黄昆版固体物理学课后复习资料解析复习资料

黄昆版固体物理学课后复习资料解析复习资料
黄昆版固体物理学课后复习资料解析复习资料

《固体物理学》习题解答

黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)

第一章 晶体结构

1.1、

解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc

nV

x = (1)对于简立方结构:(见教材P2图1-1)

a=2r , V=

3

r 3

4π,Vc=a 3,n=1 ∴52.06r 8r

34a r 34x 3

333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3

3

4a r 4a 3=?= n=2, Vc=a 3

∴68.083)r 3

34(r 342a r 342x 3

3

33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3

74.062)

r 22(r 344a r 344x 3

3

33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62

60sin a a 6S ABO ??=??=2

a 233 晶胞的体积:V=332r 224a 23a 3

8

a 233C S ==?=

? n=1232

1

26112+?+?

=6个 74.062r

224r 346x 3

3

≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3

r 8a r 24a 3=

??= n=8, Vc=a 3

34.063r 3

38r 348a r 348x 3

33

33≈π=π?=π?=

1.2、试证:六方密排堆积结构中

633.1)3

8(a c 2

/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.

即图中NABO 构成一个正四面体。…

1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。

证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+??

?=+??

?=+??r r r r r r

r r r

由倒格子基矢的定义:1232()b a a π=?Ω

r r r

31230,

,22

(),

0,224

,,0

2

2a a a a a a a a a a Ω=??==r r r

Q ,223,,,

0,()224,,0

2

2

i j k

a a a a a i j k a a ?==-++r r

r r r r r r

213422()()4a b i j k i j k a a

ππ∴=??-++=-++r r r

r r r r

同理可得:232()

2()

b i j k a

b i j k a

ππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。

所以,面心立方的倒格子是体心立方。

(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++??

?=-+??

?=+-??

r r r r r r r r

r r r r

由倒格子基矢的定义:1232()b a a π=?Ω

r r r

3123,,

222

(),,2222

,,222

a a a a a a a a a a a a a

-Ω=??=-=

-

r r r

Q ,223,,,,()2222,,222i j k a a a a a a j k a a a ?=-=+-r r r r r r r 213222()()2a b j k j k a a

ππ∴=??+=+r r r

r r

同理可得:232()

2()

b i k a

b i j a

ππ=+=+r r r r r r 即体心立方的倒格子基矢与面心立方的正格基矢相同。

所以,体心立方的倒格子是面心立方。

1.5、证明倒格子矢量112233G h b h b h b =++v v v v

垂直于密勒指数为123()h h h 的晶面系。

证明:

因为3312

1323

,a a a a CA CB h h h h =

-=-v v v v u u u r u u u r ,112233G h b h b h b =++v v v v 利用2i j ij a b πδ?=v

v ,容易证明12312300h h h h h h G CA G CB ?=?=u u u r v

u u u r

v 所以,倒格子矢量112233G h b h b h b =++v v v v 垂直于密勒指数为123()h h h 的晶面系。

1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:2

2

2

2

2

()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。解:简单立方晶格:123a a a ⊥⊥r

r v ,123,,a ai a aj a ak ===v v v v v v

由倒格子基矢的定义:2311232a a b a a a π?=??r r r r r r ,3121232a a b a a a π?=??r r r r r r ,12

3123

2a a b a a a π?=??r r r r r r

倒格子基矢:123222,,b i b j b k a a a πππ===v v v v

v v

倒格子矢量:123G hb kb lb =++v v v v ,222G h i k j l k a a a

πππ=++v

v v v

晶面族()hkl 的面间距:2d G

π

=v 2221

()()()h k l a a a

=

++

2

2

222()

a d h k l =++

面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。

1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。

解:(111)

1、(111)面与(100)面的交线的AB ,AB 平移,A 与O 点重合,B 点位矢:B R aj ak =-+v v v

, (111)面与(100)面的交线的晶向AB aj ak =-+u u u r v v

,晶向指数[011]。

(111)

2、(111)面与(110)面的交线的AB ,将AB 平移,A 与原点O 重合,B 点位矢:B R ai aj =-+v v v

,(111)面

与(110)面的交线的晶向AB ai aj =-+u u u r v v

,晶向指数[110]。

第二章 固体结合

2.1、两种一价离子组成的一维晶格的马德隆常数(2ln 2=α)和库仑相互作用能,设离子的总数为2N 。

<解> 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有

(1)1111

2[ (234)

ij r

r r r r r

α

±'

==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为

2

34

(1) (34)

n x x x x x x +=-+-+Q l

当X=1时,有111

1 (2234)

n -

+-+=l

2.3、若一晶体的相互作用能可以表示为 ()m

n

u r r r α

β

=-

+

试求:(1)平衡间距0r ;

(2)结合能W (单个原子的);

(3)体弹性模量;

1112[1...]234α=-+-+22n α∴=l

(4)若取02,10,3,4m n r A W eV ====,计算α及β的值。 解:(1)求平衡间距r 0

0)

(0

==r r dr

r du ,有:

m

n n

m n m m n n m r r n r m --++??

?

??=???

? ??=?=-1

101

.0100αββαβ

α

结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量

称为结合能(用w 表示)

(2)求结合能w (单个原子的)

题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。

显然结合能就是平衡时,晶体的势能,即U min

即:n

m

r r r U W 000)(β

α

-

+=-= (可代入r 0值,也可不代入)

(3)体弹性模量

由体弹性模量公式:0

220

2

09r r U V r k ???? ?

???=

(4)m = 2,n = 10,ο

A r 30=, w = 4eV ,求α、β

81

8

1

05210??

? ??=?

?

? ??=αβαβr ①

)5(54)(802

010

.

2

0代入α

β

αβ

α

=

-

=+

-

=r r r r

r U K K K

eV r r U W 454)(2

00==

-=?α

② 将ο

A r 30=,J eV 19

10602.11-?=代入①②

2

1152

3810459.910209.7m

N m N ??=??=?--βα (1)平衡间距r 0的计算 晶体内能()()2m n N U r r r

αβ=

-+ 平衡条件

0r r dU

dr

==,11000m n m n r r αβ

++-+=,1

0(

)n m n r m βα

-= (2)单个原子的结合能

01()2W u r =-,0

0()()m n r r u r r r αβ

==-+,1

0()n m n r m βα-= 1(1)()2m

n m m n W n m βαα

--=-

(3)体弹性模量0

202()V U

K V V

?=?? 晶体的体积3

V NAr =,A 为常数,N 为原胞数目 晶体内能()()2m n N U r r r

αβ=

-+ U U r V r V ???=???112

1

()

23m n N m n r r NAr αβ++=- 22112

1

[()]23m n U N r m n V V r r r NAr αβ++???=-??? 0

2222

2

00000

1[]29m n m n V V U N m n m n V V r r r r αβαβ=?=-+-+? 由平衡条件

112

0001

()0

23m n V V U N m n V

r r NAr αβ++=?=

-=?,得00m n m n r r αβ= 0

222220001[]29m n V V U

N m n V V r r αβ=?=-+? 0

222000

1[]29m n

V V U N m n m n V V r r αβ

=?=

-+?2000[]29m n N nm V r r αβ=--+ 000

()2m n N U r r αβ

=

-+ 0

202

2

()9V V U mn

U V V =?=

-? 体弹性模量0

9mn

K U V = (4)若取02,10,3,4m n r A W eV ====

10()n m n r m βα-=,1(1)()2m

n m m n W n m βαα

--=-

10

02

W r β=

,20100[2]r W r βα=+

-95101.210eV m β=??,1929.010eV m α-=??

2.6、bcc 和fcc Ne 的结合能,用林纳德—琼斯(Lennard —Jones)势计算Ne 在bcc 和fcc 结构中的结合能之比值.

<解>12

612

61()4()(),()(4)()()2n l u r u r N A A r r r r σ

σσ

σεε??

?

?

=-=-???????

?

2

6

661200612()1022r

A A du r r u N r A A σε??=?=?=- ???

22066201212()12.25/9.11

()/()0.957()14.45/12.13

bcc bcc fcc fcc u r A A u r A A ωω'===='

2.7、对于2H ,从气体的测量得到Lennard —Jones 参数为6

5010, 2.96.J A εσ-=?=o

计算fcc 结构的2H 的结合能[以KJ/mol 单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ /mo1,试与计

算值比较.

<解> 以2H 为基团,组成fcc 结构的晶体,如略去动能,分子间按Lennard —Jones 势相互作用,则晶体的总相互作用能为:

126

126

2.ij ij i j U N P P R R σσε--??????''=-?? ? ?????????

∑∑

61214.45392;

12.13188,ij

ij j

i

P P --''==∑

∑16

235010, 2.96, 6.02210/.

erg A N mol εσ-=?==?o

()()12628

16

2.96 2.962602210/5010

12.1314.45 2.55/.

3.16 3.16U U mol erg KJ mol -??

????=?????-≈-?? ? ?????????

0将R 代入得到平衡时的晶体总能量为。因此,计算得到的2H 晶体的结合能为2.55KJ /mol ,远大于实验观察值0.75lKJ /mo1.对于2H 的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大

差别的原因.

第三章 固格振动与晶体的热学性质

3.1、已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移为,sin(_)nj j j j j a t naq μωσ=+,

j σ为任意个相位因子,并已知在较高温度下每个格波的平均能量为,具体计算每个原子的平方平均位

移。

<解>任意一个原子的位移是所有格波引起的位移的叠加,即

sin()n nj j j j j j

j

a t naq μμωσ==++∑∑ (1)

2*2*n nj nj nj nj nj j j j j j μμμμμμ''

≠????==+ ????

??

?

∑∑∑∑g

由于nj nj μμ?数目非常大为数量级,而且取正或取负几率相等,因此上式得第2项与第一项相比是一小量,

可以忽略不计。所以2

2

n nj j

μμ=

∑ 由于nj μ是时间t 的周期性函数,其长时间平均等于一个周期内的时间平均值为

222

1

1sin()2

T j

j j j j j a t naq dt a T μωσ=

++=

?

(2) 已知较高温度下的每个格波的能量为KT ,nj μ的动能时间平均值为

022222

00

0111sin()224L

T T nj j j nj j j j j j j d w a T dx dt L a t naq dt w La T dt T μρρωσρ????=

=++=?? ???????

?

?

? 其中L 是原子链的长度,ρ使质量密度,0T 为周期。 所以22

1142

nj j j T w La KT ρ=

= (3) 因此将此式代入(2)式有2

2nj j

KT

PL μω=

所以每个原子的平均位移为

2222

1

n nj j

j

j j j

KT KT PL PL μμωω====∑∑

3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。

解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。

牛顿运动方程2221212121222(2)(2)n n n n n n n n

m M μβμμμμβμμμ+-+++=---=---&&&& N 个原胞,有2N 个独立的方程

设方程的解

[(2)]2[(21)]

21i t na q n i t n aq n Ae Be

ωωμμ--++==,代回方程中得到

2

2

(2)(2cos )0

(2cos )(2)0

m A aq B aq A M B βωβββω?--=??-+-=?? A 、B 有非零解,22

22cos 02cos 2m aq

aq M βωβββω

--=--,则 1

2

2

22

()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+

两种不同的格波的色散关系

1

2

2

22

1

22

2

2

()4{1[1sin ]}()()4{1[1sin ]}()

m M mM aq mM m M m M mM aq mM m M ωβωβ

+-+=+-++=--+

一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.

当M m =时

4cos 24sin 2

aq m aq m βωβω+-=

=

两种色散关系如图所示: 长波极限情况下0q →,sin(

)22

qa qa

, (2

)q m

β

ω-=与一维单原子晶格格波的色散关系一致.

3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,两种原子质量相等,且最近邻原子间距为2a 。试求在0,q q a π==处的()q ω,并粗略画出色散关系曲线。此问题模拟如

2H 这样的双原子分子晶体。

答:(1)

浅色标记的原子位于2n-1, 2n+1, 2n+3 ……;深色标记原子位于2n , 2n+2, 2n+4 ……。

第2n 个原子和第2n +1个原子的运动方程:

2122221121

21122112222()()n n n n n n n n

m m μββμβμβμμββμβμβμ+-+++=-+++=-+++&&&&

体系N 个原胞,有2N 个独立的方程

方程的解:

1

[(2)]

221

[(21)]

2

21i t n aq n i t n aq n Ae

Be

ωωμμ--++==,令22

1122/,/m m ωβωβ==,将解代入上述方程得:

11222

222

2

1

2

1

2

112222

2221

2

12()()0

()()0

i aq i aq i aq i aq A e e

B e

e

A B ωωωωωωωωωω--+--+=+-+-=

A 、

B 有非零的解,系数行列式满足:

11222

222

2

12

1

2

112222

2221

2

12(),()

0(),()i aq i aq i aq i aq e

e

e

e

ωωωωωωωωωω--+--+=+-+-

11112222

222222221212

1

2

()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++= 11112222

22222

2

2

2

1

2

1

2

1

2

()()()0i aq i aq i aq i aq e

e

e

e

ωωωωωωω--+--++=

因为1ββ=、210ββ=,令22

22

0120

10,10c c m m

ωωωω====得到 2224

00(11)(10120cos )0aq ωωω--+=

两种色散关系:22

0(1120cos 101)qa ωω=±+

当0q =时,220(11121)ωω=±,

0220

ωωω+-==

当q a

π

=

时,2

2

(1181)ωω=±,

00

202ωωωω+-==

(2)色散关系图:

3.7、设三维晶格的光学振动在q=0附近的长波极限有2

0()q Aq ωω=-

求证:()1/2

0023/2

1(),4V f A

ωωωωωπ=

-<;0()0,f ωωω=>. <解>()

112

2

2

2

00000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=

依据()3

()2,()()

2q q V

ds

q Aq f q ωωωπ?=-=

??

r ,并带入上边结果有

()()()()()()()1/21/2

00331/2223/2

01142()222q V

ds V A V f A A

q ωπωωωωωππωωπ=?=?-=?-?-r

3.8、有N 个相同原子组成的面积为S 的二维晶格,在德拜近似下计算比热,并论述在低温极限比热正比与2

T 。

证明:在k 到k dk +间的独立振动模式对应于平面中半径n 到n dn +间圆环的面积2ndn π,且

()22

532222L s ndn kdk kdk d v ρω

πρωωπππ===即则

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3r 3 4π,Vc=a 3 ,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

232425(黄昆固体物理)教案

§ 2.3 金属性结合;§ 2.4 范德瓦耳斯结合; §2.5 元素和化合物晶体结合的规律性 1. 教学目的和要求: 通过讲解使学生理解并掌握金属性结合和范德 瓦耳斯结合;理解元素和化合物晶体结合的规律性 2.教学重点:金属性结合和范德瓦耳斯结合。 3.教学难点:范德瓦耳斯结合。 4.讲授时间:45分钟。 5.讲授方式:PPT文档。 6.作业:学生课后复习。 一.金属性结合 (1)金属性结合的概念 第I族、第II族元素及过渡 元素都是典型的金属晶体,它们 的最外层电子一般为1~2个。组 成晶体时每个原子的最外层电 子为所有原子所共有,因此在结 合成金属晶体时,失去了最外层 (价)电子的原子实“沉浸”在 由价电子组成的“电子云”中。 如图XCH002_004所示。 这种情况下,电子云和原子实之 间存在库仑作用,体积 越小电子云密度越高,库仑相互 作用的能愈低,表现为 原子聚合起来的作用。 (2)金属晶体结合力 金属晶体结合力:主要是原子实和电子云之间的静电库仑力,对晶体结构没有特殊的要求,只要求排列最紧密,这样势能最低,结合最稳定。因此大多数金属具有面心立方结构,即立方密积或六角密积,配位数均为12。 立方密积(Cu、Ag、Au、Al)(面心立方结构)(配位数12) 六角密积(Be、Mg、Zn、Cd)

体心立方结构(Li、Na、K、Rb、Cs、Mo、W)(配位数8) 良好的导电本领,结合能比前面两种晶体要低一些,过渡金属的结合能较大。 晶体的平衡是依靠库仑作用力和一定的排斥力而维持的。 排斥来自两个方面 (a) 但体积减小,电子云的密度增大,电子的动能将增加 (b) 当原子实相互接近到一定的距离时,它们的电子云发生显著的重叠,将产生强烈的排斥 作用。 金属性结合对原子的排列没有特殊的要求,这使得容易造成原子排列的不规范性,使其具有很大的范性。 二.范德瓦耳斯结合 (1)范德瓦耳斯结合的概念 元素周期表中第VIII族(惰性)元素在低温下所结合成的晶体,是典型的非极性分子晶体。为明确起见,我们只介绍这种分子晶体。 惰性元素最外层的电子为8个,具 有球对称的稳定封闭结构。但在某 一瞬时由于正、负电中心不重合 而使原子呈现出瞬时偶极矩,这就 会使其它原子产生感应极矩。非极 性分子晶体就是依靠这瞬时偶极 矩的互作用而结合的,这种结合力 是很微弱的。1873年范德瓦耳斯 (Van der Waals)提出在实际气体 分子中,两个中性分子间存在着 “分子力”。当时他并没有指出这 力的物理本质,现在知道瞬时偶极 矩引起的力是分子力的一种。如图 XCH002_005所示。 (2)范德瓦耳斯结合的特征 惰性元素因具有球对称,结合时排列最紧密以使势能最低,所以Ne、Ar、Kr、Xe的晶体都是面心立方结构。它们是透明的绝缘体,熔点特低,分别为24K、84K、117K和161K。

黄昆固体物理课后习题答案5

第五章 第五章 晶体中电子能带理论 思考题 1. 1. 将布洛赫函数中的调制因子)(r k u 展成付里叶级数, 对于近自由电子, 当电子波矢远离和在布里渊区边界上两种情况下, 此级数有何特点? 在紧束缚模型下, 此级数又有什么特点? [解答] 由布洛赫定理可知, 晶体中电子的波函数 )()(r r k.r k i k u e =ψ, 对比本教科书(5.1)和(5.39)式可得 )(r k u = r K K .)(1 m i m m e a N ∑Ω . 对于近自由电子, 当电子波矢远离布里渊区边界时, 它的行为与自由电子近似, )(r k u 近似一常数. 因此, )(r k u 的展开式中, 除了)0(a 外, 其它项可忽略. 当电子波矢落在与倒格矢K n 正交的布里渊区边界时, 与布里渊区边界平行的晶面族对布洛赫波产生了强烈的反射, )(r k u 展开式中, 除了)0(a 和)(n a K 两项外, 其它项可忽略. 在紧束缚模型下, 电子在格点R n 附近的几率)(r k ψ2大, 偏离格点R n 的几率)(r k ψ2小. 对于这样的波函数, 其付里叶级数的展式包含若干项. 也就是说, 紧束缚模型下的布洛赫波函数要由若干个平面波来构造.. 2. 2. 布洛赫函数满足 )(n R r +ψ=)(r n k.R ψi e , 何以见得上式中k 具有波矢的意义? [解答] 人们总可以把布洛赫函数)(r ψ展成付里叶级数 r K k'h K k r ).()'()(h i h e a +∑+=ψ, 其中k ’是电子的波矢. 将)(r ψ代入 )(n R r +ψ=)(r n k.R ψi e , 得到 n k'.R i e =n k.R i e . 其中利用了πp n h 2.=R K (p 是整数), 由上式可知, k =k ’, 即k 具有波矢的意义. 3. 3. 波矢空间与倒格空间有何关系? 为什么说波矢空间内的状态点是准连续的? [解答] 波矢空间与倒格空间处于统一空间, 倒格空间的基矢分别为321 b b b 、、 , 而波矢空间的基矢分别为32N N / / /321b b b 、、 1N , N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目. 倒格空间中一个倒格点对应的体积为 *321) (Ω=??b b b ,

黄昆版固体物理学课后问题详解解析汇报问题详解

《固体物理学》习题解答 黄昆 原著 汝琦改编 (志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

黄昆 固体物理 讲义 第二章

第二章 固体的结合 晶体结合的类型 晶体结合的物理本质 固体结合的基本形式与固体材料的结构、物理和化学性质有密切联系 § 2.1 离子性结合 元素周期表中第I 族碱金属元素(Li 、Na 、K 、Rb 、Cs )与第VII 族的卤素元素(F 、Cl 、Br 、I )化合物(如 NaCl , CsCl ,晶体结构如图XCH001_009_01和XCH001_010所示)所组成的晶体是典型的离子晶体,半导体材料如CdS 、ZnS 等亦可以看成是离子晶体。 1. 离子晶体结合的特点 以CsCl 为例,在凝聚成固体时,Cs 原子失去价电子,Cl 获得了电子,形成离子键。以离子为结合单元,正负离子的电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构; , , , Na K Rb Cs Ne Ar Kr Xe F Cl Br I ++++? ? ? ? ? ? ?? 离子晶体的模型:可以把正、负离子作为一个刚球来处理; 离子晶体的结合力:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体; 一种离子的最近邻离子为异性离子; 离子晶体的配位数最多只能是8(例如CsCl 晶体); 由于离子晶体结合的稳定性导致了它的导电性能差、熔点高、硬度高和膨胀系数小;

大多数离子晶体对可见光是透明的,在远红外区有一特征吸收峰。 氯化钠型(NaCl 、KCl 、AgBr 、PbS 、MgO)(配位数6) 氯化铯型(CsCl 、 TlBr 、 TlI)(配位数8) 离子结合成分较大的半导体材料ZnS 等(配位数4) 2. 离子晶体结合的性质 1)系统内能的计算 晶体内能为所有离子之间的相互吸引库仑能和重叠排斥能之和。以NaCl 晶体为例,r 为相邻正负离 子的距离,一个正离子的平均库仑能:∑++?++3213 21,,2 /122322222102) (4)1('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。 321,,n n n 一个负离子的平均库仑能:∑++??++3213 21,,2 /122322222102) (4)1()('21n n n n n n r n r n r n q πε ——遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为相互作用能的一半。 321,,n n n 一个原胞有两个离子,其原胞的能量:∑++?++3213 21,,2 /122322222102)(4)1('n n n n n n r n r n r n q πε 即r q n n n r q n n n n n n 02 ,,2 /123 222102 4)()1('4321321πεαπε?=++?∑++ ∑++?=?++321321,,2 /123 2221)()1('n n n n n n n n n α——α:马德隆常数,完全取决于晶体的结构。 几种常见的晶体晶格的马德隆常数 离子晶体 NaCl CsCl ZnS 马德隆常数 1.748 1.763 1.638 相邻两个离子因电子云有显著重叠时的排斥能:或者 /r r be ?n r b

黄昆固体物理课后习题答案1

第一章 第一章 晶体的结构 思 考 题 1. 1. 以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数之比. [解答] 设原子的半径为R , 体心立方晶胞的空间对角线为4R , 晶胞的边长为3/4R , 晶胞的体积为() 3 3/4R , 一个晶胞包含两个原子, 一个原子占的体积为() 2/3/43 R ,单位体积 晶体中的原子数为() 3 3 /4/2R ; 面心立方晶胞的边长为2/4R , 晶胞的体积为 () 3 2/4R , 一个晶胞包含四个原子, 一个原子占的体积为() 4/2 /43 R , 单位体积晶体 中的原子数为() 3 2 /4/4R . 因此, 同体积的体心和面心立方晶体中的原子数之比为 2/323 ???? ? ?=0.272. 2. 2. 解理面是面指数低的晶面还是指数高的晶面?为什么? [解答] 晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面. 3. 3. 基矢为=1a i a , =2a aj , =3a () k j i ++2 a 的晶体为何种结构? 若 =3a () k j +2 a +i 2 3a , 又为何种结构? 为什么? [解答] 有已知条件, 可计算出晶体的原胞的体积 23 321a = ??=a a a Ω. 由原胞的体积推断, 晶体结构为体心立方. 按照本章习题14, 我们可以构造新的矢量 =-=13a a u 2a ()k j i ++-, =-=23a a v 2a ()k j i +-, =-+=321a a a w 2 a ()k j i -+ . w v u ,,对应体心立方结构. 根据14题可以验证, w v u ,,满足选作基矢的充分条件.可见基 矢为=1a i a , =2a aj , =3a () k j i ++2a 的晶体为体心立方结构. 若

黄昆固体物理试题及答案

山东大学试题专用纸 物理系-----年级----班 课程名称: 固体物理 共1页 学号: 姓名: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为( ), 其面间距为( ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数目为( ), 长光学波的( )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的( )晶体, 它有( )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度( )零, 电子波矢的末端处在( )边界上. 5. 两种不同金属接触后, 费米能级高的带( )电. 对导电有贡献的是 ( )的电子. 二. (25分) 1. 证明立方晶系的晶列[hkl ]与晶面族(hkl )正交. 2. 设晶格常数为a , 求立方晶系密勒指数为(hkl )的晶面族的面间距. 三. (25分) 设质量为m 的同种原子组成的一维双原子分子链, 分子内部的力系数为β1, 分子间相邻原子的力系数为β2, 分子的两原子的间距为d , 晶格常数为a , 1. 列出原子运动方程. 2. 求出格波的振动谱ω(q ). 四. (30分) 对于晶格常数为a 的SC 晶体 1. 以紧束缚近似求非简并s 态电子的能带. 2. 画出第一布里渊区[110]方向的能带曲线, 求出带宽. 3.当电子的波矢k =a πi +a π j 时,求导致电子产生布拉格反射的晶面族的面指数. (试题随答卷上交)

答案: 一. 填空(20分, 每题2分) 1.对晶格常数为a 的SC 晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族 的面指数为( 122 ), 其面间距为( a 32π ). 2.典型离子晶体的体积为V , 最近邻两离子的距离为R , 晶体的格波数 目为( 3 3R V ), 长光学波的( 纵 )波会引起离子晶体宏观上的极化. 3. 金刚石晶体的结合类型是典型的(共价结合)晶体, 它有( 6 )支格波. 4. 当电子遭受到某一晶面族的强烈反射时, 电子平行于晶面族的平均速度(不为 )零, 电子波矢的末端处在(布里渊区)边界上. 5. 两种不同金属接触后, 费米能级高的带(正)电.对导电有贡献的是 (费米面附近)的电子. 二. (25分) 1.设d 为晶面族()hkl 的面间距为, n 为单位法矢量, 根据晶面族的定义, 晶面族()hkl 将c b a 、、分别截为l k h 、、 等份, 即 a =?n a cos (a ,n )==a cos (a ,n )=hd , b =?n b cos (b ,n )= a cos (b ,n ) =kd , c =?n c cos (c ,n )= a cos (c ,n ) =ld . 于是有 n =a d h i +a d k j +a d l k =a d (h i +k j +l k ). (1) 其中, i 、j 、k 分别为平行于c b a 、、三个坐标轴的单位矢量. 而晶列 []hkl 的方向矢量为 =R ha i +ka j +la k =a (h i +k j +l k ). (2) 由(1)、(2)两式得 n =2a d R , 即n 与R 平行. 因此晶列[]hkl 与晶面()hkl 正交. 2. 立方晶系密勒指数为(hkl )的晶面族的面间距 22222222l k h a a l a k a h d hkl hkl ++= ++==k j i K πππππ 三. (25分) 1.

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆原著韩汝琦改编 (陈志远解答,仅供参考) 第一章晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积V所得到的小球总 体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率, (1)对于简立方结构:(见教材P2图1-1) a=2r, 4 V= 3 r3, Vc=a3,n=1 4 3 4 3 r r 二x 3 3 0.52 3 a 8r3 6 (2)对于体心立方:晶胞的体对角线BG= , 3a 4r n=2, Vc=a3 4 3 F) n=4, Vc=a3 (22r)3 (4 )对于六角密排:a=2r晶胞面积:S=6 S ABO nV Vc 0.68 (3 )对于面心立方:晶胞面对角线BC= , 2a 4r, a 2 ., 2r 0.74 晶胞的体积: V=S C V 3 2a324.2r3 n=1212 - 2 - 6 2 3=6个 24 2r3 0.74 (5 )对于金刚石结构,晶胞的体对角线BG=3a 4 2r 8r .3 n=8, Vc=a3

所以,面心立方的倒格子是体心立方。 r a a, r 於i r j r k) (2 )体心立方的正格子基矢(固体物理学原胞基矢) r a r r r a2刖j k) r a丿r r a3 2(i j k) 8 3r38 3r3 83 3 ___ r 3,3 0.34 1.2、试证:六方密排堆积结构中C(8)1/21.633 a 3 证明:在六角密堆积结构中,第一层硬球A、B、0的中心联线形成一个边长a=2r的正三角形,第二层硬球N位于球ABO所围间隙的正上方并与这三个球相切,于是: NA=NB=N0=a=2R. 即图中NABO构成一个正四面体。… 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 a i 2(j k) 证明:(1 )面心立方的正格子基矢(固体物理学原胞基矢)a2 a ' a(i k) 由倒格子基矢的定义: a3) b1 2 同理可得: a3 a ' 2(i j) (a2 a3) b2 a a 0, r r r 2, 2 i , j, k 3 a a a r r a a _ J0, 一—,a2 a3 I0, — 2 2 4 2 2 a a a a J J0 0 2 2 2 2 a2 r r r 7「j k) k) k) 2 1—(i a jr a k) 即面心立方的倒格子基矢与体心立方的正格基矢相k)

《固体物理学》基础知识训练题及其参考标准答案

《固体物理》基础知识训练题及其参考答案 说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。 第一章 作业1: 1.固体物理的研究对象有那些? 答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。 2.晶体和非晶体原子排列各有什么特点? 答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。 3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。有那些单质晶体分别属于以上三类。 答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。 面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。常见的面心立方晶体有:Cu, Ag, Au, Al等。 六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。常见的六角密排晶体有:Be,Mg,Zn,Cd等。 4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。 答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一 套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格; 金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格; Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶 格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。 ZnS:类似于金刚石。

黄昆固体物理总复习

Q02_02_001 ? Ц ?? ? ?? ? ???? ? ? 喚???? ??? ? ????ρ??喌 ?? ? ? 喌?ν? ?? ?喌??? ?? ?? π???щ?? ? ? ?ρ ? 喌 ? ?? ?喛 Ц ? 喚??? ????? 喌 ?? Ц?喛 ? ? 喚? ? ?? ? ? ? 喌 ? ? ? ? 喌 ε 喈Ц喉? ? ???? ?Ц? ? ??? π??? ?? ?喌? π ?? ???喌??? ? π ?倇喌 ??ρ??? ?? ?喌??? ? ? ???? ? ?? ? 喚 ? ?? ?8?喌 ? ??? ?? ?? ?? ?ν????? ?? ?? ? ? ?喌? щ? ?? ??? ? ???? ??ρ???? ??Q02_03_001?? 喟 ???? ? ?? ? ?? ?? 喌?? 喌 ?? Д? ?喌 Д?? 喌? Д??? Q02_03_002?? ?℃?? ? 喟 ク??テ? ? ?? Д????? ∑ В? ∑喌 ? ?? ?????喌 1??∑ 2?????∑? ?テ? ? ?? ??喚3 4)(1512)/(D D V T R T C 4 4S ā?? ?3? ?℃?? ?喌 ?? 喌? ? ? 喌 ?∑ ∑?? ????Q02_03_003?? ?℃??? ? 喟 ク??テ? ? ?? ν N ? ? ?喌 ?? ? Д? ???Z 0 ??テ? ? ? ?倇 喚āā? ?喍? ??? B V Nk C 3#? ? ? 喚T k B B V B e T k Nk C 0 20)(3Z Z == āā ? ? ??喌? 侻? ?さ?3 AT C V ? ? ?ε ∑??? ? Q02_04_001 ? ??ク?? ? ? ???? ? 喛

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

固体物理(黄昆)第五章总结

第五章 晶体中电子在电场和磁场中的运动 1. 准经典运动 晶体中电子在外加场中运动的讨论方法 ①解波动方程;②把电子当作经典粒子处理 1.1 波包和电子速度 波包中心0r 为粒子的中心,中心0k 称为粒子的动量,波包由布洛赫波组成, ()[] (,)()E k'i k'r t k' k' r t e u r ??-= ,其中,0 k'k k =+ (k 很小),0 0 () ()()k k E k'E k k E ≈+?? ,,,22 x y z k k k ?? - ≤≤ 电子的概率密度分布函数: 02 2 2 226sin(/2)sin(/2)sin(/2)|(,)||()|/2/2/2 k u v w r t u r u v w ????=???? , 波包中心u = v = w = 0,001()k k r E t =? ,0226|(,)||()|k r t u r ?=? 取得最大值,波包形状与0 2|()|k u r 无关 粒子速度:0 01()k k k v E =? 当波包远远大于原胞(自由程远远大于原胞线度)才能把电子看作准经典粒子 1.2 在外力作用下状态的改变和准动量 d ()0d k k F v t -?= ,d d k F t = ,k 即为准动量 1.3 加速度和有效质量 对于准经典运动,00 1()k k k v E =? ,d d k F t = ,22d 1()d v a F E k t k k ααβββα ?==??∑ , 2222 222 22222 2 1x x y x z x x y y y x y y z z z z x z y z E E E k k k k k a F E E E a F k k k k k a F E E E k k k k k ?? ??? ?????? ? ???? ? ? ? ??? ?= ? ? ?????? ? ? ???????? ? ???????? 倒有效质量张量:

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点 阵排列堆积起来的。 它的空间利用率就是这个晶体原胞所包含的点的数目 n 和小球体积 V 所得到的小球总 体积 nV 与晶体原胞体积 Vc 之比,即:晶体原胞的空间利用率, x nV Vc ( 1)对于简立方结构: (见教材 P2图 1-1) a=2r , V= 4 r 3 , Vc=a 3,n=1 3 4 r 3 4 r 3 ∴ x 3 3 0.52 a 3 8r 3 6 ( 2)对于体心立方:晶胞的体对角线 BG= 3a 4r a 4 3 x n=2, Vc=a 3 3 2 4 r 3 2 4 r 3 3 ∴ x 3 3 0.68 a 3 ( 4 3 8 r )3 3 ( 3)对于面心立方:晶胞面对角线 BC= 2a 4r , a 2 2r n=4 ,Vc=a 3 4 4 r 3 4 4 r 3 2 x 3 3 0.74 a 3 ( 2 2r) 3 6 ( 4)对于六角密排: a=2r 晶胞面积: S=6 S ABO 6 a a sin 60 3 3 2 2 = a 2 晶胞的体积: V= S C 3 3 a 2 8 a 3 2a 3 24 2r 3 2 3 n=12 12 1 2 1 3=6个 6 2 6 4 r 3 2 x 3 0.74 24 2r 3 6 ( 5)对于金刚石结构,晶胞的体对角线 BG= 3a 4 2r a 8r n=8, Vc=a 3 3

2-1(黄昆-固体物理)-教案

第二章固体的结合 本章的主要内容:阐明原子是依靠怎样的相互作用而结合成为固体的。 教学重点:晶体结合的基本类型。 教学难点:晶体结合的物理本质。 教学时数:3学时。 讲授方式:PPT文档。 § 2.1 离子性结合 1. 教学目的和要求: 通过讲解使学生理解并掌握离子性结合成为晶 体的本质。 2.教学重点:离子晶体结合的特点及性质。 3.教学难点:离子晶体结合的基本物理量:内能、晶格常数、体变模量和结合能的计算。 4.讲授时间:45分钟。 5.讲授方式:PPT文档。 6.作业:2.1,2.2,2.3。 一.离子晶体概述 元素周期表中第I族碱金属元素(Li、Na、K、Rb、Cs)与第VII族的卤素元素(F、Cl、Br、I)化合物(如NaCl,CsCl,晶体结构如图XCH001_009_01和XCH001_010所示)所组成的晶体是典型的离子晶体,半导体材料如CdS、ZnS等亦可以看成是离子晶体。

二.离子晶体结合的特点 以CsCl 为例,在凝聚成固体时,Cs 原子失去价电子,Cl 获得了电子,形成离子键。以离子为结合单元,正负离子的电子分布高度局域在离子实的附近,形成稳定的球对称性的电子壳层结构; Xe I Cs Kr Br Rb Ar Cl K Ne F Na ????- + - +- +- +, , , (1)离子晶体的模型:可以把正、负离子作为一个刚球来处理; 离子晶体的结合力:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。当排斥力和吸引力相互平衡时,形成稳定的离子晶体; (2)一种离子的最近邻离子为异性离子; (3)离子晶体的配位数最多只能是8(例如CsCl 晶体); (4)由于离子晶体结合的稳定性导致了它的导电性能差、熔点高、硬度高和膨胀系数小; (5)大多数离子晶体对可见光是透明的,在远红外区有一特征吸收峰。 举例: 氯化钠型(NaCl 、KCl 、AgBr 、PbS 、MgO)(配位数6) 氯化铯型(CsCl 、 TlBr 、 TlI)(配位数8) 离子结合成分较大的半导体材料ZnS 等(配位数4) 三. 离子晶体结合的性质 1)系统内能的计算 晶体内能为所有离子之间的相互吸引库仑能和重叠排斥能之和。以NaCl 晶体为例,r 为相邻正负离子的距离,一个正离子的平均库仑能: ∑ ++-++3 21321,,2 /122 32 2 22 2 102 ) (4) 1(' 2 1n n n n n n r n r n r n q πε 321,,n n n 遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为 相互作用能的一半。 一个负离子的平均库仑能: ∑ ++-++3 21321,,2 /1223 2 22 2 21 02 ) (4) 1(' 2 1n n n n n n r n r n r n q πε 321,,n n n 遍及所有正负离子,因子1/2—库仑作用为两个离子所共有,一个离子的库伦能为 相互作用能的一半。

黄昆版固体物理学课后答案解析答案

黄昆版固体物理学课后答 案解析答案 Prepared on 24 November 2020

《固体物理学》习题解答 黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3= ?= n=2, Vc=a 3 ∴68.083 )r 3 34(r 34 2a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2a 2 33

晶胞的体积:V=332r 224a 23a 3 8 a 2 33 C S ==? =? n=1232 126 112+?+?=6个 (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3 、试证:六方密排堆积结构中633.1)3 8(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R. 即图中NABO 构成一个正四面体。… 、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ? =+?? ?=+?? 由倒格子基矢的定义:1232()b a a π = ?Ω 3 1230, ,22 (),0,224 ,,0 2 2a a a a a a a a a a Ω=??= =,2 23,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++ 同理可得:232()2() b i j k a b i j k a π π= -+=+-即面心立方的倒格子基矢与体心立方的正格基矢相同。 所以,面心立方的倒格子是体心立方。

黄昆版固体物理学课后答案解析答案 (2)

《固体物理学》习题解答 黄昆 原着 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 33 33=π =π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 3 3≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 126 112+?+?=6个

(5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3=??= n=8, Vc=a 3 、试证:六方密排堆积结构中633.1)3 8(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R. 即图中NABO 构成一个正四面体。… 、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ?=+?? ?=+?? r r r r r r r r r 由倒格子基矢的定义:1232()b a a π=?Ω r r r 31230, ,22 (), 0,224 ,,0 2 2a a a a a a a a a a Ω=??==r r r Q ,223,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++r r r r r r r r 同理可得:232() 2() b i j k a b i j k a ππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。 所以,面心立方的倒格子是体心立方。 (2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ?=-++?? ?=-+?? ?=+-?? r r r r r r r r r r r r

固体物理和半导体物理学的一位先驱黄昆(精)

固体物理和半导体物理学的一位先驱—黄昆 在这欢庆建国60周年前夕,又逢黄昆先生90年诞辰,回想我国科学事业的艰苦历程和光辉业绩,我们更加缅怀老一代科学家多年来的无私奉献.作为先生的学生并有幸在先生身边工作多年,我把自己所了解的黄昆先生的科学贡献,对我国科学事业的贡献,以及黄昆先生的高尚人格和幽默风趣的性格为大家记录下来,来纪念这位科学大师. 一、黄昆的科学贡献 1955年,36岁的黄昆当选为中国科学院学部委员(后来称院士.1980年,黄昆被选为瑞典皇家科学院院士.1985年,黄昆成为刚成立的第三世界科学院首批院士中三位中国人之一.许多人知道,M.Born和黄昆合著?晶格动力学理论?被一些美国科学家称为这一领域的?圣经?。在黄昆去世后,时任美国物理学会会长的M.L.Cohen在唁电中称黄昆是?固体物理学理论和半导体物理学的一位先驱?,?作出了超凡(extraodinary的贡献?.为什么国际科学界给予黄昆这样高的荣誉呢? 黄先生自己说过,他的工作主要集中在声子领域.声子就是固体中原子(确切的说是原子实的振动(称为格波的量子力学描述.固体中声子态与固体中电子态决定了固体的几乎一切物理性质,而二十世纪固体物理的研究是人类从微观层次深入了解固体性质,从而得以利用并加以改造的基础。特别是半导体和微电子技术以及材料 科学得以发展,使得二十世纪高技术得以突飞猛进,人类社会生活发生重大改变. 而黄昆正是在固体物理领域,做出了自己杰出的贡献. 固体中的声子分为两类,一类称为声学声子,就是组成固体的最小可重复单元中的各个原子近似于以相同方向振动,它主要与物质的力学和声学性质有关.而另一类是最小单元中的各个原子相对振动,它主要与物质的光学性质(特别是红外波段有关,称为光学声子.从微观的原子模型来得出声子的性质,现在已经不太困难(虽然理论上仍有个别未完全解决的的问题,但在二十世纪上半叶几乎是不可能的.因此必须把微观理论的参数和宏观的可测量的物理量联系起来. 对于晶格的声学波(声学声子,作为声子理论创始人之一的波恩在二十世纪初就发展了成熟的唯像宏观理论,建立了这种联系。而对于具有极性的固体

固体物理(黄昆)第一章总结

第一章晶体结构 1.晶格实例 1.1面心立方(fcc)配位数12格点等价格点数4致密度0.74 原胞基矢: () () () 1 2 3 2 2 2 a a j k a a k i a a i j =+ =+ =+ 原胞体积3 123 ()/4 Ωa a a a =??= NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl- 具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等) 1.2简单立方(SC)配位数6格点等价格点数1致密度0.52 CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl- 钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3 氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等 1.3体心立方(bcc)配位数8格点等价格点数2致密度0.68 原胞基矢: 1 2 3 () 2 () 2 () 2 a a i j k a a i j k a a i j k =-++ =-+ =+- 原胞体积:3 123 ()/2 Ωa a a a =??= 体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等 1.4六角密堆(hcp)配位数12两种格点原子数6基元数3致密度0.74 典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等 1.5金刚石结构最近邻原子数4次近邻原子数12致密度0.34 晶体结构=布拉维格子(面心立方)+ 基元(A+B) *将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等 2.晶体的周期性结构 2.1基本概念 晶体:1. 化学性质相同 2. 几何环境相同

相关文档
最新文档