η12η34η45η56η7w

式中 η23=ηv =0.94; η34=ηb ηg =0.99×0.97=0.9603; η45=ηb ηg =0.99×0.97=0.9603; η56=ηb ηc =0.99×0.99=0.9801; η7w =ηb ηcy =0.99×0.95=0.9504; 系统总效率 η=η23η34η45η56η7w =0.94×0.9603×0.9603×0.9801×0.9504=0.8074; 2)电动机型号的选择 根据任务书推荐要求选用Y 系列三相异步电动机,型号为Y112M-4,其主要性能数据如下: P w =2.53 kW

Y112M-4 P m =4.0 kW n =1440 r/min

电动机额定功率 P m =4.0 kW 电动机满载转速 n m =1440 r/min 电动机中心高 H=112 mm 电动机轴伸直径 D=28 mm 电动机轴伸长度 E=60 mm

4. 传动比的分配

带式输送机传动系统的总传动比i=16 (减速器内传动比); 按展开式布置。考虑润滑条件,为了使两级大齿轮直径相近,可由二 级圆柱齿轮减速器传动比分配图展开式曲线差得i 1=4.76,则i 2=i/i 1= 16/4.76=3.36 5. 传动系统的运动和动力参数计算

传动系统各轴的转速、功率和转矩计算如下: 1轴(输入轴)

由任务书中得知输入轴转速n=960r /min n 1= 960 r/min ; 其次由于任务书中为给确定的输送带和滚筒具体参数,那假设P 1=P r =4 kw ; T 1=95501

1

p n =9550×4/960=39.79N ·m ; 2轴(减速器中间轴)

n 2=n 1/i 1=960/4.76=201.68 r/min ; P 2=P 1η12=4×0.9603=3.744 kw ; T 2=9550P 2/n 2=9550×3.744/201.68=177.29N ·m ; 3轴(减速箱低速轴)

n 3=n 2/i 2=201.68/3.36=60.02r/min ; P 3=P 2η23=3.744×0.9603=3.60kw ; T 3= 9550P 3/n 3=9550×3.60/60.02=572.81N ·m ; 将上述计算结果和传动比效率汇总如表:

轴 号

电动机 两级圆柱齿轮减速器

0轴 1轴 2轴 3轴

转速n(r/min) 1440 960 201.68 60.02 功率P(kW) 4 4 3.744 3.60

转矩T(N ·m) 2.2 39.79 177.29 572.81

1) 高速级圆柱齿轮设计

(此处的下标1表示为小齿轮,2为大齿轮) ① 选择齿轮材料及热处理方式

小齿轮选用40Cr 钢,调质处理,2501=HBS ; 大齿轮选用45号钢,调质处理,2252=HBS ;

② 确定许用接触应力1HP σ和2HP σ

L W N H H HP Z Z Z min

lim

][σσσ=

MPa 取疲劳极限应力 MPa H 5701lim =σ MPa H 5302lim =σ

根据接触应力变化次数

8

229

111081.5)1030028(68.201160t 6010

77.2)

1030028(960160t 60?=??????==?=??????==n a N n a N H H

按文献[3]取接触强度计算寿命系数1N Z =1,2N Z =1; 因1对齿轮均为软尺面,故取工作硬化系数W Z =1; 一般计算中取润滑系数L Z =1;

按文献[3],当失效概率低于1/100时,取接触强度最 小安全系数1min =H S 。

将以上数值代入许用接触应力计算公式

L W N H H HP Z Z Z min

lim

][σσσ=

得MPa HP 570][1=σ

MPa HP 530][2=σ

联接件传动件 齿轮 齿轮

传动比i 4.76 3.36

传动效率η

0.9603 0.9603

MPa

H 5701lim =σ

MPa H 5302lim =σ

③ 按齿面接触强度条件计算中心距a

32

2

2

)4.22(

)1(φσβ

εKT u Z Z Z Z u a HP

H E +≥

大齿轮转矩 29.1772=T N ·m 理论传动比 76.4'

1=i 36.3'

2=i 齿宽系数 1=a φ 初取载荷系数 70.1'=K

弹性系数 8.189=E Z MPa 初取节点区域系数 5.2=H Z 初取重合度系数 88.0'

=εZ 将以上数据带入公式

mm

a KT u Z Z Z u a HP H E 36.631

81

.5776.1)53076.488.05.28.1894.22()176.4()

4.22()1(32132

2

2''

''

=??

????+=+≥φσε

mm

a KT u Z Z Z u a HP H E 12.691

29

.17776.1)53036.388.05.28.1894.22(

)136.3()

4.22()1(32232

2

2''

''

=??

????+=+≥φσε 按表取 mm a 651= mm a 702= ④ 确定主要参数和计算主要尺寸 模数n m :

mm

m mm a m n n 3.13.1~65.065)02.0~01.0()02.0~01.0(1==?== mm m mm a m n n 4.14.1~7.070)02.0~01.0()02.0~01.0(1==?==

齿数21,z z :

63

.8276.436.1736

.17)176.4(3.165

2)1(2'12'1=?===+??=+=u z z u m a z n

55

.8236.357.2457

.24)

136.3(4.170

2)1(2'44'3=?===+??=+=

u z z u m a z n 经元整后取83,1721==z z ,83,2523==z z 理论传动比76.41'1'==u i 36.32'2'==u i 实际传动比 :88.41

2

12===z z u i ,

32.33

4

12===z z u i

在允许误差范围内 分度圆直径2,1d d :

mm z m d mm z m d n n 9.107833.11.22173.12211=?===?==

mm z m d mm z m d n n 2.116834.18.23174.12233=?===?==

齿宽21,b b :

mm a b b a 651652=?===φ

取mm b 652=

mm b b 75~65)10~5(21=+= 取mm b 751=

同理mm b 703=,mm b 804= ⑤ 确定载荷系数K

使用系数A K ,按表6-5,A K =1.0; 动载系数V K ,齿轮圆周速度

s m n d v /64.31000

60960

5.7214.31000

601

1=???=

?=

π

齿轮精度,参考表6-6取为8级精度,

按图6-20,动载荷系数12.1=V K ,齿向载荷分布系数

20.1=βK ,

端面重合度 αε=[1.88-3.2(11z +2

1

z )] =[1.88-3.2×(

171+83

1

)]=1.65 当总重合度 65.1==αγεε 时,则齿间载荷分配系数

αK =1.24,最后求得在和系数

43.122.112.105.11=???==αβK K K K K v A

⑥ 验算齿面接触疲劳强度

按文献[3],算得重合度系数

εZ =

868.03

74

.1434=-=-α

ε

316

.188.07.1077.1868.043.12

2

''

22

=?==?=εεZ K KZ

由于2

''2

εεZ K KZ <,故设计偏于安全。

⑦ 确定许用弯曲应力21FP FP σσ,

ST X NT F F FP Y Y Y S min

lim

][δσ=

MPa

按文献[3],取弯曲疲劳极限应力MP

MP F F 210,

2402lim 1lim ==σσ

根据弯曲应力变化总次数

6

8226

8111031018.1)530028(69.81160t 601031033.4)530028(63.300160t 60?>?=??????==?>?=??????==n a N n a N H H

取弯曲强度计算系数1,121==NT NT Y Y 当5≤n m 时,尺寸系数1=X Y ,

按标准中有关规定,取试验齿轮的应力修正系数2=ST Y 。 按文献[3],当失效概率低于1/100时,取弯曲强度最小 安全系数1min =F S 。 代入公式ST X NT F F FP Y Y Y S min

lim

][δσ=

得MPa MPa FP FP 420][,480][21==σσ

⑧ 验算齿轮弯曲强度

βεσY Y Y Y m d b KT Sa Fa n

F 11212

12000=

β

εσY Y Y Y m d b KT Sa Fa n

F 22222

22000=

根据齿数:83,1721==Z Z 。

按文献[3],取齿形系数Fa Y 和应力修正系数Sa Y 分别为 80.1,63.1,17.2,52.22121====Sa Sa Fa Fa Y Y Y Y 按文献[3]算的重合度系数

68.074

.175

.025.075

.025.0=+

=+

=a

Y εε 将以上数值代入应力计算公式

MPa

Y Y Y Y m d b KT Sa Fa n

F 23.28200011212

1==

βεσ

MPa Y Y Y Y m d b KT Sa Fa n

F 40.33200022222

2==

βεσ

因为2211][,][F F F F δδδδ<<,故齿轮弯曲强度满足要求, 设计偏于安全。 ⑨ 主要设计计算结果

高速级参数:

中心距 a1=65mm 法面模数 m n =1.3mm

齿数 1z =17 2z =83

分度圆直径 1d =22.1mm 2d =107.9mm 齿顶圆直径 1a d =24.7mm 2a d =110.5mm 齿根圆直径 1f d =18.85mm 2f d =104.65mm 齿宽 1b =65mm 2b =75mm 齿轮精度等级 8级

低速级参数:

中心距 a2=70mm 法面模数 m n =1.4mm

齿数 1z =25 2z =83 分度圆直径 1d =35mm 2d =116.2mm 齿顶圆直径 1a d =37.8mm 2a d =119mm 齿根圆直径 1f d =31.5mm 2f d =112.7mm 齿宽 1b =65mm 2b =75mm 齿轮精度等级 8级

6. 减速器轴及轴上零件的设计

1) 轴的布置 轴的布置参照图

已知数据

mm

b mm b l h 80,7075mm,b 65mm,b

mm,07a 65mm,a 22l1h121======

铸造减速箱体主要结构尺寸表:

名 称 符号

尺寸关系

取 值 箱座壁厚 δ

0.02538a mm +≥ 5mm 箱盖壁厚 1δ

0.0238a mm +≥

4.5mm 箱盖凸缘厚度 1b

11.5δ

6.75mm 箱座凸缘厚度 b

1.5δ 7.5mm 箱座底凸缘厚度

2b 2.5δ 14.34mm 地脚螺钉直径 f d 0.03612a +

14.34 mm

地脚螺钉数目 n

查手册

4 轴承旁联接螺栓直径 1d 0.75f d

14mm 盖与座联接螺栓直径 2d f d ~(0.50.6)

10mm 联接螺栓的间距

l

150~200

170mm 轴承端盖螺钉直径

3d f d ~(0.40.5) 8mm 视孔盖螺钉直径 4d

f d ~(0.30.4) 6mm 定位销直径

d

f d ~(0.70.8)

14mm

12f d d d 、、至

直外箱壁距离

1C

查手册

14mm

12d d 、至凸缘

边缘距离 2C 查手册 12mm

轴承旁凸台半径 1R

2C

12mm 凸台高度 h

35mm 外箱壁至轴承座端面距离

1l

125~10C C ++()

32mm

箱盖\箱座肋厚 1,m m 110.85,0.85m m δδ≈≈

8mm

2) 轴的设计

① 高速轴(1轴)的设计

轴上小齿轮的直径较小,采用齿轮轴结构。选择轴的材 料及热处理 45号钢,调质。

轴的受力分析轴的受力简图如图(a )所示。 图中

1l l AB ==175mm ; 2

211

h AC b k c n l +++=

=50mm ; AC AB BC l l l -==125mm ;

a) 计算齿轮的啮合力

N d T F t 94.1189044

.4142

.2420001120001=?=?=

N F F n t r 41.44495.12cos 20tan 94.1189cos tan 11=?

?

?=?

=βα N F F t a 63.23795.12tan 94.1189tan 11=??=?=β

b) 求水平面内的支承反力,作水平面内的弯矩图

轴在水平面内的受力简图如(b )所示。

N l l F R AB

BC

t AX 96.8491=?=

N R F R AX t BX 98.3391=-= 0==BX AX M M 42498===AC BX AC AX CX l R l R M N ·mm 轴在水平面内的弯矩图如图(d )所示

c) 求垂直面内的支承反力,作水平面内的弯矩图 轴在垂直面内的受力简图如图(c )所示。

N l d F l F R AB

a BC r AY 31.3252

/111=+=

N R F R AY r Y 87.941=-=B

0==BY AY M M

174761=CY M N ·mm 7.118582=CY M N ·mm

轴在垂直面内的弯矩图如图(e )所示。

d) 求支承反力,作轴的合成弯矩图,转矩图

N R A 02.919= N R B 97.352=

轴向力N F a 63.273=,故得拟用深沟球轴承,并采用两 端固定组合方式,故轴向力作用在轴承A 上。

0==B A M M 22

1145950.95C cx cy M M M =+= N ·mm 22

2244121.25C cx cy M M M =+=

N ·mm 传动力矩 1T =24419.95 N ·mm e )轴的初步设计

由文献[2]表15-1和15-3查表得:

MPa b 637=σ []MPa 7.581=-σ,取折算系数α≈0.6

6206

GB ∕T276-94

由式mm T M d 32

2]

[)

(10σα+≥

所以 ≥d 20.18mm, f )轴的结构设计

按经验公式,减速器输入端的轴端直径

mm d d m e 6.33~4.2228)2.1~8.0()2.1~8.0(=?== 初步确定轴的最小直径,由式(15-2)估算, 查表得,所选电动机轴直径

mm d e 25=

输入轴端选用MPa b 637=σ弹性套柱销联轴器 [Tn]=125N.mm,[n]=4600r/min ; 输入轴端直径选用de=32mm ;

安装齿轮,联轴器处轴肩结构尺寸参考文献[1]的表 5-2确定

② 中间轴(2轴)的设计

选择轴的材料及热处理 45号钢,调质 a) 轴的受力分析

轴的受力简图如图(a )所示。

图中

2l l AB ==177mm ;

mm b k c n l h AC 512

501052222212=+++=+++=

; mm l l l AC AB BC 12651177=-=-=;

mm b k c n l l BD 5.582

651052222212=+++=+++=

; 计算齿轮的啮合力

N d T F t 34.1152959

.19433

.11220002000222=?=?=

N F F n t r 37.43095.12cos 20tan 34.1152cos tan 22=??

?=?

=βα

N F F t a 98.26495.12tan 34.1152tan 22=??=?=β

N d T F t 47.299575

33

.11220002000323=?=?=

N F F n t r 26.109095.12tan 47.2995tan 33=??=?=α

轴在水平面内的受力简图如(b )所示。

N l l F l F R AB

BD

t BC t AX 34.181032=+=

(b) (c)

(a)

(a )轴的受力简图;(b )轴在水平面内的受力分析;

(c )轴在垂直面内的受力简图;

N R F F R AX t t BX 47.233732=-+=

0==BX AX M M

=CX M 92327.34 N ·mm =DX M 136741 N ·mm

轴在垂直面内的受力简图如图(c )所示。

N

l l F l F d F R AB

BD

r BC r a AY 91.31992/3222=+-=

N R F F R AY r r BY 98.45923=--=

0==BY AY M M

=1CY M 10195.41 N ·mm 2CY M = -15635.07N ·mm

=DY M 26908.83 N ·mm

求支承反力,作轴的合成弯矩图,转矩图

A R = 1821.34 N

B R = 2382.30 N

轴向力N F a 63.273=,故得拟用深沟球轴承,并采用两 端固定组合方式,故轴向力作用在轴承B 上。

0==B A M M =1C M 92888.56 N ·mm

=2C M 93461.82 N ·mm

50.139363=D M N ·mm 2

2

2

2d F T t ==112329.53 N ·mm b) 轴的初步设计

由文献[2]表15-1和15-3查表得: 45号钢调制处理,

MPa b 637=σ []MPa 7.581=-σ 取折算系数α≈0.6

由式 mm T M d C 3

12

2]

[)

(10-+≥σα

mm T M d D 312

2]

[)(10-+≥σα

带式输送机传动装置课程设计

1.传动装置的总体方案设计 1.1 传动装置的运动简图及方案分析 1.1.1 运动简图 输送带工作拉力 kM /F 6.5 输送带工作速度 /v (1 m -?s ) 0.85 滚筒直径 mm /D 350 1.1.2 方案分析 该工作机有轻微振动,由于V 带有缓冲吸振能力,采用V 带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V 带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部为Y 系列三相交流异步电动机。 总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。 1.2电动机的选择 1.2.1 电动机的类型和结构形式 电动机选择Y 系列三相交流异步电动机,电动机的结构形式为封闭式。

1.2.2 确定电动机的转速 由于电动机同步转速愈高,价格愈贵,所以选取的电动机同步转速不会太低。在一般 机械设计中,优先选用同步转速为1500或1000min /r 的电动机。这里选择1500min /r 的电动机。 1.2.3 确定电动机的功率和型号 1.计算工作机所需输入功率 1000 P Fv w = 由原始数据表中的数据得 P W = 1000 FV = KW 3 1000 10 85.05.6?? =5.25kW 2.计算电动机所需的功率)(P d kW η/P d w P = 式中,η为传动装置的总效率 n ηηηη???=21 式子中n ηηη,,21分别为传动装置中每对运动副或传动副的效率。 带传动效率95.01=η 一对轴承效率99.02=η 齿轮传动效率98.03=η 联轴器传动效率99.04=η 滚筒的效率96.05=η 总效率84.096.099.098.099.095.02 3 =????=η kW kW P W 58.684.0525 .5P d == =η 取kW 5.7P d =

减速器带式输送机传动系统方案

1. 设计任务书 一、设计已知条件: 1、 输入轴功率P=3.8 KW 2、输入轴转速N=960r /min 3、传动比i= 16(减速器内传动比) 4、单向传动,载荷平稳,中型机械 5、设计寿命:1 0年 二、设计参考图 1、传动系统功能图(图一) 2、齿轮传动减速器结构图(图二) 3、齿轮传动减速器装配图(图三) 三、主要零件选材建议 l 、齿轮 8级精度,小齿轮40Cr 钢,调质齿面硬度250HBS;大齿轮45﹟钢,齿面硬度225HBS 。 2、传动轴 选用45#-钢,正火处理,200HBS ,σb =590Mpa 3、减速器上、下座箱材料:灰口铸铁HT200 4、电动机 J02—32—2 P=4KW ,N =1 500r /min 四.设计要求 1:设计说明书1份,字数在5000—10000字。 2、齿轮和轴的设计内容要详细,包括材料与热处理,齿轮的主要参数及几何尺寸,轴的结构,技术要求,强度和刚度的校核。 3、电动机型号选择,轴承选择,减速器上、下座箱基本尺寸,键、轴盖、皮带轮尺寸等要做简要说明。 4、要求总装图纸一张 (1#)、齿轮轴零件图一张(2#图纸)、齿轮的零件图一张(2图纸) 五.毕业设计说明书按下列要求编写: 1,说明书目录 2,概况 3,各零部件设计结构(附图) 4,设计计算步骤、方法所采用的数据、公式及来源 5,设计结果的评价认识及建议,不尽合理处的改进方法 6,设计小结 2. 传动系统方案的拟定 带式输送机传动系统方案如下图所示。 P=4KW N =1 500r /min

带式输送机由电动机驱动。电动机1通过V 带传动2将动力传入两级 圆柱齿轮减速器3,再经过联轴器4,将动力传至输送机滚筒5,带动输 送机6工作。传动系统中经V 带轮减速之后,再通过两级齿轮减速器,其 结构简单,但齿轮相对于轴承位置不对称,因此要求轴有较大的刚度。 3. 电动机的选择 1)传动系统总效率η η5w —输送机滚筒轴至输送带之间的传动效率; ηc —联轴器效率,ηc =0.99; ηg —闭式圆柱齿轮传动效率,η'g =0.97 ηb —对滚动轴承效率,ηb =0.99; ηb —V 带效率,ηv =0.94; ηcy —输送机滚筒效率,ηcy =0.96; 估算传动系统总效率 η=η12η34η45η56η7w 式中 η23=ηv =0.94; η34=ηb ηg =0.99×0.97=0.9603; η45=ηb ηg =0.99×0.97=0.9603; η56=ηb ηc =0.99×0.99=0.9801; η7w =ηb ηcy =0.99×0.95=0.9504; 系统总效率 η=η23η34η45η56η7w =0.94×0.9603×0.9603×0.9801×0.9504=0.8074; 2)电动机型号的选择 根据任务书推荐要求选用Y 系列三相异步电动机,型号为Y112M-4,其主要性能数据如下: P w =2.53 kW Y112M-4 P m =4.0 kW n =1440 r/min

带式输送机传动装置中的一级圆柱齿轮减速器.

机械课程设计说明书 机电学院09测控专业 设计者:农金德 学号:0911212021 指导老师:杨建红

《精密机械设计》课程设计任务书A(3) 姓名农金德专业测控技术与仪器班级(2)学号0911212021 一、设计题目:带式输送机传动装置中的一级圆柱齿轮减速器 二、系统简图: 三、工作条件:运输机工作平稳,单向运转,单班工作,使用期限8年,大修期3年,输送带速度允许误差为±5%,减速器中小批量生产。 四、原始数据 题号YZ-II 已知条件 11 12 13 14 15 16 17 18 19 20 运输带拉力F/N2500 2800 3000 3300 4000 4600 4800 运输带速度v/(m/s) 1.5 1.6 1.4 1.1 1.5 0.8 1.2 1.6 0.85 1.25 卷筒直径D/mm450 320 275 400 250 250 400 400 400 500 五、设计工作量: 1.设计说明书1份 2.减速器装配图1张 3.减速器零件图2张 指导教师:杨建红 开始日期:2012年 1 月 2 日完成日期:2012 年1 月15 日

计算及说明结果 一、电动机的选择 1、电动机类型和结构的选择:选择Y系列三相异步电 动机,此系列电动机属于一般用途的全封闭自扇冷电动 机,其结构简单,工作可靠,价格低廉,维护方便,适用 于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。 2、电动机容量选择: 电动机所需工作功率为: 式(1):Pd=PW/ηa (kw) P W =FV/1000=4600×0.85/1000=3.91(KW) 由电动机至输送机的传动总效率为: η总=η1×η23×η3×η4×η5 根据《机械设计课程设计》P7表1式中:η1、η2η3、 η4、η5分别为带、滚动轴承(三对)、圆柱直齿轮传动、联 轴器和滚筒的传动效率。 取η1=0.95,η2=0.98,η3=0.97,η4=0.99、η5=0.96则:η总=0.95×0.983×0.97×0.99×0.96=0.82 所以:电机所需的工作功率: Pd =PW/η总=3.91/0.82=4.77(KW)η总=0.82 P d=4.77 (kw)

带式输送机传动系统的设计方案

湖南工业大学 机械设计 设计题目:带式输送机传动系统设计 班级:机设1101 学号:11405701213 姓名:黄桂明 2018 年12 月 设计任务书错误!未定义书签

第一章电动机的选择错误!未定义书签。 1.1 传动方案的拟定错误!未定义书签。 1.2 电动机的选择错误!未定义书 签。 1.3 传动比的分配错误!未定义书签。 1.4 传动装置的运动和动力参数计算:错误!未定义书 签 。 第二章斜齿圆柱齿轮减速器的设8 2.1 高速轴上的大小齿轮传动设计8 2.2 低速轴上的大小齿轮传动设计11 第三章轴的结构设计和计算16 3.1 轴的选择与结构设计16 3.2 中间轴的校核:20 4.1. 联轴器的选择和结构设计27 4.2 联轴器的校核27 第五章键联接的选择及计算28 5.1 键的选择与结构设计28 第六章滚动轴承的选择及计算29 6.1 轴承的选择与结构设计29 第七章润滑和密封方式的选择 32 7.1 齿轮润滑32 7.2 滚动轴承的润滑32 8.1 减速器箱体的结构设计33

8.2减速度器的附件33 专业:机械设计班级:机设1101姓名:黄桂明 设计题目:带式输送机传动系统设计 设计参数: 工作条件: 带式输送机在常温下连续工作、单向运转、空载起动、工作载荷平 稳。输送带工作速度V的允许误差为士5%二班制<每班工作8h>要求减速器设计寿命为8年。大修期为2?3年,大批量生产,三相交流电源的电压为380/220V 设计内容: 1)装配图1张 2)零件图3张 3)设计说明书一份 设计任务:设计带式输送机的传动系统,要求传动系统中含有两级 圆柱斜齿轮减速器 日期:2018-12 1、传动方案分析

设计带式输送机传动装置机械设计说明书

设计带式输送机传动装置 机械设计说明书 Revised by BLUE on the afternoon of December 12,2020.

机械设计基础课程设计 计算说明书 设计题目带式运输机上的单级圆柱齿轮减速器 系机电工程系专业数控技术 班级 设计者 指导教师 2011年 07 月 12 日

目录 一、设计任务书 0 二、带式运输送机传动装置设计 (1) 三、普通V带传动的设计 (5) 四、直齿圆柱齿轮传动设计 (6) 五、低速轴系的结构设计和校核 (9) 六、高速轴结构设计 (16) 七、低速轴轴承的选择计算 (18) 八、低速轴键的设计 (19) 九、联轴器的设计 (20) 十、润滑和密封 (20) 十一﹑设计小结 (21) 参考资料 (22)

一.设计任务书 一.设计题目 设计带式输送机传动装置。 二.工作条件及设计要求 1.设计用于带式运输机的传动装置。 2.该机室内工作,连续单向运转,载荷较平稳,空载启动。运输带速允许误差为 5%。 3.在中小型机械厂小批量生产,两班制工作。要求试用期为十年,大修期为3年。 三.原始数据 第三组选用原始数据:运输带工作拉力F=1250N 运输带工作速度V=s 卷筒直径D=240mm 四.设计任务 1.完成传动装置的结构设计。 2.完成减速器装备草图一张(A1)。 3.完成设计说明书一份。 二.带式运输送机传动装置设计 电动机的选择 1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼型三相异步电动机 2.电动机功率的选择: P=Fv/1000=1250*1000= E

设计带式输送机传动装置-机械设计说明书

机械设计基础课程设计 计算说明书 设计题目带式运输机上的单级圆柱齿轮减速器系机械系专业材料成型及控制工程班级 15-1 设计者孙新凯 指导教师 2017年 06 月 12 日

目录 一、设计任务书 0 二、带式运输送机传动装置设计 (1) 三、普通V带传动的设计 (4) 四、斜齿圆柱齿轮传动设计 (6) 五、滚动轴承和传动轴的设计 (10) 六、轴键的设计 (18) 七、联轴器的设计 (18) 八、润滑和密封 (19) 九、设计小结 (20) 十、参考资料 (20) 一.设计任务书 一.设计题目 设计带式输送机传动装置。 二.工作条件及设计要求

1.工作条件:两班制,连续单项运转,载荷较平稳室内工作,有粉 尘,环境最高温度35℃; 2.使用折旧期:8年; 3.检查间隔期:四年一次大修,两年一次中修,半年一次小修; 4.动力来源:电力,三相交流,电压380/220V 5. 运输带速允许误差为 5%。 6.制造条件及批量生产:一般机械厂制造,小批量生产。 三.原始数据 第二组选用原始数据:运输带工作拉力F=2200N 运输带工作速度V=s 卷筒直径D=240mm 四.设计任务 1.完成传动装置的结构设计。 2.完成减速器装备草图一张(A1)。 3.完成设计说明书一份。 二.带式运输送机传动装置设计 电动机的选择 1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼

型三相异步电动机 2.电动机功率的选择: E P =Fv/1000=2200*1000= 3.确定电动机的转速:卷筒工作的转速 W n =60*1000/(π*D)=60*1000**240)=min 4.初步估算传动比:由《机械设计基础》表14-2,单级圆柱齿轮减速器传动比=6~20 电动机转速的可选范围; d n =i ∑· v w n =(6~20)=~ r/min 因为根据带式运输机的工作要求可知,电动机选1000r/min 或1500r/min 的比较合适。 5.分析传动比,并确定传动方案 (1)机器一般是由原动机,传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力,变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作的性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要结构简单,制造方便,成本低廉,传动效率高和使用维护方便。 本设计中原动机为电动机、工作机为皮带输送机。传动方案采用两级传动,第一级传动为带传动,第二级传动为单级圆柱齿轮减速器 选用V 带传动是V 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可以缓和和冲击振动。 齿轮传动的传动效率高,使用的功率和速度范围广、使用寿命较

带式输送机一级减速器传动装置机械课程设计。

带式输送机传动装置机械设计 班级:机自0992 设计人:牛海宇.王栓栓.王珊珊.冯维. 李永奎.王雷阳.潘振刚.李子璐. 赵广跃.宋云龙 辅导老师:姚继蔚

课程设计纲要 一.课程设计方案 二.设计技术要求 三.设计步骤及具体参数

1.V带的设计及规格要求. 2.电动机的选择. 3.齿轮传动设计. 4.滚动轴承的尺寸要求. 5.高速轴与低速轴校核与应用. 6.键的具体参数及强度校核. 一.课程设计方案. 设计带式输送机传动装置

1.V带传动 2.电动机 3.圆柱齿轮减速器 4.联轴器 5.输送带 6.滚轮 二.设计技术要求.

原始数据: 参数题号(组号) 1 2 3 输送带工作拉力F/N 2200 2100 2000 输送带工作速度 1.8 1.8 1.8 滚筒直径D/mm 450 400 450 每日工作时数T/h 24 24 24 传动工作年限/a 5 5 5 注:传动不逆转,载荷平稳,起动载荷为名义载荷的1.25倍,输送带速度允许误差为 5% 设计工作量: 设计说明书1份: 减速器装配图1张(A1) 零件工作图(主动轴、从动轴、齿轮、上箱体、下箱体)各一份

三.设计步骤及具体参数. 1.V 带的设计及规格要求. V 带的设计 ① C P A K =1.2 C P =1.2?5.5KM=6.6KM ② C P =6.6 1n =960r/min 带型A 型,普通V 带 由图,选取1d d =125 且1d d >min d =75 9.306125391 960 1212=?== d d d n n d 选用标2d d =315mm 52.2125 31512=== d d d d i min /95.38052.296012r i n n === %8.2%10084 .39184 .39195.380-=?- 在 %5±以内为允许值。 验算带速 s m n d v d /28.61000 60960 1251000 601 1=???= ?= ππ 带速在5~25m/s 范围内。 确定带的基准长度d l 和实际中心距a 初定0a =1000mm ()()0 2 122 10042 2a d d d d a l -+ ++ =π

带式输送机传动装置设计

机械设计 课程设计 课题名称:带式输送机传动装置设计 系别: 物理与电气工程学院 专业: 机械设计制造及其自动化 班级: 12级机械一班 姓名: 杨帆 学号: 080812025 指导老师: 袁圆 完成日期: 2014.6.18

目录 第一章绪论 (1) 第二章减速器的结构选择及相关计算 (3) 第三章 V带传动的设计 (7) 第四章齿轮的设计 (9) 第五章轴的设计与校核 (15) 第六章轴承、键和联轴器的确定 (20) 第七章减速器的润滑与密封 (22) 第八章减速器附件的确定 (23) 第九章装配图和零件图的绘制 (24) 总结 (24) 参考文献 (25)

第一章绪论 1.1设计目的: 1)此次机械课程设计主要培养我们理论联系实际的设计理念,训练综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。 2)另外促使我们培养查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图、数据处理等设计方面的能力。3)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一定的机械设计的程序和方法,同时树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。 1.2设计题目: 原始数据及工作条件 表1 带式输送机的设计参数 工作条件:带式输送机连续单向运转,载荷平稳,空载启动,使用期10年(每年300个工作日),小批量生产,两班制工作,输送机工作轴转速的允许误差为±5%。带式输送机的传动效率为0.96。

图1 带式输送机传动简图 1—电动机;2—带传动;3—单级圆柱齿轮减速器;4—联轴器;5—输送带;6—滚筒 1.3传动方案的分析与拟定 1、传动系统的作用及传动方案的特点: 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单(一)级直齿圆柱齿轮减速器。

带式输送机一级直齿圆柱齿轮减速器设计

课程设计说明书 题目:带式输送机一级直齿圆柱齿轮减速器设计 二级学院机电工程学院 年级专业15机械制造与自动化 学号1501011007 胡定鹏 学生姓名 指导教师熊建强 教师职称副教授

目录 第一章原始数据 (1) 第二章选择电动机 (2) 第三章计算总传动比和传动装置的运动和动力参数 (3) 第四章齿轮传动的设计 (4) 第五章轴的设计 (7) 第六章滚动轴承的选择及验算 (10) 第七章键的选择及强度校核 (11) 第八章联轴器的选择 (12) 第九章设计体会 (13) 参考文献 (14)

新余学院课程设计说明书 第一章原始数据 运输带工作拉力F=3500(N);运输带工作速度n=260 (r/min);滚筒直径D=300(mm);每天工作24小时,连续单向运转,工作期限为5年,每年工作300天,载荷较平稳。环境最高温度350C;小批量生产。 传动装置简图: 56 4 3 1 2 1-电动机2-带传动3-减速器4-联轴器5-滚筒6-传送带

第二章选择电动机 (1)电动机的类型 按已知的工作要求和条件,选用Y 型全封闭笼型三相异步电机。 (2)传动效率 η 带传动V 带传动1η=0.96 齿轮传动的轴承2η=0.99 齿轮传动 3η=0.97 联轴器 4η=0.99 卷筒轴的轴承 5η=0.98 卷筒 6η=0.96 (3)电动机工作功率 运输带速度1000 60?= dn v π=4.1 s m / 工作机所需的电动机输出功率:η ηw d Fv P 1000==16.69 kW (4)电动机转速 卷筒轴的工作转速为:D v n W π100060?= =261.01 min /r 按推荐的合理传动比范围,取V 带传动的传动比1i '=2~4,单级齿轮传动比2 i '=3~5,则合理总传动比的范围为i '=6~20,故 d n '=i '·W n =(6~20)×261.01 min /r , d n '=(1566.06~5220.2) min /r 根据计算出的量,由附表8.1查出适应的电动机型号,其技术参数及传动比的情况见表2-4。 表2-4 电动机型号

带式运输机的一级直齿圆柱齿轮减速器

机械设计基础课程设计说明书设计题目带式运输机的单级直齿圆柱齿轮减速器

目录 第1章概述 (1) 1.1 设计的目的 (1) 1.2 设计的内容和任务 (1) 1.2.1设计的内容 (1) 1.2.2 设计的任务 (2) 1.3 设计的步骤 (2) 第2章传动装置的总体设计 (3) 2.1 拟定传动方案 (3) 2.2选择原动机——电动机 (3) 2.2.1选择电动机类型和结构型式 (3) 2.2.2确定电动机的功率 (4) 2.2.3确定电动机的转速 (5) 2.3传动装置总传动比的确定及各级传动比的分配 (7) 2.3.1计算总传动比 (7) 2.3.2合理分配各级传动比 (7) 2.4算传动装置的运动和动力参数 (8) 2.4.1 0轴(电机轴)输入功率、转速、转矩 (8) 2.4.2 1轴(高速轴)输入功率、转速、转矩 (8) 2.4.3 2轴(低速轴)输入功率、转速、转矩 (8) 2.4.4 3轴(滚筒轴)输入功率、转速、转矩 (9) 第3章传动零件的设计计算 (10) 3.1 减速箱外传动零件——带传动设计 (10) 3.1.1带传动设计要求 (10) 3.1.2 V带传动设计计算 (10) 3.2 减速器内传动零件——齿轮设计 (14) 3.2.1选择齿轮类型、精度等级、材料及齿数 (14) 3.2.2 按齿面接触强度设计 (14) 3.2.3 按齿根弯曲强度计算 (16) 3.2.4、齿轮几何尺寸计算 (18) 3.3 轴的设计 (19) 3.3.1主动轴的设计 (19) 3.3.2从动轴的设计 (21) 第4章部件的选择与设计 (24) 4.1轴承的选择 (24) 4.1.1输入轴轴承 (24) 4.1.2输出轴轴承 (24) 4.2输入轴输出轴键连接的选择及强度计算 (25) 4.3轴承端盖的设计与选择 (26)

带式输送机传动系统设计

机械课程设计说明书 课题:带式输送机传动系统设计班级:A07机械(1)班 学号: 姓名: 指导老师:

目录 第一节设计任务-------------------------------------------------------(3) 第二节电动机的选择和计算---------------- --- ------ -------------- (4) 第三节传动零件的设计计算------------------------------------------ (7) 第四节具体二级齿轮减速器轴的方案设计--------- ----------- ----- (12) 第五节键的校核---------------------------------------------------- (15) 第六节轴承的润滑及密封---------- ------- -------- ----- ---------(16) 第七节箱体结构设计和计算------ ----- ----- ---- ----- ----------- (17) 第八节设计结果----------------------------------------------- (22) 第九节设计小结-------------------------------------------------- (24) 参考文献------ ----- ----- ---- ----- ------- ----- ----- ---- -----(25)

带式输送机传动系统设计 一.设计任务 传动装置中广泛采用减速器,它具有固定传动比、结构紧凑、机体封闭并有较大刚度、传动可靠等特点。设计带式输送机传动系统。采用V带传动及两级圆柱齿轮减速器。 1.原始数据 运输带的有效拉力F=7000N,运输带速度v=0. 5m/s(允许误差5%),卷筒直径D=450mm。减速器设计寿命为5年。 2.传动装置参考方案 带式输送机由电动机驱动。电动机1通过V带传动将动力传入两级圆柱齿轮减速器3,再通过联轴器4将动力传至输送机滚筒5,带动输送带6工作。 3.工作条件 两班制,常温下连续工作;空载起动,工作载荷平稳;三相交流电源,电压为380/220伏。 二、传动装置的总体设计

带式输送机的传动系统设计课程设计

带式输送机的传动系统设计课程设计

机 机械设计课程设计 设计说明书 设计“带式输送机的传动系统” 起止日期:2013 年12月16日至2013年12 月28 日学生姓名 班级 学号 成绩 指导教师(签字) 机械工程学院 2013年12月28日

机械设计课程设计计算说明书 一、传动方案拟定 (2) 二、电动机的选择 (2) 三、运动、动力学参数计算 (4) 四、传动零件的设计计算 (5) 五、轴的设计 (13) 六、轴承的寿命校核 (26) 七、键联接强度校核计算 (28) 八、润滑方式,润滑剂以及密封方式的选择 (29) 九、减速箱体结构尺寸 (30) 十、设计小结 (31) 十一、参考文献 (32)

计算过程及计算说明 一、传动方案拟定 设计二级圆锥-圆柱齿轮减速器 工作条件: 带式输送机在常温下连续工作、单向运转;空载启动,工作载荷较平稳;输送带工作速度v 的允许误差为±5%;二班制(每班工作8h ),要求减速器设计寿命为8年,大修为2~3年,大批生产;三相交流电源的电压为380/220 V 。 (1) 原始数据:运输机工作周转矩F=3100N ;带速n=45r/min 滚筒直径D=340mm 二、电动机选择 1、电动机类型的选择: Y 系列三相异步电动机 2、电动机功率选择: (1)工作机所需功率: P W =FV/1000 因为60/D V n π= ,把数据带入式子中得n=45r/min,所以 P W =3100×0.8/1000=2.48kW (2) 1)传动装置的总效率: 注释及说明 F=3100N n=45r/min D=340mm P W =2.48kW

带式输送机一级减速器课程设计计算说明书

带式输送机一级减速器课程设计计算说明书

机械设计课程设计 计 算 说 明 书 设计题目:带式输送机传动装置设计设计者: 指导老师: 设计时间: 设计单位:

目录 一.课程设计任务书 (1) 二.设计要求 (2) 三.设计步骤 (2) 四.计算项目及内容 (2) (一). 选择电动机 (3) (二). V型带及带轮的计算 (3) (三). 齿轮传动的设计计算 (5) (四). 轴的设计计算 (9) (五). 滚动轴承和传动轴承的设计 (10) (六). 键的设计 (18) (七). 箱体结构设计 (20) (八). 润滑密封设计 (22) (九). 参考资料 (22)

一.课程设计任务书 1 设计题目: 带式输送机传动装置 2.工作条件及设计要求 带式输送机传动装置如上图所示,主要完成输送带运送机器零部件。该机室内工作,单向运转,工作有轻微震动,两班制。要求使用期限十年,大修三年。输送带速度允许误差正负5%。在中小型机械厂小批量生产。 3.原始数据: 输送带工作压力F=10000N 输送带速度V=0.8m/s

卷筒直径D=400m/s 二.设计要求: 1)传动方案简图1~2张 2)减速器装配草图1张(A1) 3)减速器二维装配图一张(A1) 4)完成二维主要零件图两张(A3) 5)编写设计任务说明书 三.设计步骤 1.选择电动机 2.V型带及带轮的设计计算 3.齿轮传动的设计计算 4.轴的设计计算 5.滚动轴承和传动轴承的设计 6.键的设计 7.箱体结构设计 四.计算项目及内容如下·

fnhnvklv补充库存 计算项目及内容主要结果一、选择电动机 带输出功率 Pw=104N0.8m/s=8Kw pw=8Kw =0.970.9930.990.96 P = Pw/ =8.9KW 电动机选用:d 工作机卷轴转速=*60r/min==36.22r/min Y 180L-8 选择发电机:V带传动比24 齿轮传动比:35 总传动(6—20) 电动转速范围n (6—20)r/min a= 转速:730r/min 电动机:Y 180L-8 总传动比i===19.10 i = 4 带 V传动比:4 齿轮:4.78 i =4.78 齿

带式输送机的传动设置

绪言 为了降低物料的输送成本,提高生产的自动化,带式输送机正向大运量、长距离方向发展;同时输送机应能适应各种不同的环境条件,以满足生产现场的需要。对于带式输送机,如果以机器稳定运转时所需功率选择电动机,则很可能因负载大而不能起动或因起动电流大而损坏电动机;如果按起动要求选择电动机,则进入稳定运转状态后,因电动机功率过大而造成浪费。同时,这种“硬起动”方式因起动时间短、冲击大而使输送带承瞬间拉力过大,易造成输送带过早松弛和其它零部件的损坏。这就对传动系统提出了更高的要求,使它更好地实现输送机的启动和正常运行,同时还应提高运行性能,从而为散料输送降低成本,实现生产的自动化奠定基础。 由于利用输送机的某些行业特殊性(如煤矿井下),带式输送机要求其传动装置体积小、重量轻、运输、安装、维护方便、工作可靠、寿命长,所以带式输送机的传动装置经历了从软齿面到中硬齿面再到硬齿面的发展过程,目前大部分带式输送机的传动装置主要采用DCY、KZL、NGW-S和SSX系列型式的硬齿面减速器。带式输送机机头布置如图1—1所示。通过对DCY、KZL、NGW-S、SSX4种系列减速器进行了分析、比较、汇总,得出了热功率与重量的关系(图1—2所示),尺寸a×b与热功率的关系(如图1—3所示);尺寸a×b 与速比的关系(如图1—4所示),尺寸a、b(如图1—1所示)。 图1 带式输送机机头布置图图2 热功率与重量的关系 图3 热功率与尺寸a*b的关系图4 速比与尺寸a*b的关系 DCY传动装置、KZL传动装置、NGW-S传动装置和SSX传动装置的结构都有所不同,各有自己的优点和缺点,下面就一一作以介绍。 DCY系列传动装置结构型式,减速器第1级为格里森制弧齿伞齿轮,第2、3级传动为渐开线圆柱斜齿轮,齿轮材料采用合金钢经渗碳淬火磨齿加工,减速器采用飞溅润滑,自然

带式输送机传动系统中的一级圆柱齿轮减速器

攀枝花学院交通与汽车工程学院 《机械设设计基础》 课程设计说明书 设计题目:带式输送机传动系统中 的一级圆柱齿轮减速器 专业班级: 2010级机电一体化 学生姓名:邓清国 学生学号: 201021205015 指导教师:张健 攀枝花学院交通与汽车工程学院 二0一二年六月十五日

攀枝花学院交通与汽车工程学院 2010级机电一体化 《机械设计基础》课程设计说明书 机械零件课程设计任务书(二)——带式运输机传动系统中的一级圆柱齿轮减速器 2 目录 第一章 绪论 ··································································································· 3 第二章 设计任务书及主要技术参数说明 ······························································· 4 2.1 机械零件课程设计任务书 ····································································· 4 2.2传动方案分析及主要技术参数说明 ··························································· 5 第三章 减速器结构选择及相关性能参数计算 ························································· 7 3.1 减速器结构 ························································································ 7 3.2电动机的选择 ······················································································ 7 3.3 传动比分配 ························································································ 9 3.4 动力运动参数计算 ··············································································· 9 第四章 齿轮的设计计算(包括小齿轮和大齿轮) ··················································· 11 4.1闭式齿轮传动设计 ············································································· 11 4.2闭式齿轮的设计计算与强度校核 ··························································· 11 4.2.1齿面接触强度设计 ···································································· 11 4.2.2按齿根弯曲强度的设计公式 ························································ 15 4.2.3几何尺寸计算 ·········································································· 17 4.3闭式齿轮的结构设计数据 ···································································· 17 第五章 轴的设计计算 ···················································································· 18 5.1主动轴(电动机轴)的尺寸设计 ··························································· 18 5.1.1主动轴的材料和热处理的选择 ····················································· 18 5.1.2主动轴几何尺寸的设计计算 ························································ 19 5.2传动轴的尺寸设计和强度校核 ······························································ 24 5.2.传动轴的强度校核 ············································································ 29 5.3传动轴的材料和热处理的选择 ······························································ 32 第六章 轴承、键和联轴器的选择 ····································································· 33 6.1 轴承的选择及校核 ············································································ 33 6.1.1从动轴承 ················································································ 33 6.1.2主动轴承 ················································································ 34 6.2 键的选择计算及校核 ········································································· 35 6.3 联轴器的选择 ·················································································· 37 第七章 减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算 ··············· 37 7.1 润滑的选择确定 ··············································································· 37 7.2 密封的选择确定 ··············································································· 38 7.3箱体主要结构尺寸计算 ······································································· 38 7.4减速器附件的选择确定 ······································································· 40 第八章 链传动 ····························································································· 41 8.1设计链传动 ······················································································ 41 8.2计算轴压力 P F · ················································································ 42 第九章 总结 ································································································ 44 参考文献 ····································································································· 47 部分参照表 ·································································································· 47

带式输送机的传动系统设计(减速机设计)报告

《机械设计》课程设 计说明书 课题名称带式输送机的传动系统设计 学院 xxxxxXXXXXXXX 专业机械设计制造及其自动化 作者 XXXXXXXXXXXXXXXXXX 学号 XXXXXXXXXXXXXXXXXX 指导老师 XXXXXXXXXXXXXXXXXXX 二0一五年十二月二十一

目录 第一章绪论 (1) 第二章减速器结构选择及相关性能参数计算 (2) 第三章V带传动设计 (4) 第四章齿轮的设计计算 (6) 第五章轴的设计计算 (12) 第六章轴承、键和联轴器的选择 (18) 第七章减速器润滑、密封及附件的选择确定以及箱体主要结构尺寸的计算 (20) 第八章设计小结 (24) 参考资料 (24)

第一章绪论 1.1 设计目的 (1)培养我们理论联系实际的设计思想,训练综合运用机械设计课程和其他相关课程的基础理论并结合生产实际进行分析和解决工程实际问题的能力,巩固、深化和扩展了相关机械设计方面的知识。 (2)通过对通用机械零件、常用机械传动或简单机械的设计,使我们掌握了一般机械设计的程序和方法,树立正确的工程设计思想,培养独立、全面、科学的工程设计能力和创新能力。 (3)另外培养了我们查阅和使用标准、规范、手册、图册及相关技术资料的能力以及计算、绘图数据处理等设计方面的能力。 1.2传动方案拟定 1、传动系统的作用及传动方案的特点: 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。 减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。 2、传动方案的分析与拟定 1、工作条件:使用年限8年,工作为两班工作制,单向运转,不均匀载荷,中等冲击,空载运行。 2、原始数据:滚筒圆周力F=4.5KN; 滚筒直径D=320mm; 3、方案拟定: 采用V带传动与齿轮传动的组 带传动具有良好的缓冲,吸振性能, 适应大起动转矩工况要求,结构简单, 成本低,使用维护方便。 图1 带式输送机传动系统简图 1

带式输送机传动装置中一级圆柱齿轮减速器设计方案

机械设计课程设计计算说明书 设计课程题目带式输送机传动装置中的一级圆柱齿轮减速器的设计 (院)系机械工程系 专业机电一体化技术 班级机电1231 设计者一 指导老师亮亮 机械系 2014年6月20日

摘要 本次设计的课题是一级圆柱齿轮减速器在传动装置中的应用,通过合理的计算得出相应的机器部件,同时也分析了部分零件的加工工艺和一些附件的设计与计算过程。本次设计注重的是几个常见的零件的加工工艺分析和部件的计算,这样使得对设计减速器有更深层的认识,同时也强调了对减速器总体结构的认识和一些转配的方法。。在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械工艺的飞速发展。在传动系统的设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱体中优化传动组合的方向。在传动设计中的交叉,将成为新型传动产品发展的重要趋势。 关键词:工艺分析、计算、减速器 引言

机械设计基础课程设计是机械设计基础课程中的一个重要的实践性教案环节,是高等工科院校机械类和近机类专业学生第一次叫较为全面的机械设计的应用实训环节。通过课程设计这一教案环节,力求从课程容上、从分析问题和解决问题的方法、从设计思想上培养学生的工程设计能力。 机械设计基础课程设计的目的: (1)培养学生综合应用机械设计基础课程及其他先选修课程的理论知识和生产实际知识去分析和解决工程实际问题的能力,并使所学知识得到巩固、加深和融会贯通,协调应用。 (2)使学生学习和掌握一般机械设计的基础设计方法,设计步骤。培养独立设计能力,为今后专业课程设计及毕业设计打下基础。 (3)使学生在设计中得到基本技能训练,如计算,绘图,使用相关资料(手册、图册、标准和规等)以及正确使用经验数据、公式等。 总之,机械设计基础课程设计是培养学生分析和解决机械设计一般问题能力的初步实践。 目录

相关文档
最新文档