封闭异氰酸酯几种反应的动力学

封闭异氰酸酯几种反应的动力学
封闭异氰酸酯几种反应的动力学

异氰酸酯与氨基反应

异氰酸酯与氨基反应 异氰酸酯跟活泼氢反应,一般来说可以是羟基,氨基等,羟基可以是醇羟基、酚羟基,活泼氢的反应里氨基反应的活性很高水的反应性也很高,通常来讲在较低的温度下就可以发生异氰酸酯和氨基的反应了,当然和水的反应在合成时候我们是不愿意看到的,而在潮气固化的时候我们就需要它,我做合成的时候尝试过在室温下用乙二胺的扩链,这个也是可以实现的,当然反应时间比在40多度时候要稍稍长一些,而羟基相对来讲活性低一些所以需要的温度比较高,文献上60度出现的比较多,但是个人实践表明在温度可控性较好的情况下在90度下反应也是可行的,我一般控制在75-80度,脂肪族的异氰酸酯我会在反应之初就在较高温度反应且加入催化剂,否则反应的转化率太低,而芳香族的我一般在60度左右不加催化剂反应一段时间再升高温度加入催化剂,另外就是氨基甲酸酯与异氰酸酯的反应,这个反应需要在较高的温度下发生(100多度具体多少我忘了),这个也就是为什么我们需要控制反应温度的原因,避免温度过高发生副反应而凝胶。 胺基与异氰酸酯的反应是聚氨酯制备中较为重要的反应之一。凡是伯胺基及仲胺基的化合物,除具有较大位阻的外,基本都能与异氰酸酯反应。异氰酸酯与胺反应生成取代脲。总的来说,胺基与异氰酸酯的反应较其它活性氢化合物为高。异氰酸酯与胺伯化合物的反应活性除了受异氰酸酯结构影响外,还受胺类化合物结构的影响。强碱性的胺活性大。脂肪族伯胺与异氰酸酯的活性相当大。在0~25度就能和异氰酸酯快速反应,生成脲类化合物。脂肪族伯胺与芳香族异氰酸酯的反应太快,来不及控制,很少使用。在聚氨酯制备中,因伯胺活性太大,一般应在室温下反应。 脂肪族仲胺和芳香族伯胺与异氰酸酯反应就比脂肪脂肪族伯胺慢。对于芳香族胺,若苯环的邻位上有取代基,由于存在空间位阻效应,反应活性要比无邻位取代基的小;其中存在吸电子取代基者使胺基的活性大大降低。而对位存在吸电子取代基的芳胺的活性比无取代基的活性高,这是因为它通过苯环使得胺基的碱性增强,容易失去质子。 常用的二胺化合物是活性较缓和的芳香族二胺,如3,3ˊ-二氯-4,4ˊ二氨基二苯甲烷等,二氨基二苯甲烷氨基的邻位Cl原子的空间位阻基电子诱导效应使得NH2的活性较低。下表为几种芳香族二胺与端基NCO聚氨酯预聚体反应的凝胶时间。 胺类名称凝胶时间∕min温度 对苯二胺1室温 3,3ˊ-二甲基-4,4'-联苯二胺3室温(在溶剂中) 多亚甲基多苯胺0.5128度(熔融状态) 4,4ˊ二氨基二苯甲烷3室温(在溶剂中) 联苯二胺5室温 15~20 3,3ˊ-二氯-4,4ˊ二氨基二苯 甲烷 3,3'-二甲氧基-4,4'-二氨基 5室温 苯甲烷 3,3ˊ-二氯-4,4ˊ-联苯二胺〉15~20

异氰酸酯

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。 2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH2) 6-NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼.

6、二环己基甲烷二异氰酸酯(H12MDI) 是一种常用的脂肪族二异氰酸酯。 上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄: 还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜. 另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式C3H3O ,分子量61.0 ,结构式(CH3)2-CHOH ,它是正丙醇CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重 0.7851 、熔点- 88 ℃、沸点 8 2.5 ℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限 3.8 ~10.2%( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下

多异氰酸酯

异氰酸酯 中文名称:异氰酸酯[1] 中文别名:异氰酸 英文名称:isocyanicacid 英文别名:Isocyanicacid;Hydrogenisocyanide;Polyisocyanates; CAS号:75-13-8 分子式:CHNO 分子量:43.0247 密度:1.04g/cm3 沸点:39.1℃ 闪点:<-15℃(闭杯) 自燃点:534℃ 蒸汽压:6750mmHgat25°C 外观:无色清亮液体,有强刺激性。 溶解性:15℃时水中溶解度:1%;20℃时6.7%。 用途:用于家电、汽车、建筑、鞋业、家具、胶粘剂等行业。 危险性:除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 化学反应:容易与包含有活泼氢原子的化合物:胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳;在过量水存在时,甲胺再与MIC反应生成1,3-二甲基脲,在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下,发生自聚反应并放出热能。 遇热、明火、氧化剂易燃。燃烧时释出MIC蒸气、氮氧化物、一氧化碳和氰化氢。 高温(350~540℃)下裂解可形成氰化氢。

遇热分解放出氮氧化物烟气。 制备方法:工业上主要采用伯胺光气法生产异氰酸酯,其反应如下:由二胺光气法可制得二异氰酸酯:随着科技的进步和合成理论的不断深入,硝基化合物直接与一氧化碳高温高压催化合成异氰酸酯的工艺越来越来成熟。 由于异氰酸酯结构中含有不饱和键,因此具有高活性,容易与一些带活性基团的有机或无机物反应,生成聚氨酯弹性体。 (1)与羟基化合物的反应:如与多元醇、聚醚、聚酯酰胺、蓖麻油等含活性羟基化合物反应生成氨甲基酸酯。 (2)与含氨基化合物的反应:与胺类化合物反应通常生成取代脲,如果进一步发生反应则最终生成缩二脲。 (3)与水反应:与水反应生成胺和二氧化碳,胺进一步与异氰酸酯反应生成取代脲。 (4)与含羧基化合物的反应:与有机羧酸、末端为羧基的聚酯等化合物反应,先生成混合酸酐,最后分解放出二氧化碳而生成酰胺。 (5)与氨基甲酸酯的反应:反应生成脲基甲酸酯。 此外,异氰酸酯在适当的条件下还可以发生自聚反应,形成二聚体或高分子量的聚合物,因此,异氰酸酯一般要求在低温、无光照条件下储存。 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(TolueneDiisocyanate,简称TDI);二苯基甲烷二异氰酸酯(MethylenediphenylDiisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的1,6-己二异氰酸酯(HDI)。

用封端异氰酸酯制备水性聚氨酯方法

用封端异氰酸酯制备水性聚氨酯方法 PU之王(2006-6-29 15:39:10)点击:1196回复:2 IP:60.163.107.* 一. 前言 曾报道了用封端异氰酸酯制备水性聚氨酯的方法,本文将较详细地论述此方法。-NCO基是一种反应很强的宫能团,可以和一切含活泼氢的化合物反应,遇水很容易反应同时放出CO2 ,所以生成的氨基进一步与-NCO基反应,生成脲,再继续反应,交联凝胶,因此难以制得水性聚氨酯。如果将-NCO基封闭,则可避免这种现象。通过选择一种适当的化合物,使其与-NCO基反应,生成在一定条件下稳定的化合物,然后在热处理阶段脱封,再生原来的异氰酸酯基,使之交联固化。 二. 影响封端-NCO脱封温度的因素 早在1949年Petersen[2]对封端化-NCO作了报道。1975年Wicks<3>又较详细地介绍了各种封端剂、使用方法、水性涂料及其展望。为了节省资源和防止环境污染等目的,从用苯酚对封端剂用于电线涂料以来,又先后开发了各种类型封端剂,诸如酚类、醇类、胺类、亚胺类、酰胺类、亚甲基类、内酯类、硫醇类、肟类和NaHSO3等。欲获得综合性能优良的封端-NCO为端基的预聚物适宜的配比外,控制脱封温度是十分重要的。浜林保介绍了一些封端剂与六甲撑二异氰酸酯(HMDI)反应产物的脱封温度<4>,如表1所示。。。1.封端剂种类对封端温度的影响 表1和表3表明,脱封温度随封端剂种类而异。芳香族系封端剂的脱封温度比脂肪族系的低。例如,对一个羟基来说,与芳香族基团连接的酚类比与脂肪族基团连接的醇类的脱封温度要低,而且在酚类封端剂中,苯环上若有极性取代基(即吸收电子基团)的放大封端剂的脱封温度更低。因为,在封端化NCO(。。。)中,分解反应受到羟基和﹒B基之间键合力的影响。羟基碳原子带正电荷,与﹒B基团带负电荷键合,两者的电荷差越大,键合力越强,破坏这种键所需要的能量越高,即脱封温度越高。在脂肪族类中,B=RO,因为烷基是推电子的,使与羟基碳原子键合的碳原子上电荷增加,负电性增强,所以脱封温度高。而在芳香族酚类中,B=C6H5�O,由于苯基团是吸电子的,使与羟基碳原子键合的氧原

异氰酸酯化学结构

异氰酸酯化学结构 Prepared on 24 November 2020

几种重要的异氰酸酯原料2-3 1、甲苯二异氰酸酯(TDI) 一般为2,4-甲苯二异氰酸酯和2,6-甲苯二异氰酸酯的混合物,前者含量一般占80%。2,4TDI邻对位异氰酸酯反应性相差很大,利用这个差别,可以制备含有异氰酸酯基团的加成物.邻对位反应活性随温度的变化而变化,在高温下(100℃以上),反应性趋于一致,TD1有较高毒性,但价钱便宜,用量最大。2、二苯甲烷二异氰酸酯(MDI) 和TDI一样是芳香族异氰酸酯、用量也较大 3、对苯二亚甲基二异氰酸酯(XDl) 它虽有苯环,但属于脂肪族异氰酸酯 4、己二异氰酸酯(HDI) 是脂肪族异氰酸酯.和TDI一样,蒸气压高,毒性大. OCN-(CH 2) 6 -NCO (HDI) 5、异佛尔酮二异氰酸酯(IPDI) 是一种性能优良的脂肪族二异氰酸酯,商品IPDI是顺反两种异构体的混合物.IPDI的两个异氰酸酯基团的反应性是不同的,用胺为催化剂时一级异氰酸酯基比较活泼,而用有机锡为催化剂时二级异氰酸酯基比较活泼. 6、二环己基甲烷二异氰酸酯(H 12 MDI) 是一种常用的脂肪族二异氰酸酯。

上述多异氰酸酯中TDI和MDI是芳香族异氰酸酯,其活性比脂肪族的高得多,反应要快得多,但所得漆膜易泛黄.泛黄的原因在于有自由胺基存在,因异氰酸酯与水反应或氨酯键光解都能生成芳香胺,芳香胺受氧作用可得酣式结构,如: 当TDI三聚后,在环上的叔氮原子没有氢原子,并为环所稳定,不能裂解,环外氨酯即使分解成胺,也不能生成醌式结构,所以不易泛黄:还有一些其他的异氰酸酯,如四甲基间苯二甲基二异氰酸酯(Ⅱ) 它和XDI一样是脂肪族二异氰酸酯.但它的异氰酸酯和叔碳原子相连,与羟基反应较慢,与水更慢,便于使用,它比一般脂肪族异氰酸酯便宜.另外两种是可以和烯类单体共聚的异氰酸酯(Ⅲ)和(Ⅳ): 一般(Ⅳ)比较贵,且不稳定. 多异氰酸酯作为聚氨酯涂料的一个组分有两个问题需要改进,一是活性太大,二是毒性问题.解决毒性问题的途径有三个:(1)与多元醇反应制成加成物;(2)与水反应制成缩二脲;(3)制成三聚体,其结果都是分子量增大,蒸气压降低,毒性危害减小。 异丙醇的分子式 C3H3O ,分子量,结构式(CH3)2-CHOH ,它是正丙醇 CH3-CH3-CH2-CH2OH 的同分异构体。 ( 一 ) 异丙醇的制作先用 90 ~ 95% 硫酸吸收丙烯 CH3CHCH2( 从热裂石油气分出 ) ,继加水分解异丙基硫酸,再用蒸馏法蒸出异丙醇。 异丙醇的理化性质 1. 异丙醇是无色透明可燃性液体,有与乙醇、丙酮混合物相似的气味。比重、熔点- 88 ℃、沸点℃。 2. 异丙醇能溶于水、醇、醚、氯仿。蒸气与空气形成爆炸性混合物,爆炸极限~ %( 体积 ) 。可用於防冻剂、快干油等,更可作树脂、香精油等溶剂,在许多情况下可代替乙醇使用。也可用作涂料,松香水,混合脂等方面;无色透明;纯天然产品。 PS 聚苯乙烯化学和物理特性大多数商业用的PS都是透明的、非晶体材料。PS具有非常好的几何稳定性、热稳定性、光学透过特性、电绝缘特性以及很微小的吸湿倾向。它能够抵抗水、稀释的无机酸,但能够被强氧化酸如浓硫酸所腐蚀,并且能够在一些有机溶剂中膨胀变形。典型的收缩率在~%之间。

封闭异氰酸酯固化剂的封闭剂

封闭异氰酸酯固化剂的封闭剂介绍 1.封闭剂的选择要点 ●封闭反应速率适中且能彻底反应; ●解封闭反应速率较高; ●解封闭温度较低; ●封闭剂及封闭型异氰酸酯的水分散性好; ●与体系中树脂的相容性好; ●封闭剂环保,无毒,封闭后的稳定性好。 2.各种封闭剂的优缺点 2.1 醇、硫醇及其它含羟基化合物 醇类封闭剂,一般其稳定性较好,解封闭温度较高。 三卤化合物的解封闭温度较低,解封闭速率较高。据报道,三氟乙醇封闭型和三氯乙醇封闭型苯基异氰酸酯的解封闭温度要显著低于正丁醇封闭型苯基异氰酸酯,且解封闭速率较高。 长链正烷醇的碳原子数量对解封闭速率有影响,辛醇封闭型苯基异氰酸酯的解封闭速率要小于正丁醇封闭型。 伯醇和仲醇封闭型异氰酸酯在受热解封闭时常常可得到游离的异氰酸酯基,而叔醇封闭型异氰酸酯的热分解反应较为复杂,可得到二氧化碳、烯类和胺类化合物等一系列副产物。因而,叔醇封闭型异氰酸酯常用作环氧树脂或含环氧基团树脂的固化剂。 与醇类化合物类似,硫醇类化合物同样可用做异氰酸酯封闭剂,如三苯甲硫醇、己硫醇、十二烷基硫醇都已用于异氰酸酯的封闭反应,但由于硫醇化合物的刺激性气味和受热时易氧化的特性,限制了该类封闭剂的应用。 其他一些羟基化合物,如乙二醇单己醚等二醇单醚、N,N-丁二醇乙酰胺等N,N-二醇酰胺和3-羟基噁唑烷等羟基杂环化合物,也因相应的低解封闭温度、较好的亲水性等特点而用作异氰酸酯的封闭剂。 2.2苯酚、吡啶酚及相应的巯基化合物 同醇类封闭剂相比,酚类封闭剂与异氰酸酯基的反应速率较低,但其封闭型

异氰酸酯的解封闭速率较高,解封闭温度较低,是目前研究较为深入的一种封闭剂,在理论和应用方面都有很多的报道。 一般而言,苯环上取代基的电子效应和空间效应对封闭反应和解封闭反应起着重要的影响。吸电子取代基能够有效降低酚羟基的亲核性,从而加快解封闭反应,降低解封闭温度。对于同样的异氰酸酯,不同的对位吸电子取代酚封闭型异 >p-Br>p-Cl>p-F>H>p-Me。邻位甲基的空氰酸酯的解封闭速率顺序为:p-NO 2 间位阻效应使得邻甲苯酚封闭型异氰酸酯的氨基甲酸酯键更不稳定,其解封闭温度要低于对甲苯酚封闭型异氰酸酯。但是,2,6-二甲基苯酚封闭型的解封温度却很高,表明两个甲基的推电子效应对解封闭温度的影响超过了邻位甲基的空间位阻效应。 苯酚类化合物可通过一系列的反应在苯环上引入各种取代基,从而合成新型的多功能封闭剂。例如,2-二甲胺基甲基苯酚封闭型六亚甲基二异氰酸酯季铵盐化制备的水性乳液,可用于抗菌涂料等领域。2-二甲胺基甲基苯酚不仅可作为封闭剂参与环氧热固化涂料和丙烯酸光固化涂料的制备,还可作为助引发剂参与固化反应。2,2-(4-羟基苯基)乙酸封闭型甲苯二异氰酸酯中的羧基能同环氧基团反应,可用于环氧电泳涂料的制备。 与苯酚封闭型异氰酸酯相比,2-羟基吡啶封闭型异氰酸酯具有更低的解封闭温度,可以在110℃、20min 下快速固化含羟基丙烯酸树脂,而苯酚封闭的则需要在170℃下、20min 才能固化,这是因为吡啶环中的氮原子可降低羟基亲核性,从而降低解封闭温度。同时利用吡啶基的成盐性,可制备水溶性的封闭型异氰酸酯。3-羟基吡啶、2-氯-3-羟基吡啶、3-羟基喹啉、8-羟基喹啉等吡啶酚和喹啉酚类封闭型异氰酸酯一般也具有比苯酚封闭型异氰酸酯更低的解封闭温度和更好的亲水性,但仍存在着解封闭过高和固化时间过长等缺点。 2-羟基吡啶分子式 2.3肟

封闭型多异氰酸酯

封闭型多异氰酸酯-正文 多异氰酸酚用苯酚、ε-己内酰胺等封端,形成的封闭型异氰酸酯,可与各种低聚物多元醇组合,在常温下稳定,可配制单组分烘烤型涂料,用于各种金属、塑料涂层,如电线漆包线漆、卷材涂料。 以Bayer Materials sciencc公司公司的封闭型异氰酸酯为例,介绍部分封闭型异氰酸酯的特性和用途。 Desmodur AP stable是苯酚封闭的多异氰酸酯,该固体树脂软化点约100℃,溶于醋酸乙酯、丙二醇单甲醚醋酸酯、甲乙酮及醇类溶剂,一般可用二甲苯、溶剂石脑油调节粘度。使用催化剂可加快固化速度。在140℃以上解封闭。它与苯酐聚酯多元醇结合,配制漆包线该,得到可直接焊接的漆包线。 Desmodur BL1100是己内酰胺封闭四芳香族多异氰酸能,与环脂族二胺(如BASF公司Laromin C260)组成高柔韧性单组分烘烤漆。易溶于醚、醇、酯及芳烃溶剂,有限溶于脂肪烃。可用氨酯级溶剂稀释。用于浸渍涂布或幕涂的涂料、以及胶粘剂。BL1100与C260以10/1质量比配合,在40℃以下贮存稳定,烘烤固化条件为150℃/45min、160℃/30min或180℃/10min。 Desmodur RL1265为己内酰胺封闭型芳香族多异氰酸酯,与多元醇组分或多元胺结合,配制单组分烘烤漆。易溶于醚、酯、酮、芳烃和松节油,脂肪烃只能有限稀释。需用氨醋级溶剂稀释。一般与聚酯多元醇配合,也可与增塑剂、环氧树脂混溶。当用作多元醇的交联剂组分,得到的涂料具有高硬度、优良的耐变形性、耐冲击性和耐化学品性能。应用领域包括管内涂料、罐头漆和耐碎石涂料。可在150℃/30mln固化。可与BLll00配合,改善卷材涂料等的硬度。 Desmodur BL3165是丁酮亏封闭的HDI性多异氰酸酯交联剂,用于烘烤漆,以100号石脑油/二元酸酯(2 5/10)为混合溶剂。BL3165用作固化剂刘,与聚酯多元醇等配制耐黄变、耐候的单组分聚氨酯烘烤漆。BL3165可用酯、酮及芳烃类溶剂稀释,固含量可稀释到40%,也可用高沸点的溶剂如溶剂石脑油稀释到60%。主要用途为卷材涂料、汽车漆、电器涂料、罐头漆等。典型固化条件(与支化聚酯配合)在无催化剂下160℃/60min、180℃/15min或200℃/7min,加DBTL可明显降低烘烤温度,而不降低贮存稳定性,催化固化条件为130℃/60min 、150℃/15min或175℃/7min。

异氰酸酯的其它反应

异氰酸酯的其它反应 2.1.9.1 异氰酸酯与羧酸的反应 异氰酸酯与羧酸反应,先生成热稳定性差的羧酸酐,然后分解,生成酰胺和二氧化碳(如下式)。COOH与NCO的反应活性比OH低得多。 这类反应比较少见,不过在含-COOH的聚酯体系或含侧羧基的离聚体体系,过量的异氰酸酯可与羧基反应。 芳香族异氰酸酯与羧酸反应,主要生成酸酐、脲和二氧化碳: 2ArNCO+2R-COOH→ArNHCONHAr+RCOOCOR+CO2 2.1.9.2 异氰酸酯与环氧树脂的反应 异氰酸酯与环氧基团在胺类催化剂的存在下生成含噁唑烷酮(oxazolidone)环的化合物(见下式)。噁唑烷酮环具有较高的耐热性,含噁唑烷酮基的聚合物具有较高的耐热性。 二异氰酸酯与二环氧化合物在催化剂作用下可竹成聚噁唑烷酮;含羟基的环氧树脂。如低环氧值的双酚A环氧树脂与二异氰酸酯(含端NCO预聚体)生成聚氨酯-噁唑烷酮;在过量多异氰酸酯、环氧树脂及三聚催化剂的存在下,可生成聚氨酯-噁唑烷酮-异氰脲酸酯聚合物,这些反应可用于制造耐高温硬质聚氨酯。 2.1.9.3 异氰酸酯与羧酸酐的反应 异氰酸酯基与酸酐反应,生成具有较高耐热性的酰亚胺环,二异氰酸酯能与二羧酐反应生成耐热性高的聚酰亚胺。酰亚胺基的耐热性与异氰脲酸酯相当: 异氰酸酯还可以与许多化合物反应,例如:与氰酸反应可生成亚氨乙内酰脲,继而再与异氰酸酯反应制得聚乙内酰脲:异氰酸酯与氨基酸或与其有关酯反应可合成出乙内酰脲。若再与异氰酸酯反应,可制得聚乙内酰脲;与氨反应生成单取

代脲,并可继续反应;与肼(联氨)反应生成二脲(见下式);还可与硫醇、卤化氢等反应;等等。 RNCO+NH3→RNHCONH2 RNCO+RNHCONH2→RNHCONHCONHR RNCO+NH2-NH2→RNHCONHNHCONHR RNCO+R′SH→RNHCOSR′

异氰酸根的反应

异氰酸酯的各种常见反应 一、异氰酸酯与醇的反应 带有端羟基的聚醇(如聚酯、聚醚及其他多元醇)与多异氰酸酯反应,生成聚氨酯类聚合物,这是合成聚氨酯最基本的反应。 根据研究得知:氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚台物中具有硬链段特征,而由碳碳链作为主链的聚醇,具有较强的挠曲作用,成为聚合物的软链段?聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物,显然,使用分子量较大的聚醇,将会使聚合物刚链段比例下降、刚性基团间隔增加。在实际合成中,应根据产品不同性能要求和应用场合,选择不同分子量的聚醇品种。不同分子量的聚醇对PUR性能的影响及不同分子量的聚醚品种对与MDI反应的速度都是不一样。 在使用聚醇与异氰酸酯反应时,除原料品种和分子量等因素外,更重要的影响因素是彼此反应基团数的比例,即-NCO/-OH比例,它决定了生成聚合物的分子量太小,这对于二步法合成聚氨酯的反应是极其重要的技术参数。跟据-NCO/-OH比不同,基本有以下情况, 1) -NCO/-OH>1 即- NCO过量,这样生成的聚合物端基为异氰酸基,在聚氨酯合成中.大多数预聚体法(二步法)是采用一NCO/_一OH>1,如PU弹性体、粘合剂,涂料以及二步法合成PU泡沫塑料等。 2) -NCO/-OH)=1 在一NCO基团和-OH基团都是双官能度时,据聚合物化学理论,生成的聚合物分子应该是无穷大 在泡沫塑料和热塑性聚氨酯材料制备中,常将-NCO/-OH控制在-NCO/-OH =1左右 3)-NCO/-OH<1 即-OH过量,生成的聚合物的两端应是羟基 此种情况的使用较少,主要用于便于贮存的生胶、粘合剂和某些中间体的制备。 二、异氰酸酯与苯酚的反应 异氰酸酯和酚的反应情况与醇相似,但由于苯环的吸电作用,使酚的羟基中的氧原子电子云密度下降、致使它与异氰酸酯的反应活性下降,该类反应主要作为异氰酸酯封闭反应 三、异氰酸酯与水的反应 该反应是制备聚氨酯泡沫塑料的重要反应。在反应中生成二氧化碳,使得水成为制备聚氨酯泡沫最廉价的化学发泡剂.但该反应放热量大,用量过大,会产生泡沫体烧芯同时,水用量过多,使得生成聚合物中脲基含量高,将会使PU软质泡沫体的手感变差,因此,在制备PU软质泡沫体时,严格控制水的音量低于4%。 对于希望出现泡沫气穴的其他聚氢酯产品,如橡胶、涂料、纤维等产品.对水的限制都非常严格,不希望因原料、溶剂,甚至潮湿空气中的水分与异氰酸酯接触而产生上述反应。 四、异氰酸酯与羟酸的反应 见第二节. 五、异氰酸酯与胺的反应 含有端氨基的化含物与异氰酸酯的反应,在聚氯酯合成中占有重要地位,由于氨基活跃,且具有一定碱性,故异氰酸酯能与任何含氨基的化合物反应,生成取代脲。 在聚氨酯材料的合成中,低分子胺类化合物常被用作链扩张剂使用.它们与异氰酸酯反应生成脲基团,与大分子中的氨基甲酸酯基团等内聚能高的基团构成了聚合物中的刚性琏段,同时,在在异氰酸酯过量的情况下,这些基团还能进一步反应,形成缩二脲等交联结构,从而使聚合物在力学性能等方面有较大的提高,使用普通聚酯进行氨化反应,可以使传统聚醚的端羟基转化为端氨基,从而开发出高活性的聚醚新品种,井由此开发出“冷热化”型聚氨酯泡沫等新品种;同时,以这类高活性的聚胺醚为基础,还开发出反应速度更快、生产效率

封闭型多异氰酸酯

封闭型多异氰酸酯 多异氰酸酚用苯酚、ε-己内酰胺等封端,形成的封闭型异氰酸酯,可与各种低聚物多元醇组合,在常温下稳定,可配制单组分烘烤型涂料,用于各种金属、塑料涂层,如电线漆包线漆、卷材涂料。 以Bayer Materials sciencc公司公司的封闭型异氰酸酯为例,介绍部分封闭型异氰酸酯的特性和用途。 Desmodur AP stable是苯酚封闭的多异氰酸酯,该固体树脂软化点约100℃,溶于醋酸乙酯、丙二醇单甲醚醋酸酯、甲乙酮及醇类溶剂,一般可用二甲苯、溶剂石脑油调节粘度。使用催化剂可加快固化速度。在140℃以上解封闭。它与苯酐聚酯多元醇结合,配制漆包线该,得到可直接焊接的漆包线。 Desmodur BL1100是己内酰胺封闭四芳香族多异氰酸能,与环脂族二胺(如BASF公司Laromin C260)组成高柔韧性单组分烘烤漆。易溶于醚、醇、酯及芳烃溶剂,有限溶于脂肪烃。可用氨酯级溶剂稀释。用于浸渍涂布或幕涂的涂料、以及胶粘剂。BL1100与C260以10/1质量比配合,在40℃以下贮存稳定,烘烤固化条件为150℃/45min、160℃/30min或180℃/10min。 Desmodur RL1265为己内酰胺封闭型芳香族多异氰酸酯,与多元醇组分或多元胺结合,配制单组分烘烤漆。易溶于醚、酯、酮、芳烃和松节油,脂肪烃只能有限稀释。需用氨醋级溶剂稀释。一般与聚酯多元醇配合,也可与增塑剂、环氧树脂混溶。当用作多元醇的交联剂组分,得到的涂料具有高硬度、优良的耐变形性、耐冲击性和耐化学品性能。应用领域包括管内涂料、罐头漆和耐碎石涂料。可在150℃/30mln固化。可与BLll00配合,改善卷材涂料等的硬度。 Desmodur BL3165是丁酮亏封闭的HDI性多异氰酸酯交联剂,用于烘烤漆,以100号石脑油/二元酸酯(2 5/10)为混合溶剂。 BL3165用作固化剂刘,与聚酯多元醇等配制耐黄变、耐候的单组分聚氨酯烘烤漆。BL3165可用酯、酮及芳烃类溶剂稀释,固含量可稀释到40%,也可用高沸点的溶剂如溶剂石脑油稀释到60%。主要用途为卷材涂料、汽车漆、电器涂料、罐头漆等。典型固化条件(与支化聚酯配合)在无催化剂下160℃/60min、180℃/15min或200℃/7min,加DBTL可明显降低烘烤温度,而不降低贮存稳定性,催化固化条件为130℃/60min 、150℃/15min或175℃/7min。 Dcsmodur BL3175是基于HDI的交联烘烤漆树脂,溶剂为100号石脑油。其用途与BL3165相似,同含量比BL3165高。 Desmodur BL3272是脂肪族封闭异氰酸酯树脂,溶剂为MPA。BL3272与聚酯多元醇配制耐黄变单组分聚氨酯烘烤漆。它可用酯、酮及芳烃类溶剂稀释到35%。它与Desmophen T1665结合可配制高质量卷材涂料,也可用于涂层厚度在40μm以内的底涂和顶涂涂料。耐候性比BL3175和BL 4265的好。它与DesmoPhen T1665配制的涂料,无催化剂时的典型固化条件为165℃/40min、170℃ /30min、180℃/20min或200℃/10min;加占固体分0.3%的催化剂DBTL,固化条件为160℃/30min、180℃/10min或200℃/5min。 Desmodur BL 3370是基于HDI的烘烤漆树脂,溶剂MPA,可用酯、酮及芳烃类溶剂稀释到40%。BL3370与聚酯多元醉配制耐黄变单组分烘烤漆。主要用途是高级工业整修涂料,如罐头漆、卷材漆、汽车表面涂料。典型固化条件为100℃/50min、120℃/20min或160℃、7min。无需催化剂。峰值金属温度为210℃。 Desmodur DL3475是脂肪族交联烘烤漆树脂,溶剂为石脑油/醋酸丁酯(1/1),可稀释到40%,浓度过低时贮存会浑浊和沉淀。它具有较高的反应性,与饱和聚酯多元醇配制低烘烤温度的耐黄变单组分烘烤漆。主要用于配制高质量工业涂料,特别是罐头漆和管材漆。根据所用多元醇的类利,烘烤固化湿度可低至100℃。典型固化条件为120℃/20min或160℃/7min。无需催化剂。峰值金属温度为216℃。 BL3165、BL3175、BL3272、RL170、BL3475可作为常规烘烤漆的添加剂以改善柔韧性、始附性和耐候性。 Desmodur BL4265是丁酮亏封闭的脂肪族多异氰酸酯交联剂,溶剂为石脑油。它可与柔性聚酯结合,配成单组分耐黄变、耐候、耐化学品的烘烤型涂料,用于高级工业整修涂料及卷材涂料。加催化剂DBTL可降低烘烤温度。例如与聚酯多元醇Desmophen A365/670(1/1)配合,无催化剂下固化需180℃/20mIn,有催化剂固化条件为150℃/15min或125℃/60min。它添加到常规烘烤涂料中以

异氰酸酯的特征

异氰酸酯的特征 一 异氰酸酯的结构特征 异氰酸酯:分子中含有异氰酸酯基(-NCO ,即-N==C==O )的化合物,其化学活性适中。其化学活性主要表现在其特征基团-NCO 上,该基团具有重叠双健排列的高度不饱和健结构(-N=C=O),它能和各种含活泼氢的化合物进行反应,化学性质极其活泼。 共振理论:Baker 提出异氰酸酯基团的共振理论,由于异氰酸酯基的共振作用,使其电荷分布不均匀,产生亲核中心及亲电中心,共振结构电荷分布如下 在该特征基团中:根据异氰酸酯基团中N 、C 、O 元素的电负性排序:O(3.5)>N(3.0)>C(2.5),三者获得电子的能力是:O >N >C 。另外:—C=O 键键能为733kJ/mol,-C=N-键键能为553kJ/mol,所以碳氧键比碳氮键稳定。N ,C ,O 原子的电负性顺序为O>N>C 。 因此,由于诱导效应在-N=C=O 基团中氧原子电子云密度最高,氮原子次之,碳原子最低。 氧原子(O )电负性最大,是亲核中心,可吸引含活性氢化合物分子上的氢原子而生成羟基,但不饱和碳原子上的羟基不稳定,重排成为氨基甲酸酯(若反应物为醇)成脲(若反应物为胺)。 碳原子(C )电子云密度最低,呈较强的正电性,为亲电中心,易受到亲核试剂的进攻。 当异氰酸酯与醇、酚、胺等含活性氢的亲核试剂反应时,-N=C=O 基团中的氧原子接受氢原子形成羟基,但不饱和碳原子上的羟基不稳定,经过分子内重排生成氨基甲酸酯基。 异氰酸酯与活泼氢化合物的反应,就是由于活泼氢化合物分子中的亲核中心。进攻NCO 基的碳原子而引起的。反应机理如下: R N R C 1[R R 1 H O H R 1 d d d

异氰酸酯

异氰酸酯 主要异氰酸酯 TDI 甲苯二异氰酸酯 应用:软质PU泡沫塑料、涂料、弹性体、胶粘剂、密封胶。 生产厂商:河北沧州大化、甘肃银光化学工业公司、山西太原蓝星化工有限公司、Bayer、BASF、Lyondell、Dow、日本三井武田、韩国精细化工公司(KFC)、韩国东方化学公司(OCT)、NPU、匈牙利Borsodchem公司、Rhodia、波兰Aaklady、美国Rubicon、印度NARMADA石油化工公司、印度Hindustan无机公司。 MDI 二苯基甲烷二异氰酸酯 应用:纯MDI用于生产热塑性PU弹性体、氨纶、PU革浆料、鞋用胶粘剂、也用于微孔PU弹性材料(鞋底、实心轮胎、自结皮泡沫、汽车保险杠、内饰件)、浇注型PU弹性体;不纯的MDI用于各类PU弹性制品、胶粘剂、涂料、汽车部件、内饰件的生产,可替代TDI用于PU软泡。 生产厂商:Bayer、Dow、Huntsman、BASF、山东烟台万华、日本三井武田、NPU、韩国锦湖三井。 IPDI 异佛尔酮二异氰酸酯 应用:耐光耐候PU涂料、耐磨耐水解PU弹性体、不黄变微孔PU泡沫塑料。 生产厂商:Degussa、Rhodia、Bayer。 HDI 己二异氰酸酯 应用:制成的PU弹性体硬度和强度都不太高,柔韧性好。非黄变PU涂料、涂层、PU革。 生产厂商:Bayer、Degussa、NPU、日本三井武田、日本旭化成株式会社、Rhodia、法国Rhone‐Poulenc。 H12MDI 4.4‐二环己基甲烷二异氰酸酯 应用:适合生产具有优异光稳定性、耐候性和机械性能的PU材料,适合于生产PU弹性体、水性PU、织物涂层和UV固话PU‐丙烯酸涂料、除了优异的力学性能H12MDI还赋予制品杰出的耐水解性和耐化学品性能。生产厂商:Bayer、Degussa NDI 萘二异氰酸酯 应用:NDI是高熔点芳香族二异氰酸酯,具有刚性芳香族萘环结构,用于制造高弹性和高硬度的PU弹性体。用NDI制成的浇注型弹性体具有优异的动态特征和耐磨性,可用于高动态载荷和耐热场合。NDI基微孔PU 弹性体制品在动态载荷下,内生热低,永久变形小,能保持良好刚性,用于汽车减震缓冲部件。 生产厂商:Bayer、日本三井武田 PPDI 对苯二异氰酸酯 应用:特殊浇注型基热塑性PU弹性体。湿热环境、油性环境使用的部件,需耐磨、耐撕裂的场合、动力驱 动重复运动的部件,如密封圈和密封垫、水泵皮线、油田设备材料、动力联轴节、传送带、减震器、辊基 承载轮等。 生产厂商:Dupont、 CHDI 1.4‐环己烷二异氰酸酯 应用:有优异的高温动态力学性能、光和色稳定性、耐溶剂性和耐磨性乙基耐水解性能。制的的弹性体适 电话:021‐51078280 https://www.360docs.net/doc/028903322.html,

异氰酸酯的性质及危害

异氰酸酯的性质及危害 单异氰酸酯是有机合成的重要中间体,可制成一系列氨基甲酸酯类杀虫剂、杀菌剂、除草剂,也用于改进塑料、织物、皮革等的防水性。二官能团及以上的异氰酸酯可用于合成一系列性能优良的聚氨酯泡沫塑料、橡胶、弹力纤维、涂料、胶粘剂、合成革、人造木材等。 目前应用最广、产量最大的是有:甲苯二异氰酸酯(Toluene Diisocyanate,简称TDI);二苯基甲烷二异氰酸酯(Methylenediphenyl Diisocyanate,简称MDI)。 甲苯二异氰酸酯(TDI)为无色有强烈刺鼻味的液体,沸点251°C,比重1.22,遇光变黑,对皮肤、眼睛有强烈刺激作用,并可引起湿疹与支气管哮喘,主要用于聚氨酯泡沫塑料、涂料、合成橡胶、绝缘漆、粘合剂等。根据其成分,甲苯二异氰酸酯属含氮基的有机化合物。 二苯基甲烷二异氰酸酯(MDI)分为纯MDI和粗MDI。纯MDI 常温下为白色固体,加热时有刺激臭味,沸点196°C,主要用于聚氨酯硬泡沫塑料、合成纤维、合成橡胶、合成革、粘合剂等。根据其成分,纯二苯基甲烷二异氰酸酯也属含氮基的有机化合物。 还有非黄变型的HDI 理化性质 品名:HMDI; (1,6-Hexamethylene Diisocyanate); 六亚甲基-1,6-二异氰酸酯

CAS NO.: 822-06-0 品名:MIC Methyl isocyanate; Isocyanatomethane; 异氰酸甲酯; 甲基异氰酸酯; CAS:624-83-9 分子式:C2-H3-N-O 分子量:57.06 相对密度:0.9599(20/20℃) 沸点:39.1℃ 闪点:<-15℃(闭杯)。自燃点:534℃ 蒸气密度:1.42 蒸气压:46.39kPa(348mmHg20℃) 15℃时水中溶解度:1%;20℃时6.7% 无色清亮液体, 有强刺激性。 除不锈钢、镍、玻璃、陶瓷外其他材料与其接触均有被腐蚀危险。 尤其不能使用铁、钢、锌、锡、铜或其合金作为盛装容器。 容易与包含有活泼氢原子的化合物: 胺、水、醇、酸、碱发生反应。 与水反应生成甲胺、二氧化碳; 在过量水存在时, 甲胺再与MIC 反应生成1,3-二甲基脲, 在过量MIC时则形成1,3,5-三甲基缩二脲。这二个反应均为放热反应。 纯物在有触媒存在条件下, 发生自聚反应并放出热能。

异氰酸酯的毒害作用

异氰酸酯的毒害作用 有机异氰酸酯是一种有毒的化学药品。它对人体的伤害有两条途径:一是挥发在空气中的蒸汽对人呼吸道和眼睛的刺激作用;二是异氰酸酯液体接触到身体皮肤和黏膜所产生的损害。 许多种多异氰酸酯用于聚氨酯行业,其中有些液体二异氰酸酪具有较高的挥发性,例如在软质聚氨酯泡沫塑料制造中常用的甲苯二异氰酸酷(TDI),在涂料行业常用的六亚甲基二异氰酸酯(HDI),都有较高的挥发毒性,在加热时挥发性更大。TDI在20。C的蒸气压约为1.33Pa,在120。C的蒸气压高达133DPa,所以在连续法软泡生产线附近的-TDI蒸汽毒害尤其严重,必须做好防护措施。相对而言,MDI和PAPI的蒸气压很低,25℃的蒸气压仅为2. 1×10-7Pa。 二异氰酸酯原料、预聚体半成品和刚从生产线切割下来的软泡产品,散发出来的有毒二异氰酸酯气体,能够刺激眼部和呼吸系统。一般症状为流泪、口千及喉痛,受毒较深者,咳嗽厉害并觉胸闷。在某种特别情况下,异氰酸酉苯二异氰酸酯的浓度超过O. 05mg/m,时,对入体呼吸道分泌液作用就能引起咳嗽。当人体感到甲苯二异氰酸酯的臭味时,其浓度已超过0.4mg/m3,嗅觉敏锐的人其感觉浓度为0. 05 ~O. lmg/m3。短期接触者可恢复健康。若身体组织吸收到有机异氰酸酯,对人体内脏器官有影响,起到障碍作用。异氰酸酪对人体的造血功能有伤害,部分从事聚氨酯生产和科研人员的血小板数减少。 为了避免异氰酸酯蒸气对人体的危害,各国均规定了空气中二异氰酸酯的最高允许浓度。国际上对TDI的允许浓度规定为0.02 X10-6。美国国家职业安全防护学会(NIOSH)则更严格规定工作场所的TWA (按每周40h工作)的浓度极限值为5X10-9, 即每立方米大气中含TDI极限为35ug、MDI为50ug、HDI为35ug、IPDI为45ug、HMDI为55ug。我国规定车间空气中TDI的鼠高允许浓度为O. 2mg/m',并将甲苯二异氰酸酯列为对入体健康具有高度危害的物质。 为此,对生产与使用有机异氰酸酯的车间要搞好通风条件与设施,严格安全操作。 甲苯二异氰酸酪等有机异氰酸酯具有较强的化学活性,极易和水分和蛋白质结合,黏附在皮肤或黏膜上。特别是TDI等芳香族有机异氰酸酯,呼吸进气管和肺部,经过与水分反应、水解,可产生芳香族胺,据称芳香族胺有一定的致癌可疑,所以长期接触异氰酸酯的职工更应加强自我防护意识。 操作注意事项 为了生产安全和入体的安全,在操作有机异氰酸酯时要注意以下几点。 ①异氰酸酯有极强的反应性,所以在操作时必须七分谨慎。由于异氰酸酯和胺、醇、水等含有活泼氢钠化合物极易反应,因此在操作和贮存中必须严格避免与这些物质接触。 异氰酸酯接触潮气会变质,生成不溶性的脲类化合物并放出二氧化碳,造成容器鼓桶(若容器中有水分且已密闭)并致黏度升高。异氰酸酯中的NCO实际含量减少会影响化学计量准确性。长期接触水分的异氰酸酯会凝固、报

异氰酸酯封闭及其解封闭反应的研究

异氰酸酯封闭及其解封闭反应的研究 熊万斌刘仁刘晓亚 ( 江南大学化学与材料工程学院,江苏无锡214036) 摘要:考察了反应温度、溶剂、反应时间及不同封闭剂对异氰酸酯封闭反应的影响。同时对封闭型异氰酸酯的解封闭行为进行了研究,并得到了具有较低解封温度的异氰酸酯封闭产物。 关键词:封闭型异氰酸酯;封闭;解封闭;苯酚 0 引言 封闭型异氰酸酯是指— NCO 基团被一种不能在较低温度下进行脱封反应的封闭剂封闭的化合物。这种封闭反应在一定条件下是一可逆反应,在实际应用时主要分为 3 个方面:第一,封闭型异氰酸酯的预聚体,可作为主要成膜物之一,并可与其他成膜物交联;第二,把封闭型异氰酸酯基团引入到其他树脂中,直接作为成膜物,并可交联;第三,封闭型异氰酸酯作为成膜树脂的交联固化剂或其他助剂。在最近的 20 年里,对封闭型异氰酸酯的使用急剧增加。封闭型异氰酸酯在单组分涂料中得到广泛的应用,如用封闭异氰酸酯制成的电绝缘漆具有良好的电绝缘性、耐水性、耐溶剂性以及良好的机械性能;封闭型异氰酸酯还在粉末涂料中有重要的应用价值,一些新的封闭剂已经商品化并且开发了一些新的用途;封闭型异氰酸酯应用于粘合剂中可增加其稳定性与储存期,它主要应用于合成纤维织物与橡胶的粘接。另外,封闭异氰酸酯还广泛应用于水性涂料中,包括水溶性涂料、水分散性涂料和水性固化剂等。总之,封闭异氰酸酯的应用愈来愈广泛。因此,研究反应温度、溶剂、反应时间等对封闭反应的影响以及不同封闭剂结构及催化剂含量对解封温度的影响都很有实际意义。 1 实验部分 1 . 1 原材料 环己酮,丁酮,二甲苯,乙二醇丁醚,异辛醇及苯酚,均为分析纯,中国医药集团上海化学试剂公司;甲苯二异氰酸酯 (TDI) 、二月桂酸二丁基锡,工业级,无锡惠利树脂厂;对氯苯酚,工业级,海门市宝龙化工有限公司。 1 . 2 封闭反应 在 250 mL 四口烧瓶中加入 TDI 和溶剂,在 45 ℃下滴人封闭剂, NCO / OH 为 1 : 1 . 1 , 2 h 滴完,恒温 0 . 5 h 后缓慢升温至一定温度下反应,直至红外检测发现异氰酸根消失,结束反应。 1 . 3 红外光谱表征封闭结果 产物用溶剂稀释后涂覆于 KBr 压片表面,用 FTIR 扫描,分析谱图表征封闭结果。 1 . 4 DsC 分析

催化剂对异氰酸酯反应活性的影响

催化剂对异氰酸酯反应活性的影响 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有... 催化剂能降低反应活性能,使反应速率加快,缩短反应时间,控制副反应,因此在聚氨酯的制备中常常使用催化剂。对催化剂的要求一般是:催化活性高、选择性强。常用的催化剂为有机叔胺类及有机金属化合物。 聚氨酯合成中所采用的催化剂,都是既能催化与羟基的反应,也能催化与水的反应,但所有催化剂对这二个反应的催化活性各不相同。一般,叔胺类催化剂对异氰酸酯与水的反应(即通常所说的“发泡反应”)的催化效率大于对异氰酸酯与羟基反应(即所谓所的“凝胶反应”)的催化效率,有机金属类催化剂对凝胶反应的催化效率更显著,即各催化剂都有其选择性。 2.2.1.1 异氰酸酯反应的催化机理 一般认为,异氰酸酯与羟基化合物反应的催化机理是,异氰酸酯或羟基化合物先与催化剂生成不稳定的络合物,然后发生反应,生成聚氨酯。但这种络合催化反应理论也有几种说法,至今还不是十分清楚。 一种公认的催化机理是基于异氰酸酯受亲核的催化剂进攻,生成中间络合物,再与羟基化合物反应。如二异氰酸酯与二元醇的反应机理如下:

另外,有人认为金属有机化合物的催化机理与叔胺类不同,是形成一种三元活化络合物。有人提出羟基化合物与催化剂形成四节环活化络合物,再与异氰酸酯反应生成氨基甲酸酯。 2.2.1.2 叔胺催化剂酸碱性对反应活性的影响 在聚氨酯制备反应中,一般很少用酸类催化剂,酸性催化剂(如苯甲酰氯、无机及有机酸)对氨基甲酸酯及脲基甲酸酯生成反应有较低的催化作用,但重要的是它们能抑制缩二脲的生成反应,因而抑制交联反应。若聚醚中尚有微量碱(开环聚合用的KOH)未被除去,则与二异氰酸酯反应时,碱金属化合物会催化交联副反应,发生凝胶。因而可加入酸中和,并且若酸稍过量,则抑制交联反应,可使预体能长期储存。 叔胺类催化剂对异氰酸酯与羟基化合物反应的影响,除了其碱性程度外,还有位阻效应等因素。一般来说,碱性大、位阻小,则催化能力强。叔胺对水与异氰酸酯反应的催化活性的影响比羟基与异氰酸酯反应的催化活性大(见图2-2),故叔胺催化剂一般用于聚氨酯泡沫制备。在所有叔胺类催化剂中,三亚乙基二胺是一种结构特殊的催化剂,由于它是杂环化合物,叔胺N原子上没有位阻,所以它对发泡反应及凝胶反应都具有较强的催化性能,是聚氨酯泡沫塑料常用的催化剂之一,也可用于聚氨酯胶粘剂、弹性体等的制备。据估计,在水/醇混合体系中,它对羟基催化能力占80%,对水占20%,对羟基与异氰酸酯反应的催化活性比水大,具有类似有机金属化合物的催化性能,不仅广泛用于泡沫,而且也用于聚氨酯弹性体、胶粘剂、涂料。 不同的异氰酸酯对各种反应有不同的催化活性。有人研究了两种催化剂对异氰酸酯-端伯羟基聚醚、异氰酸酯-端仲羟基聚醚及异氰酸酯-水反应速率常数及活化能进行了比较,实验结果见表2-7。表中K1、K2及K3分别为TDI与普通PPG聚醚(端基为仲羟基)、EO封端聚醚(伯羟基)和水的反应速率常数[单位L/(g·mol·h)]。 表2-7 氨基甲酸酯及脲生成反应的速率常数K及活化能E

相关文档
最新文档