某风电场风资源后评估

某风电场风资源后评估
某风电场风资源后评估

风电场综合统计指标计算公式

风电综合统计指标计算公式 1、平均风速 平均风速是指统计周期内风机轮毂高度处瞬时风速的平均值。取统计周期内全场风机或场内代表性测风塔的风速平均值,即 1 1n i i V V n ==∑ 单位:米/秒(/m s ) 式中: V —统计周期内的风电场平均风速,/m s ; n —统计周期内的全场风机的台数或代表性测风塔的个数; i V —统计周期内的单台风机或单个代表性测风塔的平均风速,/m s 。 2、平均温度 平均温度是指统计周期内风机轮毂高度处环境温度的平均值,即 1 1n i i T T n ==∑ 单位:摄氏度(o C ) 式中: T —统计周期内的风电场平均温度,o C ; n —统计周期内的记录次数; i T —统计周期内的第i 次记录的温度值,o C 。 3、平均空气密度 平均空气密度是指统计周期内风电场所处区域空气密度的平均值,即 P RT ρ= 单位:千克/立方米(3 /kg m ) 式中: ρ—统计周期内的风电场平均空气密度,3 /kg m ; P —统计周期内的风电场平均大气压强,a P ; R —气体常数,取287/J kg K ?;

T —统计周期内的风电场开氏温标平均绝对温度,K 。 4、 平均风功率密度 平均风功率密度是指统计周期内风机轮毂高度处风能在单位面积上所产生的平均功率,即 3 1 12n i wp i D V n ρ==∑()() 单位:瓦特/平方米(2 /W m ) 式中: wp D —统计周期内的风电场平均风功率密度,2 /W m ; n —统计周期内的记录次数; ρ—统计周期内的风电场平均空气密度,3/kg m ; 3 i V —统计周期内的第i 次记录平均风速值的立方。 5、有效风速小时数 有效风速小时数是指统计周期内风机轮毂高度处介于切入风速与切出风速之间的风速累计小时数,简称有效风时数,即 n i i V V V V T T == ∑有效风时数 单位:小时(h ) 式中: T 有效风时数 —统计周期内的风电场有效风时数,h ; 0V —风机的切入风速,/m s ; n V —风机的切出风速,/m s ; i V T —统计周期内出现介于切入风速(0V )和切出风速(n V ) 之间的风速小时数,h 。 6、风机可利用率 风机可利用率是指统计周期内除去风机因定期维护或故障时数后剩余时数与总时数除去非设备自身责任停机时数后剩余时数的百分比,即 (1)100%A B T B η-=- ?-可利用率 式中: η可利用率—统计周期内的风电场风机可利用率;

风电场工程安全预评价报告编制规定通用版

管理制度编号:YTO-FS-PD846 风电场工程安全预评价报告编制规定 通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

风电场工程安全预评价报告编制规 定通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 范围 1.1 为了规范风电场工程安全预评价报告的内容和深度要求,确保安全预评价报告质量,根据国家和行业有关标准,特制定本规定。 1.2 本规定适用于新建、改建、扩建的风电场工程安全预评价报告的编制。 2 安全预评价报告的主要内容 安全预评价报告的主要内容包括概述(含评价目的、评价范围、评价依据、建设项目概况等)、危险有害因素辨识与分析、评价单元划分和评价方法选择、定性定量评价、安全对策措施建议、评价结论等。 2.1 编制说明 1)评价目的和评价范围 明确评价目的和评价范围。一般以设计文件包括的范围作为评价范围。由于客观条件限制,也可把合同规定的范围作为评价范围,但不得将重要危险、有害因素排除在

风电场发电量计算方法

发电量计算梳理 发电量计算部分,我们所要做的工作是这样的: 当拿到标书(可研报告)等资料后,我们首先要提澄清(向业主索要详细发电量计算所需的资料);然后选择机型(确定该风电场适合用什么类型的风机);最后进行发电量计算。 一、澄清 下面列出了发电量计算需要的所有内容,提澄清的时候,缺什么就列出来。 风电场详细发电量计算所需资料汇总 (1)请业主提供风电场的可研报告; (2)请业主提供风电场内的测风塔各高度处完整一年实测风速、风向、风速标准偏差数据,以及测风塔的地理位置坐标; (3)请业主提供测风塔测风数据的密码; (4)风电场是否已确定风机布置位置,若已确定风机位置,请提供相应的固定风机点位坐标; (5)请业主提供风电场的边界拐点坐标; (6)请业主提供风电场内预装轮毂高度处的50年一遇最大风速; (7)请业主提供风电场场址处的空气密度; (8)请业主提供预装轮毂高度处15m/s湍流强度特征值; (9)请业主提供风电场的海拔高度以及累年极端最低温度; (10)请业主提供风电场内测风塔处的综合风切变指数; (11)请业主提供风电场影响发电量结果的各项因素的折减系数。

https://www.360docs.net/doc/021466980.html,/SELECTION/inputCoord.asp 第二步:打开Global Mapper软件,将.dxf和.zip地形文件拖入。 设置“投影”:Gauss Krueger(3 degree zones)\Gauss Krueger(6 degree zones); 设置“基准”:XIAN 1980(CHINA)\BEIJING 1954; 设置“地区”:Zone x(xxE-xxE)。 1 将.dxf拖入Global Mapper并设置好投影及基准后,将鼠标放于地图任意位置,软件右下角会显示点位坐标。完整坐标表示应该为横坐标8位,纵坐标7位。而横坐标的前两位经常被省去,如果你看到的是横坐标6位,纵坐标7位,那么横坐标的前两位就是被省略的。此时要人为对地图进行整体偏移。偏移量为“地区”Zone后的数值,见下图。

风电场后评估及发电量提升

关键技术成果内容风电场后评估及发电量提升 2015-03-15

一、前言。 经过几年的风电项目的开发与发展,我国风电装机容量已经十分巨大,风电的迅猛发展无疑带来了巨大的机遇,但同时也带来了巨大挑战,已建成风电场实际运行和经济效益存在一定的问题。 风电场项目后评估是指对已经投产运行的风力发电项目的预期目标、执行过程、效益、作用和影响等进行的系统、客观的分析和评价。通过对项目活动实践的检查总结和分析评价,确定项目预期的目标是否达到。项目的主要效益指标是否实现,从而达到肯定成绩、总结经验、吸取教训、提出建议、改进工作、不断提高后续项目的决策水平和投资效果的目的。对于风力发电行业来说,全面而适时的风电场项目的后评估将会为行业的健康和持续发展提供指导和警示作用。 风电机组实际运行环境千差万别,温度、地形、海拔存在差异;风电机组实际运行工况也存在差异,包括风速、空气密度、湍流强度、风向等;而同一风电场的机组每台机组间由于设计、制造、安装等误差也存在个体性能差异。目前,在运风场中同一机型基本采用相同的控制策略。如果能够根据环境差异、运行工况差异和机组个体性能差异来调整风电机组的控制策略,就可以充分挖掘每台机组的发电潜力,一定会带来显著的经济和环境效益。 本成果提出了一种通过后评估对风电场运行情况进行评价,不仅将风力发电项目后评估信息反馈到未来项目开发中去,而且通过数据分析,发电量优化等有效手段对运行中的风力发电机组进行改进,提高风电机组发电效率。 二、成果的主要用途和技术原理。 一般来说,在项目周期中的每一个阶段几乎都需要评估。项目的评估体系包括前评估、跟踪评估(中期评估)和后评估。由于后评估的时点、目的、功能不同于前评估和跟踪评估,所以它具有不可替代的作用。对已运行风电场进行必要的后评估,及时的发现问题并加以解决,可以用于指导风电场的前期建设及后期运行管理。

第一章 风能资源测量与评估

第一章风能资源概述 第一节风能基础知识 一、风的形成 风的形成是空气流动的结果,空气流动形成的动能称为风能。 空气的流动是由于不同区域空气的密度或者气压不同引起。大气压差是风产生的直接原因。 改变空气密度主要方法 (1)加热或冷却 (2)外力作用 二、影响地球表面空气流动的主要因素 1、太阳辐射 赤道和低纬度地区太阳高度角大,日照时间长,太阳辐射强度大,地面和大气接受热量多、温度高;高纬度地区太阳高度角小,日照时间短,地面和大气接受的热量少,温度低。 高纬度和低纬度之间的温度差异,形成南北之间的气压梯度,使空气做水平运动,风沿垂直于等压线的方向从高压向低压吹。 2、地球自转 由于地球表面及空气间摩擦力的作用,地球自转过程中将带动地球表面的空气沿地球自转的方向流动。 地球自转使空气发生偏向的力称为地转偏向力-科里奥利力。科里奥利力是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。 由于地转偏向力和高低纬度间压差所引起的压力的合力成为主导地球表层空气流动的作用力。 3、地球表面陆地和海洋等地形分布的影响 (1)山坳和海峡改变气流运动的方向,使风速增大 (2)丘陵、山地因表面摩擦大而使风速减小 (3)山脉的阻挡作用导致局部风速的增加 4、局部热效应的影响 三风的种类 1、大气环流(三圈环流)——全球性的风 大气环流是在全球范围内空气沿一封闭轨迹的运动,是决定全球风能分布最基础、最重要的因素。 了解当地的盛行风向对微观选址具有重要的意义,我们可以避开盛行风向上的障碍物,当然,当地的地形条件对风向的分布也具有决定作用。 2、季风环流 季风现象:在一个大范围地区内其盛行风向或气压系统有明显的季度变化。 主要是由于海陆分布的热力差异及行星风带的季节转换所形成的。 我国是一个典型的季风气候国家。无论风电场的选址或运行,季风特征必须认真考虑。

单机计算法修正风电场发电量计算

2009年8月 第4期 * 收稿日期:2009-06-31 作者简介:牟磊(1981-),男,四川涪陵人,硕士。 《风电场风能资源评估方法》规范了对风电场的风资源评估方法和内容,其中对风电场风速频率的模拟提出了运用Weibull 模型进行模拟,由于该模型是一个单峰类似正态分布的模型,因此对于特殊地区的风速频率双峰的状态不能够很好模拟,造成发电量计算的有偏差,使经济评价缺少了可信度,造成业主投资没有依据,经济效益不明显。 本文提出运用单机计算方法对频率分布不均的风电场进行修正,修正后能够满足风电场风资源评估的需求。 1 Weibull分布 威布尔分布是一种单峰的,两参数的分布 函数法。其概率密度函数可表达为: f (V ) = —— —— K-1 e - — K 式中:k 和c 为威布尔分布的两个参数,k 称作形 状参数,c 称作尺度参数。当c =1时,称为标准威布尔分布。 2 单机计算的具体方法 单机计算法基本思想:通过风资源评估软件计算出测风塔位置的发电量;利用测风塔位置各个风速时间段和所对应的风机功率曲线相乘的方法计算出测风塔位置准确发电量,通过同一位置不同方法计算出发电量相比,计算出 K C V C V C 76

2009年8月 第4期 测风塔数据 功率与风速时间相乘 功率与风速时间相乘 单点计算出测风塔位置发电量 计算出修正系数 计算出发电量测风塔位置风机发电量Wasp 、windfarm 软件 修正风场内发电机电量 weibull 分布的修正系数,从而修正了风场的发电量。 2.1 单机计算具体方法 风电场设计一个必要条件就是需要进行一年的测风,测风塔数据经过数据插补和订正后具有代表性,因此假定在此处建设风机,用此处各个风速段的时间和所选机型各个风速段下功率曲线相乘的方法计算出此处理论发电量,此发电量是较为准确的;根据wasp 软件或其他软件对风场风机进行排布,为了下一步修正,在测风塔位放置一台参考机组,通过软件计算出整个风场内各个风机布置位的理论发电量;将wasp 软件计算出测风塔位置的风机发电量与根据风速段和功率曲线相乘计算出的发电量相除得出修正系数,将此修正系数用于风电场发电量计算的折减中,计算出风电场的年发电量。 2.2 单机计算方法实现的技术路线 风资源软件计算初步发电量、测风塔位置单点发电量计算、对整个风电场发电量修正等过程。实现单点计算修正风频分布模型的技术路线见图1。 图1 技术路线图 图2 风电场甲风机排布图 表1 测风塔50m高度风速频率分布 图中右下角位置为测风塔位置,在测风塔位置立一台风力发电机组为参考风机位,用两种算法计算参考风机位的发电量。 风电场测风塔50m 高度的风速频率分布见表1和图3 。 3 实例计算 3.1 风速分布频率比较符合weibull分布情况 某风电场甲地势平坦,场区内有一座测风 77 塔,选取测风塔2007年4月27日至2008年4月28日一个完成的测风周期数据,经过插补和订正数据具有代表性。 利用WasP 软件进行风机布置和发电量计算。风机排布如图2。

全国风能资源评价技术规定

全国风能资源评价技术规定 (国家发展改革委2004年4月14日发布发改能源[2004]865号) 第一章总则 第一条风能资源评价主要是以现有气象台站的测风数据为基础,通过整理、分析,对全国风能资源的大小和分布进行评价。 第二条为了统一全国风能资源评价的原则、内容、深度和技术要求,在总结风能资源研究成果的基础上,参考国内、外有关标准和规范,制定《风能资源评价技术规定》(以下简称本规定)。 第三条本规定用于指导开展风能资源评价工作。 第二章基础资料收集 第四条气象台站资料 一、收集国家基准气象站、国家基本气象站和一般气象站基本信息,包括气象台站所属省名、站名、区站号、经度、纬度、海拔高度、建站时间、台站周围环境变化情况(包括台站变迁情况)、观测仪器(包括仪器变更)情况。 二、收集各气象台站1971~2000年历年年最大风速、年极大风速、年极端最高温度、年极端最低温度、年沙尘暴日数、年雷暴日数。 三、收集各气象台站1971~2000年历年逐月平均风速、平均气温、平均气压、平均水汽压。 四、收集各气象台站1991~1995年逐日日平均风速、气温、气压、水汽压。 五、收集各气象台站“代表年”逐时风速、风向观测记录。 六、“代表年”确定方法:根据全国地面气象资料1971~2000年整编成果,选择年平均风速等于或接近30年年平均风速的年份,定义为平均风速年;选择年平均风速等于或接近30年年平均风速最大值的年份,定义为最大值年;选择年平均风速等于或接近30年年平均风速最小值的年份,定义为最小值年。若存在多个年平均风速等于或接近(或、)的年份,则选择最靠近2000年的年份,下同。上述三个年份统称为“代表年”,即年平均风速分别等于或接近、、 的3个年份,下同。 第五条其它观测资料 一、收集已建自动气象站资料,内容参照本规定第四条。 二、收集已建、待建风电场基本信息及前期工作中的测风资料。 三、收集海洋站、船舶、浮标等的测风资料。 四、收集相关科学(考察)试验的测风资料。

风电工程质量评估报告

特变电工十三师红星一牧场风电场工程 工程监理质量评估报告 四川能达水利水电咨询有限公司 特变电工农十三师红星一牧场风电场工程监理部 二〇一五年十二月 审定:许言希 审查:孟祥福 编写:韩超、胡双林、商富强、董鹏 工程监理质量评估报告 一、工程概况: 1、工程项目概况及参建单位: 1、1 工程项目名称:特变电工十三师红星一牧场一、二期风电场99MW工程。

1、2 工程参建单位: 建设单位:哈密新特能源有限责任公司 监理单位:四川能达水利水电咨询有限公司 设计单位:中国能源建设集团新疆电力设计院有限公司 总承包单位:特变电工新能源责任有限公司 1、3工程地点及现场条件: 特变电工农十三师红星一牧场风电场工程位于新疆生产建设兵团十三师。距离哈密地区巴里坤县城70km,风电场距三塘湖乡直线距离约27km;与哈密市直线距离约152km,风电场区域海拔高度约在1390—1450m,场地开阔,地形较平坦,地势南部高,北部低。 1、4工程建设规模: 本项目设计一、二期2×49、5MWp风力发电机组。一期安装33台单机容量为1、5MWp的风力发电机组,总装机容量为49、5MWp,预计平均年上网电量为10048 、5 万kW?h,年等效满负荷小时数为2030h,容量系数为0、2317;二期安装33台单机容量为1、5MW 的风力发电机组,总装机容量为49、5MW,预计平均年上网电量为10444 、5 万kW?h,年等效满负荷小时数为2110h,容量系数为0、2409。风电场新建一座110kV升压变电站,一回110kV出线接入红星220KV风电汇集站。 1、5建设投资:一期工程静态投资43394、47万元动态投资44649、44万,二期工程静态投资42128、55万元动态投资43346、

风电场电量计算公式

风电场电量计算公式 单位:MWh 1.关口表计量电量 1)上网电量 251正向A总(A+) 2)用网电量 251反向A总(A-) 3)送网无功 251正向R总(R+) 4)用网无功 251反向R总(R-) 2.发电量:是指每台风力发电机发电量的总和。 1)表底读数 (312A+)+(313A+)+(314A+)+(315A+)+(316A+)+(317A+) 2)日用量 (今日表底读数-昨天表底读数)*350*60*0.001(即*21) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 3.上网电量:风电场与电网的关口表计计量的风电场向电网输送的电能。 1)表底读数 251A+ 2)日用量 (今251A+)-(昨251A+) 3)月累计今日日用量+昨天月累计 4)年累计今日日用量+昨天年累计 4.用网电量:风电场与电网的关口表计计量的电网向风电场输送————————————————————————————————————————————————————— 的电能。 1)表底读数 251A- 2)日用量 (今251A-)-(昨251A-)

3)月累计今日日用量+昨天月用量 4)年累计今日日用量+昨天年累计 5.站用电量 1)表底读数 361A+ 2)日用量 (今日表底读数-昨天表底读数)*350*20*0.001(即*7) 3)月累计今日日累计+昨天月累计 4)年累计今日日累计+昨天年累计 注意:现在算出的单位是Mwh,运行日志上的单位是万kWh,要将算出的数小数点前移一位(如:427Mwh=42.7万kWh) *厂用电率:风电场生产和生活用电占全场发电量的百分比。 厂用电率=(厂用电量日值?发电量日值)×100 =(0.161?20.02)×100 *风电场的容量系数:是指在给定时间内该风电场发电量和风电场装机总容量的比值 容量系数=发电量日值?(50×2×24) 等效利用小时数也称作等效满负荷发电小时数。 *风电机等效利用小时数(等效满负荷发电小时数):是指某台风电机发电量折算到该风电机满负荷的运行小时数。 ————————————————————————————————————————————————————— 公式为:风电机等效利用小时数,发电量,额定功率 *风电场等效利用小时数(等效满负荷发电小时数):是指某风电场发电量折算到该场满负荷的运行小时数。

中国风能资源的详查和评估

风 能是清洁的可再生能源,大力开发利用风能资源是有效应对气候变化的重要举措之 一。中国政府十分重视风能资源的有序开发和合理利用,20世纪70年代至2006年期间,先后组织开展了3次全国风能资源普查,为我国的风能资源开发提供了基础依据;为更好地满足我国风能资源持续、有序、合理地规划和开发利用需要,国家发改委、财政部及国家相关部门决定在之前全国风 中国风能资源的详查和评估 ■文—中国气象局风能太阳能资源评估中心 能资源普查结果的基础上,实施“全国风能详查和评价”项目,该项目针对中国大陆风能资源丰富、适宜建设大型风电场、具备风能资源规模化开发利用条件的地区,通过现场观测、数值模拟、综合分析等技术手段,进一步摸清我国陆上风能资源特点及其分布,为促进我国风电又好又快发展做好前期工作。该项目于2008年正式启动,由中国气象局具体牵头组织实施。 一、中国风能资源详查和评估技术发展和项目主要成果 1. 初步建立全国陆上风能资源专业观测网 依托全国风能资源详查和评价工作,中国气象局针对风能资源规划和风电场选址需要,采用规范、统一的标准,在中国大陆风能资源可利用区域设立了400座70~120米高的测风塔,初步建成了全国陆上风能资源专 图1 全国风能资源专业观测网测风塔分布示意图

业观测网(图1),该专业观测网于2009年5月正式全网观测运行,已获取的实地观测数据为全国(陆上)风能详查和评价提供了可靠的依据,同时也为规范风能资源观测的专业化运行和管理积累了丰富的实际操作经验。该专业观测网的持续运行,可为开展风能预报业务和风电场后评估提供基础支持。 2. 研发了适用于中国的风能资源评估系统 中国气象局风能太阳能资源评估中心在引进和吸收加拿大、丹麦和美国等风能数值模拟评估的成功经验基础上,根据中国地理、气候特点进行改进和优化,采用先进的地理信息系统(GIS)分析技术,开发了适于中国气候和地理特点的风能资源评估系统(W E R A S/C M A),数值模拟的水平分辨率达到1千米以下,风能参数模拟精度能够满足各级风电规划和风电场选址需要。图2展示了W E R A S/ CMA的系统工作流程图。 3. 研发了规范、适用的风能资源 计算评估系统 依据IEC61400-1、IEC61400- 12-1、GB/T 18710-2002、QX/T74- 2007等国际国内风能资源计算评估技 术规范,在气象部门原有的“风能资 源计算评估系统” V1.0版软件基础上 进行研制和完善,使之适用于风能专 业观测网一体化观测系统特有的仪器 设置和数据采集方式,实现了多种观 测仪器原始数据格式的标准转换,原 始观测数据的质量检查、缺测数据的 自动插补订正、统一的数据库管理、 Word文档图表的全自动生成等功能, 满足了本项目计算评估大量的数据处 理、规范的参数计算、标准的图表制 作和便捷的报告编制等要求。 4. 建立了风能资源数据库共享系统 以地理信息系统和网络技术为支 撑,根据风能观测数据的采集和传输 特点,通过新一代气象通信系统,建 立了具备测风塔观测数据实时采集、 传输、质量控制、统计加工、分发存 储等全功能处理流程;建成的全国 风能资源数据库包括了风能观测塔数 据、风能评估参政气象站历史数据、 数值模拟计算结果和风能资源综合评 价的各类参数,通过分级管理形成了 全国风能资源数据共享系统,可为全 社会各个层面提供风能基础数据、评 估参数和图表成果等的公共服务。 5. 编制完善了一系列风能资源详 查和评价的规范性技术文件 针对项目执行中的各个技术环 节,参考国际、国内相关规范,考虑 我国气候特点、地理条件等因素,并 结合本项目工作大纲要求,研究编制 了《风能资源详查和评价工作测风塔 选址技术指南》、《测风塔塔体及其 防雷技术要求》、《测风塔风能观测 系统技术要求》和《风能资源综合评 价技术规定》、《风能资源短期数值 模拟技术规定》等规范性技术文件, 在规范和指导项目执行的同时,及时 进行总结、补充和修正,使各规范性 技术文件更加完善、合理,并具有普 适性和可操作性。 图2 WERAS/CMA的系统工作流程图

国电潮格风电场#1风机倒塔模拟演练评估设计

****风电场#1风机倒塔模拟演练评估 方案 一、演练信息 1、演练的目的 为认真贯彻落实“安全第一,预防为主”的方针要求,强化干部职工安全意识,检验应急预案和流程,落实保障措施和制度,完善应急责任体系,提高危机管理能力,训练提高风场应急处置能力,提高每位员工对事故预防能力。 2、演练目标 检验应急救援领导机构的应急应变能力、部应急救援队伍的反应能力、应急资源储备情况,通过演练达到统一领导,统一组织,应变迅速的目的。分析在应急制度、体系和保障措施等方面存在的问题,使其更加完善。 通过这次演练,进一步提高风电场各岗位职工应对突发风机倒塔事故的应急反应能力,提高风电场各岗位职工的防灾避灾意识,一旦发生事故能迅速有序组织处置,最大限度地减轻事故造成的损失。 3、情景描述 #1风机与主控失去通讯,值班员用望远镜在主控查看风机,发现#1风机发生倒塔事故。 值班员汇报场长,“场长,#1风机发生倒塔事故,情况紧急,请立即到主控室指挥处置。” 4、现场应急处置程序 事故发生后,风电场场长助理应立即向应急救援指挥部汇报。 该方案由风电场场长宣布启动。 应急处置成员接到通知后在场长助理的统一指挥下,立即赶赴现场进行应急处理。 有人员伤亡时启动《国电华北新能源人身伤亡事件处置应急预案》。

5、演练脚本 #1风机倒塔应急处置措施 (1)#1风机倒塔事故发生后,立即断开事故风机所在的 35kV#4风电线352开关。 (2)在事故风机周围安全区域设置警戒线,并设置监护人员防止周边地区居民和其他人员误入。 (3)切除事故风机和损坏的电气设备,并设置监护人员防止周边地区居民和其他人员误入,保护好事故现场。在事故调查组进入现场前,任何人不得进入以上围做任何工作。 (4)#1风机倒塔事故段线路在切除电源并清理障碍后,可将#4风电线其他部分恢复送电。 二、评估容 评估容主要包括以下几个方面:应急演练目标的制定及实现情况、应急演练准备情况、应急演练组织与实施情况、应急演练保障情况、应急演练过程控制、应急演练效果等,具体评估容和要求见附表1和附表2。 三、评估标准 (1)现场报警:①报警及时。发生事故后1分钟向值长汇报。 ②报警容详细准确,包括时间、地点、事故性质、影响围。 (2)接警、处警:①值长接到报警后,详细询问报警容,认真聆听。②详细准确记录报警容,并进行复述核实。③值长接警后,按《国电潮格风电场#1风机倒塔模拟演练方案》程序,通知指挥长、成员和各专业组到指挥部(主控室)集结。④传达指挥部指令和接听现场汇报及时,并做出详细记录。 (3)集结:应急处置指挥部所有成员和各专业组接到后,5分钟赶到救援指挥部集结。 (4)指挥:①核实事故情况,分析灾情。②启动预案。③开展应急处置,及时决策、发布指令正确。

深圳市太阳能、风能资源评估报告

深圳市太阳能、风能资源评估报告  (简本)  深圳市国家气候观象台(市气候中心) 一、 编写背景 在全球气候变暖的背景下,各国政府都对节能减排工作高度重视。在今天,节能减排已不仅是一个科学技术问题,更成为国际政治博弈的核心问题,与节能减排有关的政策甚至能影响到数十亿人的命运,其重要性不言而喻。我国于2007年发布了《中国应对气候变化国家方案》,随后国内各 省在发改委的牵头下,制定本省的应对气候变化方案。而作为应对气候变化的核心工作,节能减排在国家层面和省级层面都被明确为“减缓”气候变化的最重要的举措。节能减排 工作可以分为两个方面:一方面是“节流”,在技术上通过提高能源使用效率降低能耗,在政策上引导产业向低能耗发展,从而减少单位GDP 的能耗和排放;一方面是“开源”,通过开发和使用清洁能源,达到消费能源却不增加排放的目的。 2010年12月,深圳市“应对气候变化及节能减排工作领导小组”正式成立,明确由市气象局负责组织气候变化的相关科学研究工作。这其中,关于深圳的太阳能、风能资源深圳市气候中心 深圳市气候中心

评估成为一项重要任务,在前期所开展的科学研究基础上,提供深圳市太阳能、风能的评估报告,将为深圳市政府、企 业科学合理地开发使用清洁能源提供科技支撑,从而有效地 推动深圳节能减排工作的整体进展。 二、深圳市太阳能资源评估 (一)评估方法 深圳太阳能资源评估采用了基于起伏地形下的天文辐射分布式模型的计算方法,综合使用深圳的数字高程模型(DEM)数据与深圳及周边4个城市的30年太阳辐射观测数据,完成了深圳市太阳能时空分布的计算。在计算中充分考 虑了地形坡度、开阔度和不同用地类型反射率等因素的影 响。 (二)评估结论 深圳市大部分地区属于太阳能资源丰富~很丰富地区。平原地区太阳辐射年总量在4759-5116 MJ/m2之间;山地南坡南坡太阳辐射年总量在4027-4759 MJ/ m2之间;山地北坡太阳辐射年总量在3135-4223 MJ/m2之间,具体分布见图1。 深圳市气候中心 深圳市气候中心

风电场发电量后评估的指标评估方法 孙宝君

风电场发电量后评估的指标评估方法孙宝君 发表时间:2020-03-17T10:43:28.053Z 来源:《电力设备》2019年第20期作者:孙宝君 [导读] 摘要:经过这几年风能的开发与发展,我国风电场的总装机规模在2010 年已达到全世界第一,但风电的迅猛发展无疑带来了巨大的机遇,但同时也带来了巨大的挑战,已建风电场实际运行效益与设计效益存在较大的差异,如何减少差异成为影响风电场效益的重要因素,因此迫切要求对已建风电场进行后评估,开展基于风能资源的风电场后评估能从多种可见因素中寻找差异的因素,减少风电场设计阶段可能出现的可避免因素,缩短设计效益与运行 (黑龙江省华富电力投资有限公司哈尔滨分公司黑龙江省哈尔滨市 150000) 摘要:经过这几年风能的开发与发展,我国风电场的总装机规模在2010 年已达到全世界第一,但风电的迅猛发展无疑带来了巨大的机遇,但同时也带来了巨大的挑战,已建风电场实际运行效益与设计效益存在较大的差异,如何减少差异成为影响风电场效益的重要因素,因此迫切要求对已建风电场进行后评估,开展基于风能资源的风电场后评估能从多种可见因素中寻找差异的因素,减少风电场设计阶段可能出现的可避免因素,缩短设计效益与运行效益之间的差异,尽量提高风电场的效益。 关键词:风电场发电量后评估;指标评估方法; 风力发电机组的发电量指标是体现风电场运营的重要指标之一。对风电场项目后评价应集中于发电指标评价,由于发电量与风能资源联系紧密,而风能是随机变化、无法预估的,对发电量指标的评估有一定难度。 一、研究现状 国内将风电场风能资源评估和规划、可行性研究等前期工作逐步规范,并根据一系列前期技术规定,规范了风电开发的前期管理。但整个中国风电产业仍面临缺乏有效的机组检测认证、运行评估、安全鉴定与后评估等一系列问题,并在一定程度上构成了风电发展的瓶颈。近年来,我国加大了对风力发电的投资力度,而风能资源评价和发电量的估算作为风电项目可行性研究阶段的重要工作,直接关系到风电场建成后的实际发电量和经济效益,因此引起了更多研究学者的关注。目前我国风力发电场对风资源评估和发电量估算的研究遵循等有关的规范制定可行性报告。设计发电量的获取则采用当地风速频率曲线和机组的功率曲线获得,通过这种方法计算求得的只是理论计算值,还应根据实际情况对其做出相应的折减。这样对风况的描述与实际风资源的符合程度越高,折减指标给定得越准确,得到的值才能越接近实际发电量。因此只有尽可能详细的了解和分析风况和工况,才能使风资源和风力发电机的配合达到最佳状态,使发电量得到提高。对于建设项目的后评估工作,一般都是针对项目的整体经济性的后评估,而单纯针对某些技术指标的后评估则很少进行。对风电场风能资源与发电量设计后评估研究,国家没有制定专门的后评估规范,国内对风资源后评估的研究很少,一些研究过程与结果由于数据保密原因而未公布,因此供大家探讨和分析的方法就比较少。但是后评估作为对前评估的评估,为风电场扩容或建立新的风电场提供较为准确的设计依据,其重要性是不容忽视的,国家发展改革委员会已表示要加大力度对风电场进行后评估研究,我国关于风电场风能资源与发电量设计后评估研究将日趋完善。后评估位于项目周期的末端,它又可视为另一个新项目周期的开端。后评估的作用主要表现在其反馈功能上,它一方面总结了项目全过程中的经验教训,而对于在建和新建项目又起着指导作用。项目后评估工作不仅对于指导新项目立项、调整在建项目计划、完善己建项目等方面可以起到重要的作用,而且对项目决策、政策制定、机构改革等高层次管理的改进和提高都将产生重大的影响。 二、风电场发电量后评估的指标评估方法 1.评估研究。后评估工作主要是依托于“风电场风能资源与发电量设计后评 估研究”项目。项目中主要的评估对象为风电场的风能资源以及风电场的发电量。对风电场风能资源和发电量进行评估,风电场风能资源的好坏最终影响的是风电场的发电量,所以对风电场风能资源的后评估也可以看做是对风电场发电量的后评估的一个组成部分。在风电场从设计到实际运行的整个过程中,可能导致风电场最终的发电量与设计阶段偏差的地方主要有(1)风电场设计阶段所用的代表年风况与实际运行期间的实测风况之间的差别;(2)使用不同原理的风电场设计软件造成的设计发电量最终结果的不同;(3)风电场的实际运行状况对风电场发电量造成的影响。由于条件的限制,无法使用多种风电场设计软件,对本论文中所涉及的风电场,由于地形起伏较小,但没有条件使用多种软件同时进行计算,对多种软件的计算结果进行对比,因此在本文中主要的后评估重点放在风况与最终发电量上。主要进行两方面的工作:(1)针对此风电场在建立前后风能资源情况,对风电场的风能资源进行后评估:(2)针对风电场设计时估算的发电量以及风电场运行期间的发电量,对风电场的发电量作出后评估。最后综合两种因素对风电场给出后评估结论。 2.数据处理。所用到的风电场的相关资料主要包含两个方面:风资源数据和风电场运行阶段数据,风资源数据由测风仪器长期自动测量而得,但由于机械故障或其他原因,往往可能出现数据缺损或者数据不合理的情况;风电场运行阶段数据主要包含风电场各台风力发电机组故障的发生时间、故障持续时间、故障原因、风电场发电量、风电场上网电量等信息,由人工记录得来,可能由于人为的原因导致数据的杂乱以及错误。对风电场的后评估工作是建立在数据的基础之上,如果数据中存在着大量的错误,将会直接影响到后评估的准确性,从而使得后评估失去了意义。数据前期处理的意义就在于将原始数据中不合理的数据去掉,把杂乱的信息整理,把缺损的数据补全,使得最后得到的数据尽可能的反映真实的情况,让后评估能够最大程度上的反应风电场的真实情况,这样能够查漏补缺,发挥后评估作用。对风资源数据的前期处理主要包括对数据的验证、并计算评估风能资源所需要的参数,数据验证是检查风场测风获得的原始数据,对其完整性和合理性进行判断,检验出不合理的数据和缺测的数据,经过相关方法的处理,整理出至少连续一年完整的风场逐小时测风数据。对测风数据的检验一般分为以下几个方面:(1)数据检验。数据检验包含完整性检验和合理性检验,其中完整性检验主要检验的是数据数量应等于预期记录的数据数量以及数据的时间顺序应符合预期的开始、中间应连续:(2)合理性检验主要检验数据的范围以及相关性,主要工作是检验后列出所有不合理的数据和缺测的数据及其发生的时间;(3)对不合理数据再次进行判别,挑选出符合实际情况的有效数据,回归原始数据组,最后将备用的或可供参考的传感器同期记录数据,经过分析处理,替换已确认为无效的数据或填补缺测的数据。 3.后评估结构。要进行后评估工作,首先要确定后评估的结构,在此基础上才能明确在后评估中所需要评估的具体项目。根据风电场的实际情况,并结合项目要求,将运行评估再细分到各个运行指标。统计每个月中每天同时间点的风速及风功率密度,对风力发电机组运行状况进行评估,可以了解风力发电机组的实际运行水平,例如机组的可用率、实际发电量等,以期对可研阶段的发电量估算提供较为真实可靠的依据。要计算各台机组的等效满发小时数需要知道每台风力发电机组的年发电量,并且最好能有与风况数据同期的发电量数据,该风电场生产技术部电量统计表与风况数据同期,但其中仅有对整个风电场一期发电量的统计,而没有对各台机组的统计,无法计算每台机

内蒙乌拉特后旗XXX风电场风能资源评估报告

内蒙乌拉特后旗XX风电场 风能资源评估报告 2019年2月

1.1设计依据 1)地图:DEM30米网格精度的矢量地形图; 2)业主提供的6812#、6498#测风塔测风数据; 3)业主提供的一期相关资料; 3)海力素气象站的气象数据; 4)风力发电场设计相关规程。 1.2区域风能资源概述 乌拉特后旗地处中温带,属高原大陆性干旱气候区,深居大陆内部,具有高原寒暑剧变特点,四季分明,春干燥多风,夏短促干热,秋温和凉爽,冬漫长寒冷。全年干旱少雨,风沙大,无霜期短。春季3~5月,是大风季节,年平均风速5.5m/s。受强大的蒙古冷高压长时间控制,风电场所在区域已成为冷空气南下的主要通道。南下气流通过时具有增速效应;加之其地域开阔平坦、植被稀疏,建筑物及树木稀少,气流的摩擦阻力小等原因,使得该地区常年有风,冬春最盛,风能资源丰富。 1.3风电场所在地区气象站资料分析 1.3.1.参证气象站站概况 本工程收集了海力素气象站资料做为工程气象资料进行分析,海力素气象站设立于1958年,原址位于巴彦淖尔盟杭锦后旗巴音温都尔公社虎勒盖尔“戈壁”,1964年改名为乌拉特中后联合旗虎勒盖尔气象服务站,地理坐标为东经106°10′,北纬42°12′,观测海拔高度1185.8m;1970年10月1日迁往海力素地区,地址为巴彦淖尔盟潮格旗那仁宝力公社海力素“戈壁”,东经106°24′,北纬41°24′,观测场海拔高度1509.6m。

表1.1 海力素气象站基本气象要素 项目数值项目数值全年平均气温 5.5℃多年平均相对湿度41% 全年平均气压848.7hpa 冻土期10月上旬~4月 中旬 全年平均水气压 4.3hpa 累年最大冻土深度>200cm 累年极端最高气温38.1℃累年最大积雪深度12 cm 累年极端最低气温-32.6℃年均沙尘暴日数16.8(天) 全年平均降水量128.8mm 年均雷暴日数16.2(天) 多年平均蒸发量3314.4mm 年均冰雹日数0.8(天) 1.3. 2. 气象站平均风速 图1.2 海力素气象站历年风速年际变化直方图 海力素气象站多年逐月平均风速统计成果见下表,多年平均风速年变化直方图见下图。

风电场工程监理质量评估报告

XX牧场风电场工程 工程监理质量评估报告 二〇一五年十二月 工程监理质量评估报告 一、工程概况: 1、工程项目概况及参建单位: 1.1 工程项目名称:特变电工十三师红星一牧场一、二期风电场99MW工程。 1.2 工程参建单位: 建设单位:哈密新特能源有限责任公司 监理单位:四川能达水利水电咨询有限公司 设计单位:中国能源建设集团新疆电力设计院有限公司 总承包单位:特变电工新能源责任有限公司 1.3工程地点及现场条件: 特变电工农十三师红星一牧场风电场工程位于新疆生产建设兵团十三师。距离哈密地区巴里坤县城70km,风电场距三塘湖乡直线距离约27km;与哈密市直线距离约152km,风电场区域海拔高度约在1390—1450m,场地开阔,地形较平坦,地势南部高,北部低。 1.4工程建设规模: 本项目设计一、二期2×49.5MWp风力发电机组。一期安装

33台单机容量为 1.5MWp的风力发电机组,总装机容量为49.5MWp,预计平均年上网电量为10048 .5 万kW?h,年等效满负荷小时数为2030h,容量系数为0.2317;二期安装33台单机容量为1.5MW的风力发电机组,总装机容量为49.5MW,预计平均年上网电量为10444 .5 万kW?h,年等效满负荷小时数为2110h,容量系数为0.2409。风电场新建一座110kV升压变电站,一回110kV出线接入红星220KV风电汇集站。 1.5建设投资:一期工程静态投资43394.47万元动态投资44649.44万,二期工程静态投资42128.55万元动态投资43346.91万。 2、工程施工概况: 2.1风机基础:按照设计要求,用GPS测放出风机基础中心点,采用挖掘机基础开挖等工作,经监理工程师验收合格后进行预埋件安装及垫层浇筑工作。基础环吊装后进行水平度测量,在基础环法兰外侧均匀分布6个标准点,用水平仪进行观测,各观测点偏差值应满足厂家要求≤3mm,在钢筋安装过程中避免影响到基础环,钢筋安装完成后由监理验收合格后进行基础混凝土浇筑,浇筑拆模后进行沥青漆防腐,待混凝土达到设计及规范要求的抗压强度后进行土石方回填工作。 2.2箱变基础:按照设计要求,进行土石方开挖、钢筋制作、预埋件埋设、箱变接地。 2.3风机吊装:风力发电机组的主辅设备、材料及吊装工具到场

风电理论发电功率及受阻电量计算方法

风电理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下风电理论发电功率及受阻电量等指标的统计分析,依据《风电场理论可发电量与弃风电量评估导则》(NB/T 31055-2014)、《风电场弃风电量计算办法(试行)》(办输电〔2012〕154号)、《风电受阻电量计算办法》(调水〔2012〕297号)的有关要求,制定本方法。 第二条本方法适用于国家电网公司各级电力调度机构和调管范围内并网风电场开展理论发电功率及受阻电量统计计算工作。 第二章术语与定义 第三条风电场发电功率指标包括理论发电功率和可用发电功率。风电场理论发电功率指在当前风况下场内所有风机均可正常运行时能够发出的功率,其积分电量为理论发电量;风电场可用发电功率指考虑场内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为可用发电量。 第四条风电场受阻电力分为场内受阻电力和场外受阻电力两部分:场内受阻电力指风电场理论发电功率与可用发电功率之差,其积分电量为场内受阻电量;场外受阻电力指

风电场可用发电功率与实发功率之差,其积分电量为场外受阻电量。 第五条全网理论发电功率指所有风电场理论发电功率之和;全网可用发电功率指风电场总可用发电功率与考虑断面约束的风电总受阻电力之差;可参与市场交易的风电富余电力指全网可用发电功率与实发功率之差。 第六条全网场内受阻电力指所有风电场场内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的风电受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第七条计算风电场理论发电功率和受阻电力需准备的数据有:样板机型号及其数量、全场风机型号及其数量、样板机实时出力、全场风机状态信息、风机轮毂高度、风轮直径、风机经纬度坐标、风机风速-功率曲线、风电场区域地形地貌数据、测风塔经纬度坐标及其层高、实时测量风速和风向、机舱风速等。 第四章风电场理论功率计算方法 第八条风电场理论功率及受阻电量计算主要有三种方法:样板机法、测风塔外推法和机舱风速法。风电场可根据具体情况,采用一种或多种计算方法。

风电场前期风资源评估

风电场前期风能资源评估 风电场前期风能资源评估(SPWRA-3000)是整个风电场建设、运行的重要环节,是风电项目的根本,对风能资源的正确评估是风电场建设取得良好经济效益的关键,有的风电场建设因风能资源评价失误,建成的风电场达不到预期的发电量,造成很大的经济损失。据调查,目前许多风电场建成投产后的年平均发电量要比预测值低20%~30%。 同时由于风电场在建设初期需对区域风资源进行评估,业主不得不在该区域建立大量的测风塔进行考查以寻找合适的风场建设点。据分析,拟建风场场址需提供1到3年当地连续有效风资源气象信息方可确立。为此业主需投入大量的人力、财力、时间和空间成本。 为解决风电场选址带来诸多限制条件,国能日新通过多年的气象经济分析及电力工程实践经验,可准确分析当地区域的风能资源图谱,大量的降低业主的各项投资成本,为风电场的前期选址规划提供可靠依据。 一、功能概述 1、风能地图简介 国能日新长期以来经营着国内300多家风电场的风资源预报业务和风电并网服务,因此存储了中国境内每一个经纬度坐标的风资源时间序列。基于这一大规模数据库,我们可以根据用户需要,定制局部地区的风资源分布地图——风能地图。 下图是中国区域的风能分布示意图。颜色越红,代表年均风速越大。 2、风能地图原理 在风能地图上我们可以直观看到不同地域的风能大小。如果说风能投资最终取决于天时(风资源)、地利(接入条件)、人和(当地公共关系)的话,那么风能地图为风电场宏观选址提

供了必不可少的天时(风资源条件)的遴选前提。 然而风能地图的生成却是非常复杂的过程。为了对我们的技术进行验证,中国水电集团公司新能源分公司向我公司提供了吉林和山西4个自有测风塔的经纬度,国能日新从我们的气象系统中计算得到上述4个地理坐标处的风资源时间序列,提交贵公司进行验证。最终验证的结果十分令人满意,序列的相关度相当之高(超过60%)。 上述实验显示国能日新公司有能力计算中国境内每一个地理坐标点的长达一年以上的风资源时间序列。 以百色地域为例,风能地图的整体生成步骤有三: 按照需要的空间精度对百色地区进行网格划分,得到所有网格节点的经纬度坐标; 计算每一个坐标的年风资源时间序列,并计算平均风速; 根据风速大小对所有坐标点进行染色处理;既可得到整个地区的风能地图。 可见,风能地图的制作需要大规模、长时间的风资源计算过程;国能日新基于多年开发的风电气象资源和大规模云计算平台,可以为用户提供上述的所有计算过程。有了风能地图,我们就可以按图索骥,寻找还没有开发的风资源富集地区进行下一步的考察和前期工作了。 二、风能详查 风能详查是通过计算模拟给出某个测点的按时间序列的风速风向数据。首先用户选定大的位置之后,在小范围空间中进行细分式筛选时,有针对性地选择若干空间坐标进行风资源详细分析。此时,根据用户提供的经纬度坐标,给出详细的风资源时间序列,用于风资源评估和缩短项目建设周期。 这一步骤有三方面优势: 缩短前期考察时间周期,节约时间成本; 补齐实际工作中的缺测数据,减少前期工作周期; 为测风塔选址、风电场最终选址提供科学依据。 有了时间序列,我们就可以计算风资源的威布尔分布、风向玫瑰图等,进行相关前期的分析工作了,这为定量对比不同地理坐标点的风资源提供了确切的量化指标(如下图所示)。

相关文档
最新文档