管内两相流阻力程序计算与分析

管内两相流阻力程序计算与分析
管内两相流阻力程序计算与分析

管内两相流阻力程序计算与分析

学号:

姓名:

算例三:

已知一均匀受热的螺旋管试验段总长为32 m,管子内径为12.53 mm,螺旋直径为1 m,试验压力分别为2 、4、6 MPa,管内汽水混合物的质量流速为400 kg·m-2·s-1,关于汽水两相摩擦压降梯度的部分试验结果如图所示。要求:

(1)收集、整理实验数据;

(2)分别用螺旋管均相模型和Santini关联式预测试验工况下的摩擦压降梯度,并将预测结果与实验数据进行对比分析(绘图分析);

(3)影响因素分析——总结压力和干度对摩擦压降梯度的影响规律(绘图分析)。

一、管内气液两相流均相模型的摩擦压降计算关联式

二、计算流程

三、程序

clc

%clear all

d=12.53e-3;

D=1;

G=400;

for p=2e3:2e3:6e3 %取压力分别为2,4,6MP

rhol=refpropm('D','P',p,'Q',0,'water'); %饱和水密度

visl=refpropm('V','P',p,'Q',0,'water'); %饱和水动力粘度

rhog=refpropm('D','P',p,'Q',1,'water'); %饱和蒸汽密度

visg=refpropm('V','P',p,'Q',1,'water'); %饱和蒸汽动力粘度

i=0;

for x=0.05:0.05:0.95

i=i+1;

X(i)=x; %干度

%Santini经验关联式

kx=-0.0373*x.^3+0.0387*x.^2-0.00479*x+0.0108;

rhotp=1/(x/rhog+(1-x)/rhol);

dpdz1(i)=kx*G.^1.91/d.^1.2/rhotp/1000;

%螺旋管均相模型关联式

Relo=G*d/visl; %全液相雷诺数

fclo=0.3164*Relo.^(-0.2)*(d/D).^0.1; %单相螺旋管阻力系数 dplo(i)=fclo*G*G/(2*rhol*d)/1000; %全液相压降

fai1(i)=1+x*(rhol/rhog-1);

fai2(i)=(1+x*(visl/visg-1)).^(-0.2);

failo(i)=fai1(i)*fai2(i); %折算因子

dpdz2(i)=dplo(i)*failo(i); %两相压降

end

if (p==2e3)

figure(1)

plot(X,dpdz1,'r')

hold on

plot(X,dpdz2,'b')

hold on

data=xlsread('2MPa压力数据')

plot(data(1,:),data(2,:),'k-s');

legend('Santini关联式','螺旋管均相模型','2MP压力实验数据') xlabel('干度X')

ylabel('压降梯度dp/L[KPa/m]')

end

if (p==4e3)

figure(2)

plot(X,dpdz1,'r')

hold on

plot(X,dpdz2,'b')

hold on

data=xlsread('4MPa压力数据')

plot(data(1,:),data(2,:),'k-s');

hold on

grid on

legend('Santini关联式','螺旋管均相模型','4MP压力实验数据') xlabel('干度X')

ylabel('压降梯度dp/L[KPa/m]')

end

if (p==6e3)

figure(3)

plot(X,dpdz1,'r')

hold on

plot(X,dpdz2,'b')

hold on

data=xlsread('6MPa压力数据')

plot(data(1,:),data(2,:),'k-s');

hold on

grid on

legend('Santini关联式','螺旋管均相模型','6MP压力实验数据') xlabel('干度X')

ylabel('压降梯度dp/L[KPa/m]')

end

四、绘图

2Mpa

4Mpa

6Mpa

五、结果分析

实验数据与通过Santini关联式计算出来的数据拟合较好,与螺旋管均相模型相差较大。且随着压力的增加,拟合程度逐渐提升。

压力对摩擦压降梯度的影响规律:随着压力的增加,摩擦压降梯度逐渐减小,压力和摩擦压降梯度负相关。

干度对摩擦压降梯度的影响规律:随着干度x的增加,摩擦压降梯度先增加后减少。临界点为X=0.8。

瓦斯管路阻力损失计算公式推导(一)

瓦斯管道阻力损失计算公式推导(一) 一、 管道摩擦阻力的基本方程 1.一般方程 H=λd L γg V 22 (1) 式中:H ――管道压力损失,mmH 2O ; λ――管道的摩阻系数,无因次; L――管道长度,m; d ――管道内径,m ; γ――瓦斯容重,kg/m 3; g ――重力加速度,m/s 2; V――管道内的瓦斯流速,m/s 。 以V= 2 4d Q π代入(1)式得: H=λd L γ4 22216d g Q π= 0.08263λ52d LQ γ (2) 式中:Q――管道内瓦斯流量,m 3/s 。 将流量Q 的单位换算成m 3/h ,管道内径d 的单位换算成cm ,则: H = 64λ 5 2d LQ γ (3) (3)式即为《煤矿抽放瓦斯》209页给出的摩擦阻力计算公式,但该书中对流量Q和管径d 给出的单位是错的,应分别为m 3/h 和cm 。 2.低压管道摩擦阻力的基本方程 因Q=Q 0 0PT T P ,γ=γ0 T P PT 00 ,代入(3)式得: H= 64λ5 2 0d LQ γ 0PT T P (4) 式中:H ――管道压力损失,mmH 2O ; λ――管道摩阻系数,无因次; L――管道长度,m; Q 0――标准状态下内的瓦斯流量,Nm 3/h ;

d ――管道内径,cm ; γ0――标准状态下的瓦斯容重,kg/Nm 3; P 0――标准状态下的大气绝对压力,Pa ; P ――管道内的瓦斯绝对压力,Pa ; T――管道内的瓦斯绝对温度(T=273+t ),oK; T0――标准状态下的瓦斯绝对温度(T0=273),oK; t ――管道内瓦斯的温度,℃。 因低压管道(相对压力≤0.005MPa )的绝对压力P 与标准大气压力P 0的差值较小,为了简化计算,可以忽略压力的影响,将(4)式简化成下式: H= 64λγ 5 2 d LQ 0 T T (5) 因瓦斯的相对比重S= 空γγ,则γ0=Sγ空0 ,代入(5)式得: H= 83λS 5 2d LQ 0 0PT T P (6) 式中:S――瓦斯的相对比重(空气=1); γ 空0 ――空气的比重(γ 空0 =1.293),kg/Nm 3 。 (6) 式即为《煤气设计手册》下册53页低压煤气管道的摩擦阻力计算公式(5-4-1)。 二、 钢管摩阻系数的计算公式 钢管的摩阻系数按下式计算: λ=0.11( d ?+Re 68)0.25 (7) 式中:λ――管道摩阻系数,无因次; Δ――管道内壁的当量绝对粗糙度(Δ=0.017);cm ; d ――管道内径,cm ; Re ――雷诺数,无因次。 Re = ν Vd (8) 式中:V――管道内瓦斯平均流速,m/s ; d ――管道内径,m; ν――瓦斯的运动粘度,m 3/s 。

(完整word版)流体阻力系数

流体阻力系数 一个物体在流体(液体或气体)中和流体有相对运动时,物体会受到流体的阻力。阻力的方向和物体相对于流体的速度方向相反,其大小和相对速度的大小有关。 在相对速率v 较小时,阻力f的大小与v 成正比: f = kv 式中比例系数k 决定于物体的大小和形状以及流体的性质. 在相对速率较大以致于在物体的后方出现流体漩涡时,阻力的大小将与v平方成正比。对于物体在空气中运动的情形,阻力 f = CρAv v/2 式中,ρ是空气的密度,A 是物体的有效横截面积,C 为阻力系数。 物体在流体中下落时,受到的阻力随速率增大而增大,当阻力和重力平衡时,物体将以匀速下落。物体在流体中下落的最大速率称为终极速率,又称为收尾速率。对在空气中下落的物体,它的终极速率为: 如图

关键字:2.2.4 流体流动阻力的计算 流动阻力的大小与流体本身的物理性质、流动状况及壁面的形状等因素有关。 化工管路系统主要由两部分组成,一部分是直管,另一部分是管件、阀门等。相应流体流动阻力也分为两种: 直管阻力:流体流经一定直径的直管时由于内摩擦而产生的阻力; 局部阻力:流体流经管件、阀门等局部地方由于流速大小及方向的改变而引起的阻力。 1. 流体在直管中的流动阻力 如图1-24所示,流体在水平等径直管中作定态流动。 在1-1′和2-2′截面间列柏努利方程, 因是直径相同的水平管, 若管道为倾斜管,则 由此可见,无论是水平安装,还是倾斜安装,流体的流动阻力均表现为静压能的减少,仅当水平安装时,流动阻力恰好等于两截面的静压能之差。 把能量损失表示为动能的某一倍数。 令 则(2-19) 式(2-19)为流体在直管内流动阻力的通式,称为范宁(Fanning)公式。式中为无因次系数,称为摩擦系数或摩擦因数,与流体流动的Re及管壁状况有关。 根据柏努利方程的其它形式,也可写出相应的范宁公式表示式: 压头损失(2-20) 压力损失 (2-21) 值得注意的是,压力损失是流体流动能量损失的一种表示形式,与两截面间的压力差意义不同,只有当管路为水平时,二者才相等。 应当指出,范宁公式对层流与湍流均适用,只是两种情况下摩擦系数不同。以下对层流与湍流时摩擦系数分别讨论。 (1)层流时的摩擦系数 流体在直管中作层流流动时摩擦系数的计算式: (2-22) 即层流时摩擦系数λ是雷诺数Re的函数。 (2)湍流时的摩擦系数

管道阻力损失计算

管道的阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1) 对于圆形风管,摩擦阻力计算公式可改为: (6-1-2) 圆形风管单位长度的摩擦阻力(又称比摩阻)为: (6-1-3) 以上各式中 λ——摩擦阻力系数;

v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; Rs——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5) 式中Rm——实际的单位长度摩擦阻力,Pa/m; Rmo——图上查出的单位长度摩擦阻力,Pa/m; ρ——实际的空气密度,kg/m3; v——实际的空气运动粘度,m2/s。

管道阻力的基本计算方法

管道阻力计算 空气在风管内的流动阻力有两种形式:一是由于空气本身的黏滞性以及空气与管壁间的摩擦所产生的阻力称为摩擦阻力;另一是空气流经管道中的管件时(如三通、弯头等),流速的大小和方向发生变化,由此产生的局部涡流所引起的阻力,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在管道内流动时,单位长度管道的摩擦阻力按下式计算: ρ λ 242 v R R s m ?= (5—3) 式中 Rm ——单位长度摩擦阻力,Pa /m ; υ——风管内空气的平均流速,m /s ; ρ——空气的密度,kg /m 3 ; λ——摩擦阻力系数; Rs ——风管的水力半径,m 。 对圆形风管: 4D R s = (5—4) 式中 D ——风管直径,m 。 对矩形风管 )(2b a ab R s += (5—5) 式中 a ,b ——矩形风管的边长,m 。 因此,圆形风管的单位长度摩擦阻力 ρ λ 22 v D R m ?= (5—6) 摩擦阻力系数λ与空气在风管内的流动状态和风管内壁的粗糙度有关。计算摩擦阻力系数的公式很多,美国、日本、德国的一些暖通手册和我国通用通风管道计算表中所采用的公式如下: ) Re 51 .27.3lg( 21 λλ +-=D K (5—7) 式中 K ——风管内壁粗糙度,mm ;

Re ——雷诺数。 υvd = Re (5—8) 式中 υ——风管内空气流速,m /s ; d ——风管内径,m ; ν——运动黏度,m 2 /s 。 在实际应用中,为了避免烦琐的计算,可制成各种形式的计算表或线解图。图5—2是计算圆形钢板风管的线解图。它是在气体压力B =101.3kPa 、温度t=20℃、管壁粗糙度K =0.15mm 等条件下得出的。经核算,按此图查得的Rm 值与《全国通用通风管道计算表》查得的λ/d 值算出的Rm 值基本一致,其误差已可满足工程设计的需要。只要已知风量、管径、流速、单位摩擦阻力4个参数中的任意两个,即可利用该图求得其余两个参数,计算很方便。 图5—2 圆形钢板风管计算线解图 [例] 有一个10m 长薄钢板风管,已知风量L =2400m 3 /h ,流速υ=16m /s ,管壁粗糙

管道压力损失

除尘系统中的管道压力损失计算 管道的压力损失就是含尘空气在管道中流动的压力损失.它等于管道沿程(摩擦)压力损失和局部损失之和 ,在实际计算中以最长沿程一条管道进行计算,其计算结果作为风机造型的参考依据. 一:管道的沿程压力损失 1. a △P m =△P m λR S P -----湿周,既管道的周长(m ) 左管道系统计算中,一般先计算出单位长度的摩擦损失,通常也称比摩阻(Pa/m ): △P m =λ 比摩阻力可通过查阅图表14-1得出,我公司的管道主要应用于除尘系统中,考虑到含尘空气中粉尘沉降的问题,除尘管道内的风速选择为25~28m/s. 4R S 1 2 V 2e

根据计算图标得出的以下数据: 局部阻力引起的能量损失,称之为局部压力损失或局部损失。 局部损失可按下列公式计算: △P J =δ △P J ----局部压力损失(Pa ) δ------局部阻力系数 2 V 2e

局部阻力系数δ可根据不同管道组件:如进出风口、弯头、三通等的不同尺寸比例,在相关资料中可查得,然后再根据上式计算出局部损失的大小。 例如:整体压制900圆弯头:当r/D=1.5时 δ=0.15 当r/D=2.0时 δ=0.13 当r/D=2.5时 δ=0.12 0总之,△P 为数。 F---Pq---风机全压(Pa ) Q---风机风量(m 3/s ) η----风机效率(一般为0.8~0.86) K---安全系统(1.0~1.2) 上式所得结果即为风机数电机功率,实际使用功率为:

Fs= Fs/F 即为风机的实际使用负载率 Pq*Q 1000* η

通风管道阻力计算

通风管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m ; Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比 从而有 取,可得摩擦系数与阻力损失之间的关系:

从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 4. 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:,、分别为细管和粗管的流通截面积。 三、实验流程: 本实验装置如图1所示,管道水平安装,水循环使用,其中管5为不锈钢管,测压点之间距,内径;管6为镀锌钢管,测压点间距离,内径22..5mm;管7为突然扩大管,由扩大至。各测量元件由测压口与压差传感器相连,通过管口的球阀切换被测管路,系统流量由涡

管道阻力计算

管道阻力计算 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中

λ――――摩擦阻力系数 ν――――风管内空气的平均流速,m/s; ρ――――空气的密度,Kg/m3; l ――――风管长度,m Rs――――风管的水力半径,m; Rs=f/P f――――管道中充满流体部分的横断面积,m2; P――――湿周,在通风、空调系统中既为风管的周长,m;D――――圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。

二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ――――局部阻力系数。局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。

管道压力损失计算

冷热水管道系统的压力损失 无论在供暖、制冷或生活冷热水系统,管道是传送流量和热量必不可少的部分。计算管道系统的压力损失有助于: (1) 设选择正确的管径。 (2) 设选择相应的循环泵和末端设备。也就是让系统水循环起来并且达到热能传送目的 的设备。 如果不进行准确的管道选型,会导致系统出现噪音、腐蚀(比如管道阀门口径偏小)、严重的能耗及设备的浪费(比如管道阀门水泵等偏大)等。 管道系统的水在流动时遇到阻力而造成其压力下降,通常将之简称为压降或压损。 压力损失分为延程压力损失和局部压力损失: — 延程压力损失指在管道中连续的、一致的压力损失。 — 局部压力损失指管道系统内特殊的部件,由于其改变了水流的方向,或者使局部水流通道变窄(比如缩径、三通、接头、阀门、过滤器等)所造成的非连续性的压力损失。 以下我们将探讨如何计算这两种压力损失值。在本章节内我们只讨论流动介质为水的管道系统。 一、 延程压力损失的计算方式 对于每一米管道,其水流的压力损失可按以下公式计算 其中:r=延程压力损失 Pa/m Fa=摩擦阻力系数 ρ=水的密度 kg/m 3 v=水平均流速 m/s D=管道内径 m 公式(1) 延程压力损失 局部压力损失

管径、流速及密度容易确定,而摩擦阻力系数的则取决于以下两个方面: (1)水流方式,(2)管道内壁粗糙程度 表1:水密度与温度对应值 水温°C10 20 30 40 50 60 70 80 90 密度 kg/m3999.6 998 995.4 992 987.7 982.8 977.2 971.1 964.6 1.1 水流方式 水在管道内的流动方式分为3种: —分层式,指水粒子流动轨迹平行有序(流动方式平缓有规律) —湍流式,指水粒子无序运动及随时变化(流动方式紊乱、不稳定) —过渡式,指介于分层式和湍流式之间的流动方式。 流动方式通过雷诺数(Reynolds Number)予以确定: 其中: Re=雷诺数 v=流速m/s D=管道内径m。 ?=水温及水流动力粘度,m2/s 表2:水温及相关水流动力粘度 水温m2/s cSt °E 10°C 1.30×10-6 1.30 1.022 20°C 1.02×10-6 1.02 1.000 30°C 0.80×10-6 0.80 0.985 40°C 0.65×10-6 0.65 0.974 50°C 0.54×10-6 0.54 0.966 60°C 0.47×10-6 0.47 0.961 70°C 0.43×10-6 0.43 0.958 80°C 0.39×10-6 0.39 0.956 90°C 0.35×10-6 0.35 0.953 通过公式2计算出雷诺数就可判断水流方式: Re<2,000:分层式流动 Re:2,000-2,500:过渡式流动

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算 在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。因此一般的管路系统中,既有沿程损失,又有局部损失。 4.4.1 局部损失的产生的原因及计算 一、产生局部损失的原因 产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。这里结合几种常见的管道来说明。 ()() 图4.9 局部损失的原因 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。局部损失就发生在旋涡开始到消失的一段距离上。 图4.9()给出了弯曲管道的流动。由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。 综上所述,碰撞和旋涡是产生局部损失的主要原因。当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。在测量局部损失的实验中,实际上也包括了沿程损失。 二、局部损失的计算 如前所述,单位重量流体的局部能量损失以表示

水系统管道阻力计算

空调水系统的水力计算 根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。 一、沿程阻力(摩擦阻力) 流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即 (1-1) 若直管段长度l=1m时, 则 式中λ——摩擦阻力系数,m; ——管道直径,m; R——单位长度直管段的摩擦阻力(比摩阻),Pa/m; ——水的密度,kg/m3; ——水的流速,m/s。 对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。根据管径、流速,查出管道动压、流量、比摩阻等参数。 计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。所以这种空调末端承担负荷应计算精确,以避免负荷叠加。同时应清楚了解水管系统的方式,如同程式,异程式。不同的接管方式对沿程阻力具有一定的影响。在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。 二、局部阻力 (一)局部阻力及其系数

在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数; ——水流速度,m/s。 常用管道的配件可以通过相应的表格进行查询。根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。 对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。 在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。可参见设备安装详图,其中会画出相应的管道配件。 (二)当量长度 利用相同管径直管段的长度表示局部阻力,这样称为局部阻力当量长度(m): 式中——管道配件的局部阻力系数。 根据各种阀门、弯头、三通以及特殊配件(突扩、突缩、胀管、凸出管等)的工程直径,可以查出相应的当量长度。 三、设备压力损失 空调系统中含有很多制冷、制热设备,如冷凝器、蒸发器、冷却水塔、冷热盘管等等。这些设备自身都有一定的压力损失。在水系统的水力计算中,除了管道部分的阻力之外,还有设备的压力损失。将这两部分加起来,才是整个系统的水力损失。 但是因为设备的生产厂家、型号、运行条件及工况的不同,压力损失相差比较大,一般情况下,是由设备厂家提供该设备的压力损失。若缺乏该方面的资料,可以按照经验值进行估算。估算值见表3-1。

管道摩擦阻力计算

长距离输水管道水力计算公式的选用 1. 常用的水力计算公式: 供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有: 达西(DARCY )公式: g d v l h f 22 **=λ (1) 谢才(chezy )公式: i R C v **= (2) 海澄-威廉(HAZEN-WILIAMS )公式: 87 .4852.1852.167.10d C l Q h h f ***= (3) 式中h f ------------沿程损失,m λ―――沿程阻力系数 l ――管段长度,m d-----管道计算内径,m g----重力加速度,m/s 2 C----谢才系数 i----水力坡降; R ―――水力半径,m Q ―――管道流量m/s 2 v----流速 m/s C n ----海澄――威廉系数 其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2. 规范中水力计算公式的规定 3. 查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力 计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式

3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广.

流动阻力及阻力损失计算方法

29 第五节 阻力损失 1-5-1 两种阻力损失 直管阻力和局部阻力 化工管路主要由两部分组成:一种是直管, 另一种是弯头、三通、阀门等各种管件。无论是直管或管件都对流动有一定的阻力, 消耗一定的机械能。直管造成的机械能损失称为直管阻力损失(或称沿程阻力损失);管件造成的机械能损失称为局部阻力损失。 对阻力损失作此划分是因为两种不同阻力损失起因于不同的外部条件,也为了工程计算及研究的方便, 但这并不意味着两者有质的不同。此外, 应注意将直管阻力损失与固体表面间的摩擦损失相区别。固体摩擦仅发生在接触的外表面, 而直管阻力损失发生在流体内部, 紧贴管壁的流体 层与管壁之间并没有相对滑动。 图1-33 阻力损失 阻力损失表现为流体势能的降低 图1-33表示流体在均匀直管中作定态流动, u 1=u 2。截面1、2之间未加入机械能, h e =0。由机械能衡算式(1-42)可知: ρρρ2 12211 P P -=???? ??+-???? ??+=g z p g z p h f (1-71) 由此可知, 对于通常的管路,无论是直管阻力或是局部阻力, 也不论是层流或湍流, 阻力损失均主要表现为流体势能的降低, 即ρ/P ?。该式同时表明, 只有水平管道, 才能以p ?(即p 1-p 2)代替P ?以表达阻力损失。 层流时直管阻力损失 流体在直管中作层流流动时, 因阻力损失造成的势能差可直接由式(1-68)求出: 2 32d lu μ= ?P (1-72) 此式称为泊稷叶(Poiseuille)方程。层流阻力损失遂为: 2 32d lu h f ρμ= (1-73) 1-5-2 湍流时直管阻力损失的实验研究方法 层流时阻力损失的计算式是由理论推导得到的。湍流时由于情况复杂得多,未能得出理论式,但可以通过实验研究, 获得经验的计算式。这种实验研究方法是化工中常用的方法。因此本节通过湍流时直管阻力损失的实验研究, 对此法作介绍。实验研究的基本步骤如下: (1) 析因实验──寻找影响过程的主要因素 对所研究的过程作初步的实验和经验的归纳, 尽可能地列出影响过程的主要因素 对于湍流时直管阻力损失h f , 经分析和初步实验获知诸影响因素为: 流体性质:密度ρ、粘度μ; 流动的几何尺寸:管径d 、管长l 、管壁粗糙度ε (管内壁表面高低不平); 流动条件:流速u ; 于是待求的关系式应为:

管道摩擦阻力计算资料

精品文档长距离输水管道水力计算公式的选用常用的水力计算公式:.1目前工程设计中普遍采用的管道水力计供水工程中的管道水力计算一般均按照均匀流计算,: 算公式有DARCY)公式:达西(2v?l??h 1)(f g?d2 chezy)公式:谢才(v?C?R?i(2) 海澄-威廉(HAZEN-WILIAMS)公式: 1.852?l?10.67Qh? 3)(f1.8524.87C?d h式中h------------沿程损失,m fλ―――沿程阻力系数 l――管段长度,m d-----管道计算内径,m 2 m/sg----重力加速度, C----谢才系数 i----水力坡降; R―――水力半径,m 2 m/sQ―――管道流量v----流速m/s C----海澄――威廉系数n其中大西公式,谢才公式对于管道和明渠的水力计算都适用。海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。三种水力计算公式中,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。 2.规范中水力计算公式的规定 3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1: 表1 各规范推荐采用的水力计算公式 精品文档.

4.公式的适用范围: 3.1达西公式 达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截λ值的确定是水头损失计面形状的光滑或粗糙管内的层流和紊流。公式中沿程阻力系数算的关键,一般采用经验公式计算得出。舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK)公式均是针对工业管道条件计算λ值的著名经验公式。 -62舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10 m/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用教广. 1?2.51?lg()2??? (Δ为当量粗糙度,Re为雷诺数柯列勃洛可公式)是 3.7d??Re 根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上 精品文档. 精品文档8大量的试是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000

通风管道阻力的计算与公式

风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。 一、摩擦阻力 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: ΔPm=λν2ρl/8Rs 对于圆形风管,摩擦阻力计算公式可改写为: ΔPm=λν2ρl/2D 圆形风管单位长度的摩擦阻力(比摩阻)为: Rs=λν2ρ/2D 以上各式中 λ————摩擦阻力系数 ν————风管内空气的平均流速,m/s; ρ————空气的密度,Kg/m3; l ————风管长度,m Rs————风管的水力半径,m; Rs=f/P f————管道中充满流体部分的横断面积,m2; P————湿周,在通风、空调系统中既为风管的周长,m; D————圆形风管直径,m。 矩形风管的摩擦阻力计算 我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。当量直径有流速当量直径和流量当量直径两种; 流速当量直径:Dv=2ab/(a+b) 流量当量直径:DL=1.3(ab)0.625/(a+b)0.25 在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。 二、局部阻力 当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。 局部阻力按下式计算: Z=ξν2ρ/2 ξ————局部阻力系数。 局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施: 1. 弯头 布置管道时,应尽量取直线,减少弯头。圆形风管弯头的曲率半径一般应大于(1~2)倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;矩形直角弯头,应在其中设导流片。 2. 三通 三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成的涡流是造成局部 阻力的原因。为了减小三通的局部阻力,应注意支管和干管的连接,减小其夹角;还应尽量使支管和干管内的流速保持相等。. 在管道设计时应注意以下几点:

管道流动阻力的计算

流体在管道中流动,其流动阻力包括有: (1)(1)直管阻力:流体流经直管段时,由于克服流体的粘滞性及与管内壁间的磨擦所产生的阻力。它存在于沿流动方向的整个长度上,故也称沿程直管流动阻力。记为。 (2)(2)局部阻力:流体流经异形管或管件(如阀门、弯头、三通等)时,由于流动发生骤然变化引起涡流所产生的能量损失。它仅存在流体流动的某一局部范围办。记为。 因此,柏努利方程中项应为: 说明:流动阻力可用不同的方法表示, ——1kg质量流体流动时所损失的机械能,单位为J/kg; ——1N重量流体流动时所损失的机械能,单位为m; ——1体积流体流动时所损失的机械能,单位为Pa或。 1. 1.直管段阻力(h fz)的计算 流体流经直管段时,流动阻力可依下述公式计算: [J/kg] 或 [m] [pa] 式中,——磨擦阻力系数; l——直管的长度(m); d——直管内直径(m); ——流体密度;u——流体在直管段内的流速(m/s) 2.局部阻力(h fJ)的计算 局部阻力的计算可采用阻力系数法或当量长度法进行。

1)1)阻力系数法:将液体克服局部阻力所产生的能量损失折合为表示其动能若干倍的方法。其计算表达式可写出为: [J/kg] (a) 或 [m] (b) [pa] [pa] (c 其中,称为局部阻力系数,通常由实验测定。下面列举几种常用的局部阻力系 数的求法。 *突然扩大与突然缩小 管路由于直径改变而突然扩大或缩小,所产生的能量损失按(b)或(c)式计算。式中的流速u均以小管的流速为准,局部阻力系数可根据小管与大管的截面积之比从管件与阀门当量长度共线图曲线上查得。 *进口与出口 流体自容器进入管内,可看作很大的截面A1突然进入很小的截面A2,即A2 /A1约等于0。根据突然扩大与突然缩小的局部阻力系数图的曲线(b),查出局部阻力系数=,这种损失常称为进口损失,相应的系数又称为进口阻力系数。若管口圆滑或喇叭状,则局部阻力系数相应减少,约为~。 流体自管子进入容器或从管子直接排放到管外空间,可看作很小的截面A1突然进入很大的截面A2截面即,A1/A2约等于0 ,从突然扩大与突然缩小的局部阻力系数图中曲线(a)可以查出局部阻力系数=1,这种损失常称为出口损失,相应的阻力系数又称为出口阻力系数。

管道的阻力计算

6.1.1 管道的阻力计算 [ 2007-9-4 14:50:31 | By: rsjang ] 风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。 图6-1-1 直管与弯管 (一)摩擦阻力 1.圆形管道摩擦阻力的计算 根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算: (6-1-1)对于圆形风管,摩擦阻力计算公式可改为: (6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:

(6-1-3) 以上各式中 λ——摩擦阻力系数; v——风秘内空气的平均流速,m/s; ρ——空气的密度,kg/m3; l——风管长度,m; R s——风管的水力半径,m; f——管道中充满流体部分的横断面积,m2; P——湿周,在通风、空调系统中即为风管的周长,m; D——圆形风管直径,m。 摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用: (6-1-4) 式中 K——风管内壁粗糙度,mm; D——风管直径,mm。 进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度 v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。 (1)密度和粘度的修正 (6-1-5)

流体力学讲义 第六章 流动阻力及能量损失2

第六章流动阻力及能量损失 本章主要研究恒定流动时,流动阻力和水头损失的规律。对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。 第一节流态判别 一、两种流态的运动特征 1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。 1.层流 层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。 特点:(1)有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。 (2)粘性占主要作用,遵循。 (3)能量损失与流速的一次方成正比。 (4)在流速较小且Re较小时发生。 2.紊流 紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。 特点:(1)无序性、随机性、有旋性、混掺性。 流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。 (2)紊流受粘性和紊动的共同作用。 (3)水头损失与流速的~2次方成正比。 (4)在流速较大且雷诺数较大时发生。 二、雷诺实验 如图6-1所示,实验曲线分为三部分: (1)ab段:当υ<υc时,流动为稳定的层流。 (2)ef段:当υ>υ''时,流动只能是紊流。 (3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

水在管路中的阻力计算

水在管路中的阻力计算 The Friction Loss Calculation in Water Pipe Flow 张蓉台固展節能工程有限公司 Alexander Chang Goodpipe System Engineering Co Abstract There were many formulas or equations to calculate the pipe friction loss when the liquid or gas flowed through the pipeline.We collected the primary equations which were approved to calculate the pipe friction loss commonly and widely in engineering fields.We described the concerned equations clearly for junior and senior engineers in HVAC,Plumbing and Civil engineering fields. The primary pipe flow friction formulas which we described in this article included Darcy-Weisbach Equ,Colebrook-White Equ,Hazen-Williams Equ and Manning Equ.This article proved that the correct pipe friction loss calculation would suggest the good pipe material selection and high energy efficiency pump selection in plant and facility hydraulic systems. 摘要 在管道工程上,计算流体于管道内部的阻力损失之方程式有许多种方程式或公式可资选用。 本文就主要的、常用的管道阻力计算方程式提出,并详细说明如何正确使用方程式计算水在管道中的阻力损失,并在结论指出正确的管道阻力损失,可以对管道材料与水泵的扬程正确选择,并节省大量的能源损耗,提升能源使用效率。在中央空调、给排水、及土木等管道系统中,本论文阐明水在管道中的阻力计算的重要性,不可等闲视之。本文就Darcy-Weisbach Equ,Colebrook-White Eq u,Hazen-Williams Equ 及Manning Equ的正确用法做深入浅出的论述,提供在中央空调、给排水、及土木等管道系统中的工程师正确的专业知识。 关建词 光滑度、层流、稳流、乱流、雷诺系数、Colebrook – White Equatio n、Darcy-Weisbach Equatio n、Hazen-Williams Eq uatuon、Manning Equation 前言 水在管道中的阻力计算有许多方程序可以应用。 至于如何演算各个方程式的由来,这是一个大工程。首先需要基础知识,如:热力学第一、二定律,基础流体力学,微分方程式的基础工程数学,˙˙˙。 如果你没有很札实的这些基本理论知识,演算过程对你而言,犹如天书。如果你仅仅是一位工程师,为了能做正确的「水在管路中的阻力计算」,建议你舍繁取简,务实的了解如何选选择正确的管道阻力计算方程式为上上策! 在给排水、消防及中央空调的水输送管路之设计,管路的位置、阻力决定泵扬程的计算与泵马力的决定。所以要探讨泵的节能效益,管道的正确阻力计算很重要,不可轻忽! 壹、概述 一、确认在管道内的流体流动之类别 水在管道中的输送、流动都是属于乱流(turbulent flow)的类别。 管道内的流体流动之类别,计分为层流、稳流、及乱流三大类别,均以雷诺系数做为区隔。 层流Smooth turbulent ( laminar flow) Re < 2000 稳流Transitional turbulent (transition flow) 2000< Re <4000 乱流Rough turbulent ( turbulent flow ) Re > 4000

相关文档
最新文档