薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展
薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展

摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

热不均而产生的残余应力。为保证制品的尺寸稳定性,把收缩和翘曲控制在可以接受的范围内,就必须加强模具的冷却,确保冷却均衡。较好的冷却措施有在型芯及模腔模块内采用不闭合冷却线,加大冷却长度,均可增强冷却效果,必要的地方加入高传导率金属镶块,以加快热传导。(4)排气系统:薄壁注塑成型模具一般需要有良好的排气性,最好可以进行抽真空操作。由于填充时间短,注射速度高,模具的充分排气尤其是流动前沿聚集区的充分排气非常重要,以防困气引燃。气体通常通过型芯、顶杆、加强筋、螺柱及分型面等处排出。流道的末端也要充分排气。日本Sumitomo公司用多孔工具钢做小嵌件来解决小件制品的排气问题。(5)脱模系统:因为薄壁制品的壁和筋都很薄,非常容易损坏,而且沿厚度方向收缩很小,使得加强筋和其他小结构很容易粘合,同时高保压压力使收缩更小。为避免顶穿和粘模,薄壁注塑成型应使用比常规注塑成型数量更多、尺寸更大的顶出销。常规的注塑机很难在薄壁塑件注塑成型中有用武之地。比如薄壁注塑成型的填充时间很短,很多填充时间不足0.5s,在这样短的时间不可能遵循速度曲线或截断压力,因此必须使用高解析度的微处理器来控制注塑机;在薄壁制品的整个注塑成型过程中,应同时各自独立地控制压力和速度,常规注塑机的充填阶段用速度控制,保压阶段再转为压力控制的方法已不适用。所以机械设备制造商与研究机构共同合作努力,研制出了专用的注射设备。如台湾台中精机公司的VS-100薄壁注塑机、德国Dr.Boy公司开发的Boy型系列注塑机以及Battenfeld、Arburg和JSW等著名注塑机生产厂商开发的专用注塑机。薄壁注塑成型材料流动性要好,必须拥有大的流动长度。还有具有高的冲击强度,高热变形温度,良好的尺寸稳定性。另外,还要考察材料的耐热性、阻燃性、机械装配性及外观质量等等。目前,薄壁注塑成型广为应用的材料有聚碳酸酯(PC)、丙烯腈—丁二烯—苯乙烯(ABS)及PC/ABS共混物等。薄壁注塑成型数值模拟技术在注塑成型中,对填充过程进行数值模拟可以预测实际注射过程中可能出现的缺陷、优化模具结构设计、调整工艺参数和有针对性地制订解决方案,从而达到减少材料浪费,降低生产成本,提高产品质量和市场竞争力的目的。目前,对于常规模具的数值模拟已经成为模具设计中不可缺少的一环;在薄壁注塑成型技术越来越引起关注的今天,出于同样的目的,人们希望对薄壁注塑模具的充填情况事先进行数值模拟。20世纪70年代在世界范围内开始了注塑成型数值模拟技术的研究。到目前为止,成熟的商业注塑成型数值模拟软件较多,澳大利亚MOLDFLOW公司的Moldflow软件和美国AC-Tech公司(2000年2月,被MOLDFLOW公司合并)的C-Mold软件是其中的优秀代表。但针对薄壁注塑成型条件下的数值模拟还没有专用的软件,所以人们都还是使用现有的商业注塑成型数值模拟软件。不过从下文所介绍的研究表明,现有的商业化注塑成型数值模拟软件可以用来分析薄壁塑件的填充行为,以及薄壁塑件注塑中工艺参数的选择,但不能充分描述在薄壁注塑成型中所有的影响因素,实验结果与模拟结果之间几乎都存在差异。对于薄壁注塑成型,起初人们普遍认为需要高注射压力、高注射速度和高熔体温度等工艺条件,但是随着研究的进行,研究者发现并不完全像先前所认为的那样。每个研究者的结论也不尽相同,至今还没有比较系统、权威的结论。奥克兰大学机械工程系的姚东刚等对不同厚度的矩形薄壁塑件成型行为进行了研究。使用C-mold软件来模拟其填充行为,所用材料为聚碳酸脂(PC),模具温度一种是室温,另一种是265℃(即聚合物熔体的温度),塑件壁厚分别为:0.25、0.5、1和2mm,注射速度为100和1000sec-1。在室温下的模拟研究表明:当壁厚减小时,要填充相同的L/T值注射压力急剧上升;在低注射速度下要填充相同的L/T值,所需的注射压力也要比高注射速度下高很多。在265℃下的模拟研究表明:要填充相同的L/T值所需的注射压力比在室温下时要低很多;在高速注射时,当壁厚减小时,注射压力升高并不明显;当低速注射时,注射压力几乎没有变化,同时所需压力还比在高速注射时要低。模拟结果表明模具温度在薄壁注塑成型中起重要作用;在低速、高模具温度下注塑时,L/T值可以很大,且注射压力也不是很高,这和当前认为在成型薄壁塑件时要采用高速、高压的工艺参数相反。

实验使用快速热响应(Rapid Thermal Response, RTR)模具来进行验证,但在注射压力方面与数值模拟出现了较大的差异,分析可能是模具的浇口和流道没有加热的原因。Losch通过实验发现厚度愈薄的制品需要更高的注射压力与注射速度才能将塑件完全充填。Maloney 以一个1mm厚,半径15.4mm的1/4圆盘状塑件以PC和ABS两种材料用MoldFlow软件来做模拟,结论表明高的注射速度可以提高剪应变率并且提高剪切热以增加材料的流长比。高速注射成型方法的熔体填充速度较传统的快10 ~100倍,使熔体在模腔内产生高剪切的流动,粘度下降,充模速度快,塑料表面硬化减慢,因而可提高薄壁制品的成型厚度极限,抑制过度的成型压力,同时由于模内低压流动,制品的内应力降低。Tanktakom以厚度1mm、面积为50cm的塑件用ABS和PC材料来做实验模拟,研究表明成型材料主要受模具温度与熔体温度影响,而提高熔体温度到接近临界温度可以增加熔体流动的长度,提高模具温度也可以改善熔体流动的长度与成品的延伸强度。Mahishi[8]使用C-mold软件模拟了薄壁圆盘件的填充情况,研究表明在整个注塑过程中需要高注射速度和高注射压。台湾龙华大学机械工程系的沈永康等使用在注塑数值模拟中公认的Hele-Shaw流动模型来描述非牛顿流体,使用的是Moldflow软件,塑件是一笔记本电脑外壳,其厚度分别为0.9和1.0mm,材料是加入不同比例玻璃纤维的聚丙烯(PP)。模拟中采用正交实验表来安排填充时间、注射压力、熔体温度和模具温度等工艺参数。模拟结果表明在薄壁注塑中模具温度是最重要的工艺参数,如果模具温度过低就会发生欠注射;薄壁注塑中的注射压力、模具温度和熔体温度均高于常规注塑中的取值。台湾的Ming-Chih Huang等对1mm厚塑件的翘曲进行了数值模拟。模拟时采用正交实验方法来分析填充时间、模具温度、浇口尺寸、熔体温度、保压时间和保压压力等参数对其翘曲的影响。研究表明模具温度和熔体温度的交互作用影响最大,保压压力、模具温度、熔体温度和保压时间的影响依次递减,而浇口尺寸和填充时间的影响很小。宋满仓等通过实验和Moldflow软件对一圆形塑件和一个矩形塑件(壁厚为0.1和0.2mm)进行了研究,研究表明:注射量及注射速度对薄壁塑件注塑成型的填充过程起主导作用,适当用量范围的注射量及高的注射速度能大幅度地提高填充率;熔体温度和注射压力相对于注射量和注射速度只起次要作用;由于实验条件所限没有研究模具温度的影响。美国LANL 的国家实验室在研究中发现,在诸多影响模拟精度的因素中,粘度的压力依赖性排在前列,如不考虑压力对粘度的影响,随着压力的增加,模拟误差将增大。同时还发现,熔体的密度变化、由压缩功转化的粘性热甚至熔体的粘弹性本身都可能会影响薄壁注塑成型的模拟精度。Ainoya和Amono[1]发现PVT数据会影响填充时间和型腔压力,他们还发现传热系数对压力的预测有很大的影响。Sridhar和Narh[1]发现比热和热传导对型腔压力几乎没有影响,但会影响冷却时间和塑件的收缩和翘曲。综上所述,从研究的手段来看,由于在模拟和实验中要考虑的参数比较多(注射速度、注射压力、注射量、模具温度、熔体温度和冷却时间等),且每个参数又有很多不同水平,还要考虑交互影响,所以多倾向于使用正交实验方法安排模拟条件和实验条件,这样不但可以减少实验次数,节省时间和费用,而且又能得到好的效果。薄壁注塑成型模拟技术的关键问题及发展方向常规注塑的填充过程和冷却过程是交织在一起的,当聚合物熔体流动时,熔体前沿遇到相对温度较低的型芯表面或型腔壁,就会在其表面形成一层冷凝层,熔体在冷凝层内继续向前流动,冷凝层厚度对聚合物的流动有着显著地影响。因为常规注塑成型时塑件的厚度较厚,所以此时冷凝层对注塑的影响还不是很大。但在薄壁注塑成型中,由于冷凝层的厚度与塑件厚度之比随着塑件厚度的变薄逐渐增加,所以此时这个影响就很大,特别是二者的尺寸可以相互比较时。研究表明当塑件的厚度减小时,冷凝层对流动的影响将会以指数形式增加,这也更说明了冷凝层在薄壁注塑成型中的影响之大,所以需要对薄壁注塑成型中的冷凝层的性质进行更深入、更全面的研究。因此有关薄壁注塑成型的数值模拟还需在以下几方面做很多工作。(1)深入全面研究薄壁注塑成型理论,尤其是冷凝层的性质,以便提出更加合理的假设条件和边界条

件。由上述分析可知,在薄壁注塑成型过程中,其很多条件和常规注塑成型有很大不同。模拟时,熔体流动数学模型的许多假设和边界条件在薄壁注塑成型中需要进行适当的调整。(2)确定在薄壁注塑成型中增加的因素,并正确地考虑这些因素。一些在常规注塑中可以忽略的因素,往往会对薄壁成型熔体流动产生较大的影响。比如,在薄壁注塑中粘度对压力有明显的依赖性,而在常规注塑成型中却没有;熔接线强度对塑件性能影响很大,尤其是薄壁塑件,熔接线强度与温度和压力有关,但常规数值模拟时没有考虑压力的影响;材料的比热、传热系数和压力损失等。现有的商品化数值模拟软件由于忽略了这些影响因素,因而在预测薄壁注塑成型填充时会出现不一致的现象。(3)应用真正的三维数值模拟。现有商品化的数值模拟软件都是使用二维、二维半要素代表三维几何图形的简化模型,没有考虑物理量在厚度方向上的变化。三维流动区域即拐角处流动、厚度变化区域、熔体前端喷泉效应在现有的数值模拟软件中还不能表示,而它们在薄壁注塑成型中起重要作用。(4)注塑成型全过程模拟。目前的模拟软件主要包括填充、流动、保压、冷却、和翘曲分析等模块,各模块的开发是基于各自独立的数学模型,忽略了相互之间的影响。但是,从注塑成型工艺过程来看,塑料熔体的充模流动、保压和冷却等是交织在一起并相互影响的,这在薄壁注塑成型中尤为明显。因此,充模流动、保压与冷却分析和翘曲模块必须有机地结合起来,进行耦合分析,才能综合反映实际的注塑成型。

结束语

随着3C产品应用的越来越广泛,它们向短、小、轻、薄方向的发展必将会更深入,薄壁注塑成型技术将会成为一种不可缺少的注塑成型技术。薄壁注塑成型技术的新颖性和复杂性决定了其数值模拟技术是其应用的重要环节,也是该技术研究的热点,是确保该技术顺利应用的关键。

注塑成型工艺流程及工艺参数

注塑成型工艺 塑件的注塑成型工艺过程主要包括合模-——填充——保压——冷却——脱模等5个阶段。 工艺流程 这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。[1] 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。 低速填充。热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度; 反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。

薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展 摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

注塑成型新工艺

注塑转移成型 一种被称作注塑转移成型(ITM)的新工艺不仅可以使多腔成型的热塑性塑料小零件获得很好的一致性,还可以得到更好的成型质量。这种借鉴了热固性塑料转移成型工艺的新工艺是将“使用热流道注塑”和“压力成型”进行组合的工艺。 据塑料加工研究院的注塑成型和模具技术部门介绍,在传统的热流道注塑成型中,熔体进入多个腔室的温度和压力是不一样的,这意味着每个腔室具有不同的粘度、不同的填充量和不同的冷却状况,最终将导致零件的尺寸和性能也不相同。此外,传统注塑模具的另一个局限性是,通常对热流道的设计都是针对具体的模具或物料,对于完全不同的模具或物料而言,这个热流道就不一定适用了。 为此,塑料加工研究院研制了一种模具。在模具的固定侧采用了特殊的电加热,在热半模里有一个熔体转移室,用来储存来自螺杆的熔体,并借助于一个活塞/气缸系统把熔体转移到模腔里去;冷半模在移动压板一侧。利用固定在半模里的隔热板来减少冷、热半模之间的热传导。当模具的开模线合拢时,活塞/气缸系统对熔体转移室施压,通过短门,将物料直接推入模腔。在这个系统里,注塑和保压是由静止不动的模具而不是通过螺杆来实现的。在保压阶段之后,转移室开始充填下一个周期的物料。在这个过程中,主开模线(它的开与合都与转移室的动作互不相干)一直保持合拢,直到加工件充分冷却为止。 据说,这种工艺具有许多好处。模具的熔体转移部分与该部分的几何形状无关,因此无需为不同的模具而做相应的改变;由于注塑体积是由腔室的运动距离来决定的,所以可以降低多腔模具的造价,同时不需要再使用昂贵的热流道温度控制器;因为熔体的通道很短,而且熔体是直接从蓄集室的门进入模腔,所以所需要的压力比传统热流道可提供的压力更低,熔体完全能够均匀地充满所有模腔;作用在熔体上的剪切力和应力更小了,有利于长玻纤增强料或者瓷粉掺混料的成型,并使得加工件的收缩率和翘曲变形更小。 目前,塑料加工研究院已经使用了多达12个模腔的模具对长玻纤增强聚丙烯材料进行注塑成型试验,并取得了成功。据说,他们很快就会用超过100个模腔的模具来进一步测试这种工艺。

南昌大学科技成果——薄壁注塑制品成型过程CAD、CAE技术集成

南昌大学科技成果——薄壁注塑制品成型过程 CAD/CAE技术集成 项目研究内容 该项目通过对注塑成型CAD/CAE技术的研究,建立了进行“薄壁注塑制品成型过程CAD/CAE技术集成”研究的数学模型,提出了多型腔复杂注塑制品成型CAD/CAE集成的模具工程设计与分析的关键技术和实现方法,研究开发了从CAD/CAE集成设计与分析到物理试验一整套系统方法,取得了与实际产品成型过程一致的技术研究成果,所研究开发的基于特征参数化的CAD建模方法和有限元建模CAE 分析的集成技术在工程产品制造中得到成功实现和应用。具体包括:(1)多型腔、并具有复杂曲面特征的注塑模具CAD参数化特征设计技术研究; (2)面向Top-Down的注塑模具结构设计与装配; (3)薄壁注塑产品CAD实体模型数据信息转换技术; (4)多型腔注塑产品成型过程CAD/CAE集成分析技术; (5)计算机仿真及其产品成型生产试验。 技术特点 (1)基于CAD平台,开发出了多型腔不对称复杂形状注塑产品CAD设计与总体结构装配的技术; (2)为注塑成型工艺过程提供合理、经济的工艺方案,提高产品一次试模的成功率,缩短产品的试制开发周期; (3)提高了多型腔、并具有复杂曲面特征的注塑产品成型分析

的精度,能准确预测产品注塑成型缺陷,降低废品率和生产成本; (4)开发出了多型腔注塑制品成型CAD设计的产品几何特征及其拓扑关系与复杂曲面类注塑制品成型CAE集成分析的关键技术和实现方法; (5)为模具数字化设计与制造提供了实用技术,确保注塑件成型质量。 市场预测 本项目技术成果能提高产品一次试模的成功率,达到了降低废品率和生产成本,缩短产品的试制开发周期的目的。对准确预测产品注塑成型缺陷、提高注塑产品成型质量有重要实用价值。本项目的成果在技术方法、研究手段、实现途径上比从底层做重复的研发有明显的技术优势和使用价值,使用的人力成本、投入的财力均较低。该成果的获得将有利于提高对注塑制品成型质量的预测和控制,并产生可观的经济效益和社会效益,因而本项目的成果具有广阔的推广应用前景。 合作方式技术转让、技术入股

几种注塑成型技术要点

几种注塑成型技术要点Newly compiled on November 23, 2020

河南机电高等专科学校 先进制造技术课程论文 论文题目:几种注塑成型技术、技术特点、应用 情况分析研究 系部:机械工程系 专业:机械制造与自动化 班级:机制 113 学生姓名 学号: 指导教师: 2013年 10 月 10 日 绪论 随着塑料工业的迅速发展,塑料成型设备也得以相应的发展,塑料成型加工的方法很多,其中注射成型是最重要的成型方法之一,注塑成型占塑料制品占总量的30%以上。注射成型是使热塑性或热固性模塑料先在加热机筒中均匀塑化。而后由柱塞或移动螺杆推挤到闭合模具的模腔中成型的一种方法。注塑成型具有一次能成型形状复杂,尺寸精度高和带有金属嵌件等特点。 第一章注塑成型技术介绍 引言 注塑成型即成注射成型或者注射模塑,使热塑性塑料的一种重要成型方 法。迄今为止除氟塑料外,几乎所有的热塑性塑料都可以采用此成型方 法;它的特点是生产周期快、适应性强、生产效率高自动化高,因此可以 广泛的应用与塑料制品的生产中。从塑料产品的形状来看。除了管、棒、

板等型材不能采用此方法生产外、其他都可以用此方法成型;它所生产的产品占目前塑料制品生产的20%~30%。 近年来无论在注塑理论和实践方面,还是在注塑工艺和成型设备方面都有较深的研究和进展。 注塑时,首先遇到的是注塑的可成型性,这是衡量塑料能否快速和容易地成型出合乎质量要求的品。并希望能在满足质量要求的前提下,以最短注塑周期进行高效率生产。 不同的高分子材料对其加工的工艺条件及设备的感性别很大,材料性和工艺条件将最终影响塑料制品的理机械性能,因此全面了解注塑周期内的工作程序,搞清可成型性和成型工艺条件及各种因素的相互作用和影响,对注塑加工有重要意义。 在对充模压力的影响实验表明:高聚物的非牛顿特性越强,则需要的压越低;结晶型比非结晶型高聚物制品有更大的收收缩,在相变中比容变化较大。 在对注塑过程中大分子取向的机理研究证明聚合物熔体受剪切变形时,大分子由无规卷曲状态解开,并向流动方向延伸和有规则的排列,如果熔体很快冷却到相变温度以下,则大分子没有足够的时间松和恢复到它原来的无规则卷曲的构象程度,这时的聚合物就要处于冻结取向状态,这种冻结取向使注塑制品在双折射热传导以及力学性质方面显示出各向导性。由于流变学和聚合物凝固过程的形变原因,制品取向可能在一个方向占优势形成单轴取向,也可能在两个方向上占优势,形成双轴取向。双轴取向会使制品得到综合的机械特性,所以在注塑制品中总希望得到双轴取向制品。而在纡维抽丝过程中却希望得到单轴取向。 对于取向分布的试验表明:取向最大是发生在距离制件表面20%的厚度处,发现取向程度随熔体温度与模温减小而增加,而提高注射压力或延长注射时间会增加制品的取向程度。 对聚苯乙烯试样表明:拉伸强度在平行取向方向上随取向度增加而提高,在垂直方向上则下降。 对聚甲醛的观察表明:注射时间的加长会使过渡晶区的厚度增加,注射压力的提高会使制品断裂伸长加大。 测试表明:注塑的残余应力与应变对制品质量有着重要影响,一般注塑制品有三种残余应变形式;A伴随热应力而产生的应变,B与分子冻结取向相

注塑成型工艺流程及工艺参数

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 注塑成型工艺流程及工艺参数 塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ 低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成

薄壁模具注塑成型工艺流程

薄壁注塑成型工艺流程 薄壁模具,这是在注塑模具工艺中比较难的,黄岩新视觉模具公司充分的运用了薄壁模具制做的技术。 注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。 1、填充阶段 填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。 高速填充。如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。因此在流动控制阶段,填充行为往往取决于待填充的体积大小。即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。λ低速填充。如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。λ 由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。 一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。 2、保压阶段 保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。在保压过程中,由于模腔中已经填满塑料,背压较高。在保压压实过程中,注塑机螺杆仅能慢慢地向前作微小移动,塑料的流动速度也较为缓慢,这时的流动称作保压流动。由于在保压阶段,塑料受模壁冷却固化加快,熔体粘度增加也很快,因此模具型腔内的阻力很大。在保压的后期,材料密度持续增大,塑件也逐渐成型,保压阶段要一直持续到浇口固化封口为止,此时保压阶段的模腔压力达到最高值。 在保压阶段,由于压力相当高,塑料呈现部分可压缩特性。在压力较高区域,塑料较为密实,密度较高;在压力较低区域,塑料较为疏松,密度较低,因此造成密度分布随位置及时间发生变化。保压过程中塑料流速极低,流动不再起主导作用;压力为影响保压过程的主要因素。保压过程中塑料已经充满模腔,此时逐渐固化的熔体作为传递压力的介质。模腔中的压力借助塑料传递至模壁表面,有撑开模具的趋势,因此需要适当的锁模力进行锁模。涨模力在正常情形下会微微将模具撑开,对于模具的排气具有帮助作用;但若涨模力过大,易造成成型品毛边、溢料,甚至撑开模具。因此在选择注塑机时,应选择具有足够大锁模力的注塑机,以防止涨模现象并能有效进行保压。

薄壁注塑成型技术发展

薄壁注塑成型技术发展 由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证.本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向.关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层. 近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着"轻、薄、短、小"方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来.薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点. 薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决.薄壁注塑成型技术的概念https://www.360docs.net/doc/0230905.html, 目前关于薄壁注塑成型还没有统一的定义,Mahishi和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型.由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念. 常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要.常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题.所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去.薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响.薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好.设计过程中要重点考虑制品的刚性、抗冲击性和可制造性. 成型薄壁制品时一般需要专门设计的薄壁制品专用模具.与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化.主要表现在以下几个方面: (1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高.因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚.支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移.另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55. (2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚.如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏.为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降.为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化.当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求.值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术. (3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传热不均而产生的残余应力.为保证制品的尺寸稳定性,把收缩和翘曲控制在可以接受的范围内,就必须加强模具的冷却,确保冷却均衡.较好的冷却措施有在型芯

八大塑料注塑成型技术及特点

八大塑料注塑成型技术及特点气辅注塑(GAIM) 成型原理: 气辅成型(GAIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术。 特点: ?减少残余应力、降低翘曲问题; ?消除凹陷痕迹; ?降低锁模力; ?减少流道长度; ?节省材料; ?缩短生产周期时间; ?延长模具寿命; ?降低注塑机机械损耗; ?应用于厚度变化大之成品。 GAIM可用于生产管状和棒状制品、板状制品以及厚薄不均的复杂制品。 水辅注塑(WAIM) 成型原理: 水辅注塑(WAIM)是在GAIM 基础上发展起来的一种辅助注塑技术,其原理和过程与GAIM类似。WAIM用水代替GAIM的N2做为排空、穿透熔体和传递压力的介质。

特点: 与GAIM相比,WAIM具有不少优势 ?水的热传导率和热容量比N2大得多,故制品冷却时间短,可缩短成型周期; ?水比N2更便宜,且可循环使用; ?水具有不可压缩性,不容易出现手指效应,制品壁厚也较均匀; ?气体易渗入或溶入熔体而使制品内壁变粗糙,其至在内壁产生气泡,而水不易渗入或溶入熔体,故可制得内壁光滑的制品。 精密注塑 成型原理: 精密注塑是指能成型内在质量、尺寸精度和表面质量均要求很高的产品的一类注塑技术。其生产出来的塑胶制品的尺寸精度,可以达到0.01mm 以下,通常在0.01~0.001mm之间。 特点: ?制件的尺寸精度高,公差范围小,即有高精度的尺寸界限精密塑胶制件的尺寸偏差会在0.03mm以内,有的甚至小到微米级,检测工具依赖于投影仪。 ?制品重复精度高 主要表现在制件重量偏差小,重量偏差通常在0.7%以下。 ?模具的材料好,刚性足,型腔的尺寸精度、光洁度以及模板间的定位精度高 ?采用精密注射机设备 ?采用精密注射成型工艺 精确控制模具温度、成型周期、制件重量、成型生产工艺。

注塑成型工艺培训资料

注塑成型技术培训资料 一、如何解决注塑产品存在的品质缺陷 1、注塑产品存在的品质缺陷: 塑料制品的成型加工过程中,由于加工设备不一,成型性能各异,原料品种繁多,加之设备的运行状态,模具的型腔结构、物料的流变性筹多种因素错综变化的影响,使得塑料的内在及外观质量经常会出现各种各样的成型缺陷。常见的外观缺陷有:缩水、飞边、黑点、流纹、熔接线、亮纹、缺胶、气泡、料花等。 2、如何解决缩水 ●缩水产生的原因 制件在模具中冷却时,由于制件的胶厚不一致而导致塑胶收缩不均匀而引起的凹痕。解决缩水的原理是:在制件冷却过程中,熔胶不断补充制件收缩引起的空缺。因此在正常情况下要保证熔胶补充的通道不受阻和足够的补充压力。 ●在注塑工艺上的解决办法: (1)注塑条件问题: ①注射量不足; ②提高注射压力; ③增加注射时间; ④增加保压压力或时间; ⑤提高注射速度; ⑥增加注射周期; ⑦操作原因造成的注射周期反常。 (2)温度问题: ①物料太热造成过量收缩; ②物料太冷造成充料压实不足; ③模温太高造成模壁处物料不能很快固化; ④模温太低造成充模不足; ⑤模子有局部过热点; ⑥改变冷却方案。 (3)模具问题: ①增大浇口;

②增大分流道; ③增大主流道; ④增大喷嘴孔; ⑤改进模子排气; ⑥平衡充模速率; ⑦避免充模料流中断; ⑧浇口进料安排在制品厚壁部位; ⑨如果有可能,减少制品壁厚差异; ⑩模子造成的注射周期反常。 (4)设备问题: ①增大注压机的塑化容量; ②使注射周期正常; (5)冷却条件问题: ①部件在模内冷却过长,避免由外往里收缩,缩短模子冷却时间; ②将制件在热水中冷却。 3、如何解决飞边 ●产生飞边的原因: 产品溢边往往由于模子的缺陷造成,其他原因有:注射力大于锁模力、物料温度太高、排气不足、加料过量、模子上沾有异物等。 ●如何判断产生飞边的原因: 在一般情况下,采用短射的办法。即在注塑压力速度较低、不用保压的情况下注塑出制件90%的样板,检查样板是否出现飞边,如果出现,则是模具没有配好或注塑机的锁模压力不足,如果没有出现,则是由于注塑条件变化而引起的飞边,比如:保压太大、注射速度太快等。 ●常见的飞边产生的原因及解决飞边的办法 ⑴模具问题: ①型腔和型芯未闭紧; ②型腔和型芯偏移; ③模板不平行; ④模板变形;

二次注塑成型技术与常识简介

二次注塑成型技术与常识简介 2007年12月07日星期五11:36 二次注塑不仅可使器械表面充满柔感,还可以增加产品功能性与附加值。 在过去10年中,二次注塑技术已经彻底改变了消费品审美标准、设计思路和功能要求。医疗器械制造商也认识到该技术的潜在优势,不断扩大它在医疗领域中的应用。二次注塑技术以创造“柔感表 面”而闻名,但它还有许多其他功能,例如:人体工学设计、双色外观、品牌标识以及特性改进。利用这项技术,可以增加产品的功能(例如:减噪、减震、防水、防撞)和附加值。 二次注塑与共注塑、双注塑及夹层注塑一样,都属于多材料注塑技术。多材料注塑的基本思路是将2种或多种不同特性的材料结合在一起,从而提高产品价值。在本文中,第一种注入材料称为基材或者基底材料,第二种注入材料称为覆盖材料。 各种二次注塑技术 在二次注塑过程中,覆盖材料注入基材的上方、下方、四周或者内部,组合成为一个完整的部件。这个过程可通过多次注塑或嵌入注塑完成。通常使用的覆盖材料为弹性树脂。 多次注塑:如果覆盖材料的构造允许的话,多次注塑是一种很好的医疗器械加工方法。该技术需要配备有多个机筒的特殊注塑机,以便将不同的树脂注入一个注塑模具。机筒应并排或呈L型放置,由一个或多个注入点将树脂注入模具。使用同一个注入点时,称为共塑,生产的复合部件为被外层包覆的核心树脂材料。使用多个注入点时,称为二次注塑,一种材料在另一种材料上面成型,产生多层结构。 但是多次注塑并不适用于所有产品。二次注塑时,必须移动滑块或将模芯移至另一个模腔,还有一个方法是将模芯送入另一台注塑机。 嵌入注塑:要生产完全覆盖的注塑手柄这类产品,就需要使用嵌入注塑。为了达到完全覆盖,基材必须从原来的模腔中移出,放入另一个模芯和模腔,以便注入覆盖材料。在此过程中,另一个模具应该同时在同一台或另一台不同尺寸的注塑机(取决于注塑件大小)上运转。通常基材要比覆盖材料大得多,并且可能需要预热,使表面温度接近覆盖材料的熔点,从而获得最佳粘合强度。 模内组装 二次注塑有时被称为模内组装,因为两种材料最后完全组合在一起,而不仅仅是产生分层结构,不管是单独部件或是组件材料,都可采用此技术。无论应用为何,确保基材和覆盖材料达到所需的机械或化学粘合强度都是至关重要的。

注塑成型概述及未来发展

注塑成型概述及未来发展 注塑成型 注塑成型技术概述 注塑成型工艺是塑料制品加工中非常重要技术类型,大多数行业的塑料件加工均需要注塑成型工艺来完成。所涉及的行业及领域甚广,如食品、电子电器、仪表仪器、汽摩、日用、化工、农业、运输等行业都可使用到注塑成型工艺制造的塑料元件。下面我们来介绍下注塑成型工艺在国内的发展情况及其未来发展趋势。 注塑成型是塑料制品成型的一种重要方法。几乎所有的热塑性塑料、多种热固性塑料和橡胶都可用此法成型。在中国,目前注塑成型制品约占塑料制品总量的30%左右,注塑机占塑料机械总产值的38%左右。注塑成型可制造各种形状、尺寸、精度、性能要求的制品。注塑制品包括小到几克甚至几毫克的各种仪表小齿轮、微电子元件、医疗微器械等,大到几千克的电视机、洗衣机外壳、汽车用塑料件,甚至几万克的制品。 注塑成型技术有重大突破 南昌大学柳和生教授承担的第二批江西省主要学科跨世纪学术和技术带头人培养计划项目–气体辅助注塑成型技术研究及气辅注塑成型机研制项目,日前在南昌通过由江西省科技厅主持的验收。该项目的研制成功,为推动我国注塑成型技术进步,为塑料制品企业改进气辅注塑工艺奠定了扎实的理论和实验基础。 微型注塑技术开创新时代 微型注塑技术是一种可在工作表面上造出微细结构的工艺,从而为成品提供不同的功能,例如不吸水的特性、减少流动阻力、导光性等。目前,微型注塑技术可造出少至20mm的微细结构,09年被北京塑料制品厂引进。实施微型注塑技术需要特殊的加工及模具技术及设备,例如采用外部加热系统(感应发热元件),其优点有二:可以实现模腔表面温度的局部控制;可以大幅缩短加热和冷却时间。

几种注塑成型技术要点

河南机电高等专科学校 先进制造技术课程论文 论文题目:几种注塑成型技术、技术特点、应用 情况分析研究 系部:机械工程系 专业:机械制造与自动化 班级:机制 113 学生姓名 学号: 110114311 指导教师: 2013年 10 月 10 日 绪论 随着塑料工业的迅速发展,塑料成型设备也得以相应的发展,塑料成型加工的方法很多,其中注射成型是最重要的成型方法之一,注塑成型占塑料制品占总量的30%以上。注射成型是使热塑性或热固性模塑料先在加热机筒中均匀塑化。而后由柱塞或移动螺杆推挤到闭合模具的模腔中成型的一种方法。注塑成型具有一次能成型形状复杂,尺寸精度高和带有金属嵌件等特点。

第一章注塑成型技术介绍 1.1引言 注塑成型即成注射成型或者注射模塑,使热塑性塑料的一种重要成型方法。迄今为止除氟塑料外,几乎所有的热塑性塑料都可以采用此成型方法;它的特点是生产周期快、适应性强、生产效率高自动化高,因此可以广泛的应用与塑料制品的生产中。从塑料产品的形状来看。除了管、棒、板等型材不能采用此方法生产外、其他都可以用此方法成型;它所生产的产品占目前塑料制品生产的20%~30%。 近年来无论在注塑理论和实践方面,还是在注塑工艺和成型设备方面都有较深的研究和进展。 注塑时,首先遇到的是注塑的可成型性,这是衡量塑料能否快速和容易地成型出合乎质量要求的品。并希望能在满足质量要求的前提下,以最短注塑周期进行高效率生产。 不同的高分子材料对其加工的工艺条件及设备的感性别很大,材料性和工艺条件将最终影响塑料制品的理机械性能,因此全面了解注塑周期内的工作程序,搞清可成型性和成型工艺条件及各种因素的相互作用和影响,对注塑加工有重要意义。 在对充模压力的影响实验表明:高聚物的非牛顿特性越强,则需要的压越低;结晶型比非结晶型高聚物制品有更大的收收缩,在相变中比容变化较大。 在对注塑过程中大分子取向的机理研究证明聚合物熔体受剪切变形时,大分子由无规卷曲状态解开,并向流动方向延伸和有规则的排列,如果熔体很快冷却到相变温度以下,则大分子没有足够的时间松和恢复到它原来的无规则卷曲的构象程度,这时的聚合物就要处于冻结取向状态,这种冻结取向使注塑制品在双折射热传导以及力学性质方面显示出各向导性。由于流变学和聚合物凝固过程的形变原因,制品取向可能在

MIM金属粉末注塑成型技术介绍

MIM(金属粉末注塑成型)技术介绍 ?????MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。? MIM产品的特点:? ????1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;? ????2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra0.80~1.6μm,重量范围在0.1~200g。尺寸精度高(±0.1%~±0.3%),一般无需后续加工;?? ????3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;? ????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;? 国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。?

MIM与传统粉末冶金相对比? ?MIM可以制造复杂形状的产品,避免更多的二次机加工。? ?MIM产品密度高、耐蚀性好、强度高、延展性好。? ?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。? MIM与机械加工相对比? ??MIM设计可以节省材料、降低重量。 ???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。???MIM通过模具一次成形复杂产品,避免多道加工工序。 ???MIM可以制造难以机械加工材料的复杂形状零件。? MIM与精密铸造相对比? ?MIM可以制造薄壁产品,最薄可以做到0.2mm。? ?MIM产品表面粗糙度更好。? ?MIM更适宜制细盲孔和通孔。? ?MIM大大减少了二次机加工的工作量。? ?MIM可以快速的大批量、低成本制造小型零件。? MIM材料范围 常用MIM材料应用领域:?

注塑成型技术员个人简历怎么写

注塑成型技术员个人简历怎么写 这一份注塑成型技术员个人简历模板是由简历模板网提供给需要写作与注塑成型技术员等相关职位的个人简历的求职者参考的,希望对你有所帮助。 姓名:李先生性别:男 婚姻状况:已婚民族:汉族 户籍:湖北-荆州年龄: 30 现所在地:广东-东莞身高: 170cm 意向地区:广东、江苏、湖北 意向职位:机械(电)/仪表类-机械设计/制造工程师 模具类-注塑成型工程师 机械(电)/仪表类-设备修理 寻求职位:注塑领班、注塑成型技术员、注塑成型车间现场管理 教育经历 1998-09 ~ 2001-07 石首市南岳高级中学高中高中 **公司 (2010-04 ~至今) 公司性质:外资企业行业类别:计算机硬件 担任职位:注塑成型技术员岗位类别:总工程师/副总工程师 工作描述:负责产品成型工艺的调较及改善产品质量和产量,对光宝科技,台达电子,鸿富锦,致通电脑和朝阳音响厂等公司所生产的产品较为熟悉。在晋原厂工作期间,主要负责苹果产品专用机台,因公司主要生产各种品牌笔记本电

脑的电源适配器及其配件,尤其是苹果的电源适配器,因产品内外全是高光面,色差和尺寸管控方面非常严格,加之塑胶原料价格非常昂贵,对降低产品不良及提高生产效率方面积累了丰富的经验,因其工厂三百六十五天天天都得上班,身体无法抵制这种超长时间上班,故离职另寻发展更为广阔的平台。 **公司 (2008-07 ~ 2009-12) 公司性质:民营企业行业类别:汽车、摩托车及零配件 担任职位:注塑车间领班岗位类别: 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 担任职位:成型技术员岗位类别:

注塑成型技术员个人简历模板参考

注塑成型技术员个人简历模板参考 以下是关于注塑成型技术员个人简历模板参考,希望内容对您有帮助,感谢您得阅读。 工作描述:管理车间20台注塑机的生产及品质的跟踪,对接外贸业务部所提供的订单根据单期进行生产,协调注塑部与各生产车间部门进行沟通,合理安排订单生产与新产品试模试产。 **公司 (2005-06 ~ 2008-07) 公司性质:合资企业行业类别:机械制造、机电设备、重工业 担任职位:注塑成型领班岗位类别: 工作描述:管理24台震雄注塑机,协助PMC排单及根据单期合理安排员工生产。全面管理车间生产之日常事务及品质问题,并对车间展开的5S工作进行全面的跟踪及指导。协同上级对各验证机构来验厂时注塑部常见问题进行排除和更正注塑成型技术员个人简历模板注塑成型技术员个人简历模板。 离职原因:公司倒闭 **公司 (2003-03 ~ 2005-06) 公司性质:外资企业行业类别:机械制造、机电设备、重工业 ·

担任职位:成型技术员岗位类别: 工作描述:负责调较和维护注塑工艺参数,稳定机台生产效率、质量、产量; 协助领班对作业人员的进行技能培训和安全作业培训; 协助领班对本区域的7S和现场纪律进行管理 离职原因:提升自己,录求更大的发展的空间 **公司 (2002-05 ~ 2002-12) 公司性质:外资企业行业类别:家具、家电、工艺品、玩具 担任职位:上下模岗位类别: 工作描述:从事上下模工作,同时积累成型技术经验。 离职原因:录求发展 技能专长 专业职称: 计算机水平:初级 计算机详细技能: 技能专长:从事塑胶行业7年,对注塑成型加工及现场管理已有多年的工作经验,了解多种注塑机的调较和维修及熟悉常用塑胶原料的特性。本人接触的产品类型主要有玩具类如:遥控仿真汽车、遥控仿真轮船及儿童玩具家居用品、婴儿小推车、画架系列,计算机及其周边零配件,塑胶行李箱和品牌轿 ·

相关文档
最新文档