半导体能带理论(精)

半导体能带理论(精)
半导体能带理论(精)

一. 前言

光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。

二.晶体知识.

晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以

上的电压下电流可急剧移动,反向则无!

三.能带理论能级(Enegy Level)

在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中

自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。

四.其它知识原理.

能带是现代武力学描写固体中原子外层电子运动的一种图象.当许多原子互相靠近结成固体时,它们的内层电子仍然组成围绕个原子核的封闭壳层,和孤立原子一样;然而,外层价电子的运动久深受干扰,这是由于在固体中的领近原子所产生的点场而引起的.按照原子理论,原子中的电子只有占据某些能级,然而在结晶格中能级改变了,发现电子能在某些整个能带内运动,每一能带是与一个原子的能级相关联的.泡利不相容原理限制能占有某个n1原子能级的电子数,同样这原理也限制结晶格的能带内所能容纳的电子数.导体内的能带:在外界电场作用下价带内的最上面的电子在不违反不相容原理的情况下获得一些额外的少许能量而到能带能带内附近许多空的状态去,和无序的热激发明显不同的是受电场激发的电子在与场相反的方向上获得动能,结果在晶体内产生一种集体运动,从而构成电流.因此,良导体(金属)是那些最高能带未被完全填满的固体.实际上由于最高能带可能发生重叠,所以情况稍复杂一些,事实上对大多数金属或导体而言,最上曾层能带相重叠是很常见的很普通的情形.有一些物质,它们的原子具有满充壳层,但是在固体时由于最上层的满带和一个空带重叠的话,它们成为导体,人们常称这些物质为半金属.在这类物质中,激发一个电子的惟一肯能性时把他转移到空的导带中,但这要需要几个伏特的能量,因此,一个外加的电场就无法使价带中的电子加速,因而不能产生净电流.所以这类物质叫作绝缘体.例如,钻石在平衡距离下,约1.5*10-10m,最低的能带即价带与上面的空带之间的能隙约为6ev,这可以看作是一个相当大的能隙,它说明了为什么钻石是这么好的绝缘体.因此,绝缘体是他们在最上面的价带是满的,同时和下一个空带之间有几个电子伏特能隙的固体.但在原子平衡间距下价带与导带之间案的能隙要小的多(在硅中为1.1ev,在锗中为0.7ev)于是要将价带中最上面的电子激发到导带内是比较容易的.当温度升高时,有更多的电子能够跳到下一个能带去.

有这样两个结果:1.在上面的导带内少数电子所起的作用和它们在金属中所起的作用相同;而价带中留下的空态即空穴起着类似的作用,不过它们好像似正的电子.因此,它们有来自导带中的激发电子和来自价带中的空穴的导电性;温度升高时,由于更多的电子被激发到导带,所以,所以电导率随温度而迅速增加.例如,硅,当温度从250k增加到450k时,激发电子的数目增加10^6倍.因此,半导体是它们的价带和导带之间的能隙约为1ev或更小,因而比较容易用加热方法把电子从价带中激发到导带中.总之,温度是半导体器件中最重要的因素,因此在光电电路设计时应注意温度的控制.光电器件而言,

最重要的参数是灵敏度,迟豫时间和光谱分析.

半导体能带理论(精)

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

半导体工艺流程

1清洗 集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由 于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水; 且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即米用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本米用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250C高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2 T SiO2

3、扩散 扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B2H6)作为N —源和磷烷(PH3)作为P+源。工艺生产过程中通常 分为沉积源和驱赶两步,典型的化学反应为: 2PH3 —2P+3H2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶 和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上 形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的方法就

能带理论

【半导体】(1)导带conduction band A解释导带是由自由电子形成的能量空间。即固体结构内自由运动的电子所具有的能量范围。对于金属,所有价电子所处的能带就是导带。 对于半导体,所有价电子所处的能带是所谓价带,比价带能量更高的能带是导带。在绝对零度温度下,半导体的价带(valence band)是满带(见能带理论),受到光电注入或热激发后,价带中的部分电子会越过禁带 (forbidden band/band gap)进入能量较高的空带,空带中存在电子后即成为导电的能带——导带。 B导带的涵义: 导带是半导体最外面(能量最高)的一个能带,是由许多准连续的能级组成的;是半导体的一种载流子——自由电子(简称为电子)所处的能量范围。导带中往往只有少量的电子,大多数状态(能级)是空着的,则在外加作用下能够发生状态的改变,故导带中的电子能够导电,即为载流子。导带底是导带的最低能级,可看成是电子的势能,通常,电子就处于导带底附近;离开导带底的能量高度,则可看成是电子的动能。当有外场作用到半导体两端时,电子的势能即发生变化,从而在能带图上就表现出导带底发生倾斜;反过来,凡是能带发生倾斜的区域,就必然存在电场(外电场或者内建电场)。导带底到真空中自由电子能级的间距,称为半导体的亲和能,即是把一个电子载流子从半导体内部拿

到真空中去所需要的能量。这是半导体的一个特征参量。(2)价带与禁带价带(valence band)或称价电带,通常是指半导体或绝缘体中,在0K时能被电子占满的最高能带。对半导体而言,此能带中的能级基本上是连续的。全充满的能带中的电子不能在固体中自由运动。但若该电子受到光照,它可吸收足够能量而跳入下一个容许的最高能区,从而使价带变成部分充填,此时价带中留下的电子可在固体中自由运动。价带中电子的自由运动对于与晶体管有关的现象是很重要的。被价电子占据的允带(低温下通常被价电子占满)。禁带,英文名为:Forbidden Band 在能带结构中能态密度[1]为零的能量区间。常用来表示价带和导带之间的能态密度为零的能量区间。禁带宽度的大小 决定了材料是具有半导体性质还是具有绝缘体性质。半导体的禁带宽度较小,当温度升高时,电子可以被激发传到导带,从而使材料具有导电性。绝缘体的禁带宽度很大,即使在较高的温度下,仍是电的不良导体。(3)导带与价带的关系: 对于未掺杂的本征半导体,导带中的电子是由它下面的一个能带(即价带)中的电子(价电子)跃迁上来而形成的,这种产生电子(同时也产生空穴——半导体的另外一种载流子)的过程,称为本征激发。在本征激发过程中,电子和空穴是

半导体制造工艺流程

半导体制造工艺流程 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 後段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件(如电晶体、电容体、逻辑闸等),为上述各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,动辄数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随著产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之後,接著进行氧化(Oxidation)及沈积,最後进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 二、晶圆针测制程 经过WaferFab之制程後,晶圆上即形成一格格的小格,我们称之为晶方或是晶粒(Die),在一般情形下,同一片晶圆上皆制作相同的晶片,但是也有可能在同一片晶圆上制作不同规格的产品;这些晶圆必须通过晶片允收测试,晶粒将会一一经过针测(Probe)仪器以测试其电气特性,而不合格的的晶粒将会被标上记号(InkDot),此程序即称之为晶圆针测制程(WaferProbe)。然後晶圆将依晶粒为单位分割成一粒粒独立的晶粒 三、IC构装制程 IC構裝製程(Packaging):利用塑膠或陶瓷包裝晶粒與配線以成積體電路目的:是為了製造出所生產的電路的保護層,避免電路受到機械性刮傷或是高溫破壞。 半导体制造工艺分类 半导体制造工艺分类 一双极型IC的基本制造工艺: A在元器件间要做电隔离区(PN结隔离、全介质隔离及PN结介质混合隔离)ECL(不掺金)(非饱和型)、TTL/DTL(饱和型)、STTL(饱和型)B在元器件间自然隔离 I2L(饱和型) 半导体制造工艺分类 二MOSIC的基本制造工艺: 根据栅工艺分类 A铝栅工艺 B硅栅工艺

半导体工艺原理复习资料

晶体生长技术(直拉法(CZ)、区熔法(FZ))。 半导体:常温下导电性能介于导体和绝缘体之间的材料,如二极管、计算机、移动电话等。导电性可受控制,范围可从绝缘体至导体之间的材料。 N型半导体(电子型半导体),自由电子浓度远大于空穴浓度的杂质半导体。硅晶体中掺入五价元素(如磷),自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子的浓度就越高,导电性能就越强。P型半导体(空穴型半导体)即空穴浓度远大于自由电子浓度的杂质半导体。硅晶体中掺入三价元素(如硼)。空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子的浓度就越高,导电性能就越强。区熔法(FZ)特点:硅片含氧量低、纯度高、成本高、主要用于高功率IC。难生长大直径硅晶棒。低阻值硅晶棒、掺杂均匀度较差。 CZ法:成本低、可做大尺寸晶锭、材料可重复使用。 CZ工艺工程:籽晶熔接,引晶和缩颈,放肩,收尾。 影响因素:拉伸速率、旋转速率。 硅片制备步骤:机械加工,化学处理,表面抛光,质量测量 制备流程:整形处理,去掉两端,径向研磨。 硅片制作流程: 磨片和倒角(防止产生缺陷),刻蚀(去除沾污和损伤层)腐蚀液:HNO3+HF+醋酸,抛光(去除表面缺陷),清洗(去除残留沾污) 晶体缺陷:点缺陷(空位缺陷;间隙原子缺陷;Frenkel缺陷);位错;层错。 杂质的作用:调节硅原子的能级,由于晶体结构的原因,固体中的全部原子的各能级形成了能带,硅通常可以分为三个能带,导带,禁带,价带。如果所有的自由电子都在价带上就是绝缘体;如果所有的自由电子都在导带上就是导体。半导体的自由电子平时在价带上,但受到一些激发的时候,如热、光照、电激发等,部分自由电子可以跑到导带上去,显示出导电的性质,所以称为半导体。 施主能级杂质能级要么距离导带很近(如磷),是提供电子的; 受主能级要么距离价带很近(如硼),是接受电子的。

半导体的生产工艺流程

半导体的生产工艺流程 微机电制作技术,尤其是最大宗以硅半导体为基础的微细加工技术(silicon- based micromachining),原本就肇源于半导体组件的制程技术,所以必须先介绍清楚这类制程,以免沦于夏虫语冰的窘态。 一、洁净室 一般的机械加工是不需要洁净室(clean room)的,因为加工分辨率在数十微米以上,远比日常环境的微尘颗粒为大。但进入半导体组件或微细加工的世界,空间单位都是以微米计算,因此微尘颗粒沾附在制作半导体组件的晶圆上,便有可能影响到其上精密导线布局的样式,造成电性短路或断路的严重后果。 为此,所有半导体制程设备,都必须安置在隔绝粉尘进入的密闭空间中,这就是洁净室的来由。洁净室的洁净等级,有一公认的标准,以class 10为例,意谓在单位立方英呎的洁净室空间内,平均只有粒径0.5微米以上的粉尘10粒。所以class后头数字越小,洁净度越佳,当然其造价也越昂贵(参见图2-1)。 为营造洁净室的环境,有专业的建造厂家,及其相关的技术与使用管理办法如下: 1、内部要保持大于一大气压的环境,以确保粉尘只出不进。所以需要大型鼓风机,将经滤网的空气源源不绝地打入洁净室中。 2、为保持温度与湿度的恒定,大型空调设备须搭配于前述之鼓风加压系统中。换言之,鼓风机加压多久,冷气空调也开多久。 3、所有气流方向均由上往下为主,尽量减少突兀之室内空间设计或机

台摆放调配,使粉尘在洁净室内回旋停滞的机会与时间减至最低程度。 4、所有建材均以不易产生静电吸附的材质为主。 5、所有人事物进出,都必须经过空气吹浴 (air shower) 的程序,将表面粉尘先行去除。 6、人体及衣物的毛屑是一项主要粉尘来源,为此务必严格要求进出使用人员穿戴无尘衣,除了眼睛部位外,均需与外界隔绝接触 (在次微米制程技术的工厂内,工作人员几乎穿戴得像航天员一样。) 当然,化妆是在禁绝之内,铅笔等也禁止使用。 7、除了空气外,水的使用也只能限用去离子水 (DI water, de-ionized water)。一则防止水中粉粒污染晶圆,二则防止水中重金属离子,如钾、钠离子污染金氧半 (MOS) 晶体管结构之带电载子信道 (carrier channel),影响半导体组件的工作特性。去离子水以电阻率 (resistivity) 来定义好坏,一般要求至17.5MΩ-cm以上才算合格;为此需动用多重离子交换树脂、RO逆渗透、与UV紫外线杀菌等重重关卡,才能放行使用。由于去离子水是最佳的溶剂与清洁剂,其在半导体工业之使用量极为惊人! 8、洁净室所有用得到的气源,包括吹干晶圆及机台空压所需要的,都得使用氮气 (98%),吹干晶圆的氮气甚至要求99.8%以上的高纯氮!以上八点说明是最基本的要求,另还有污水处理、废气排放的环保问题,再再需要大笔大笔的建造与维护费用! 二、晶圆制作 硅晶圆 (silicon wafer) 是一切集成电路芯片的制作母材。既然说到晶体,

能带理论

能带理论

40 Electron spin Basic quantum numbers Pauli exclusio n principl e

CHAPTER 2 Theory of Solids The radial probabil ity density function for the next higher spherica lly symmetri c wave function, correspo nding to n = 2,l = 0 an d m= 0,is shown in Figur e 2.4b. This figure shows the idea o f the next higher energy shell of the electron. The second energy shell is at a greater distance from the nucleus than the first energy shell. As indicated in the figure, though, there is still a small probability that the electron will exist at the smaller radius. 2.2.3 Periodic Table The initial portion of the periodic table of elements can be determined using the results of the one-electron atom plus two additional concepts. The first concept needed is that of electron spin. The electron has an intrinsic angular momentum, or spin, that is quantized and may take on one of two possible values. The spin is designated by a quantum number s,

半导体的基本理论

论文题目:半导体的基本理论课程名称:功能材料概论 专业名称:应用化学 学号:1109341009 姓名: 成绩: 2014年3月30日

半导体的基本理论 摘要:半导体和绝缘体之间的差异主要来自两者的能带宽度不同。绝缘体的能带比半导体宽,意即绝缘体价带中的载流子必须获得比在半导体中更高的能量才能跳过能带,进入导带中。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物。随着时代的发展,半导体的市场需求已经步入了黄金时期。 关键词:半导体;元素半导体;磁性材料;半导体元件;能带理论 The Basic Theory of Semiconductors Abstract:Differences between the semiconductor and the insulator can be different from the width of the main two . Insulator band width than the semiconductor , an insulator means of the valence band of the carrier must be higher than the energy to jump in the semiconductor energy band into the conduction band .Many semiconductor materials, according to the chemical composition of the semiconductor elements can be divided into two categories, and compound semiconductors . Germanium and silicon is the most commonly used semiconductor element ; Ⅲfirst compound semiconductor comprises a first aromatic compound Ⅴ. With the development of the times , the needs of the semiconductor market has entered a golden age . Key words:semiconductors;element semiconductor;magnetic material;semiconductor components;energy band theory 引言 半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。 1 半导体的定义

第四章 半导体理论

第四章半导体理论 第一节半导体的导电特性 [4001]下列描述中不属于本征半导体的基本特征是______。 A.温度提高导电能力提高 B.有两种载流子 C.电阻率很小,接近金属导体 D.参杂质后导电能力提高 [4002]若在本征半导体中掺入某些适当微量元素后,若以空穴导电为主的称______,若以自由电子导电为主的称______。 A.PNP型半导体/NPN型半导体 B.N型半导体/P型半导体 C.PN结/PN结 D.P型半导体/N型半导体 [4003]一般来说,本征半导体的导电能力______,当掺入某些适当微量元素后其导电能力______。 A.很强/更强 B.很强/降低 C.很弱/提高 D.很弱/更弱 [4004]在P型半导体中多数载流子是______,在N型半导体中多数载流子是______。 A.空穴/自由电子 B.自由电子/空穴 C.空穴/共价键电子 D.负离子/正离子[4005]N型半导体中的多数载流子是______。 A.自由电子 B.空穴 C.束缚电子 D.晶格上的离子 [4006]P型半导体中的多数载流子是______。 A.自由电子 B.空穴 C.束缚电子 D.晶格上的离子 [4007]关于P、N型半导体内参与导电的介质,下列说法最为合适的是______。 A.自由电子、空穴、位于晶格上的离子 B.无论P型还是N型半导体,自由电子、空穴都是导电介质 C.对于P型半导体,空穴是唯一的导电介质 D.对于N型半导体,空穴是唯一的导电介质 [4008]对于半导体材料,若______,导电能力减弱。 A.环境温度降低 B.掺杂金属元素 C.增大环境光照强度 D.掺杂非金属元素[4009]金属导体的电阻率随温度升高而______;半导体的导电能力随温度升高而______。A.升高/升高 B.降低/降低 C.升高/降低 D.降低/升高 [4010]关于N型半导体的下列说法,正确的是______。 A.只存在一种载流子:自由电子 B.在二极管中,N型半导体一侧接出引线后,是二极管的正极 C.在纯净的硅衬底上,分散三价元素,可形成N型半导体 D.在PNP型的晶体管中,基区正是由N型半导体构成 [4011]关于P型半导体的下列说法,错误的是______。 A.空穴是多数载流子 B.在二极管中,P型半导体一侧接出引线后,是二极管的正极 C.在纯净的硅衬底上,掺杂五价元素,可形成P型半导体 D.在NPN型的晶体管中,基区正是由P型半导体构成 第二节 PN结的单向导电性 [4012]下列说法正确的是______。 A.P型半导体带正电 B.N型半导体带正电 C.PN结为电的中性体 D.PN结存在内电场,用导线短接时,有电流产生

半导体制造工艺流程

半导体制造工艺流程 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

半导体制造工艺流程 半导体相关知识 本征材料:纯硅9-10个 250000Ω.cm3 N型硅:掺入V族元素--磷P、砷As、锑Sb P型硅:掺入III族元素—镓Ga、硼B PN结: 半导体元件制造过程可分为 前段(FrontEnd)制程 晶圆处理制程(WaferFabrication;简称WaferFab)、 晶圆针测制程(WaferProbe); 后段(BackEnd) 构装(Packaging)、 测试制程(InitialTestandFinalTest) 晶圆边缘检测系统 一、晶圆处理制程 晶圆处理制程之主要工作为在矽晶圆上制作电路与电子元件,为各制程中所需技术最复杂且资金投入最多的过程,以微处理器(Microprocessor)为例,其所需处理步骤可达数百道,而其所需加工机台先进且昂贵,有时可达数千万一台,其所需制造环境为为一温度、湿度与含尘(Particle)均需控制的无尘室(Clean-Room),虽然详细的处理程序是随着产品种类与所使用的技术有关;不过其基本处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,接着进行氧化(Oxidation)及沉积,最后进行微影、蚀刻及离子植入等反覆步骤,以完成晶圆上电路的加工与制作。 晶圆与晶片的区别 制造半导体前,必须将硅转换为晶圆片。这要从硅锭的生长开始。单晶硅是原子以三维空间模式周期形成的固体,这种模式贯穿整个材料。多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。晶片由晶圆切割成,直径和晶圆相同,厚度为300μm 由于硅很硬,要用金刚石锯来准确切割晶圆片,以得到比要求尺寸要厚一些的晶片。激光锯也有助于减少对晶圆片的损伤、厚度不均、弯曲以及翘曲缺陷。      切割晶圆片后,开始进入研磨工艺。研磨晶圆片以减少正面和背面的锯痕和表面损伤。同时打薄晶圆片并帮助释放切割过程中积累的硬力。研磨后,进入刻蚀和清洗工艺,使用氢氧化钠、乙酸和硝酸的混合物以减轻磨片过程中产生的损伤和裂纹。关键的倒角工艺是要将晶圆片的边缘磨圆,彻底消除将来电路制作过程中破损的可能性。倒角后,要按照最终用户的要求,经常需要对边缘进行抛光,提高整体清洁度以进一步减少破损。

《半导体物理》课程考试大纲 .doc

《半导体物理》课程考试大纲 一、适用专业: 集成电路工程 二、参考书目: 1.刘恩科朱秉升编,半导体物理学,国防工业出版社 三、考试内容与基本要求: 第一章绪论 [考试要求] 本章要求学生掌握本课程研究的对象和内容,了解半导体材料及器件的应用,了解本课程的基本要求;了解与半导体晶体相关的概念,重点掌握倒格子、布里渊区的概念,重点了结晶体中的缺陷、晶格振动和晶体中的电子运动。 [考试内容] ①晶格、格点、基矢、布里渊区、倒格子等概念 ②晶体中的缺陷、晶格振动 ③晶体中的电子运动 第二章半导体中的电子状态 [考试要求] 本章要求学生掌握电子、空穴和有效质量的概念,重点了解和掌握半导体的能带结构,了解半导体中的杂质和缺陷能级。 [考试内容] ①电子、空穴和有效质量的概念 ②能带论,并用能带理论解释半导体物理学中的一些现象 ③常用半导体的能带结构 ④半导体中的杂质和缺陷 第三章热平衡状态下载流子的统计分布 [考试要求] 本章要求学生掌握状态密度及费米能级的概念,掌握热平衡状态下本征半导体及杂质半导体的载流子浓度,了解非简并情况下费米能级和载流子浓度随温度的变化。 [考试内容] ①状态密度及费米能级的概念以及它们的表达式 ②热平衡状态下本征及杂质半导体的载流子浓度 ③非简并情况下费米能级和载流子浓度随温度的变化 ④简并半导体 第四章载流子的漂移和扩散 [考试要求]

本章要求学生掌握半导体中载流子的各种散射机制,了解电阻率和迁移率与杂质浓度和温度的关系,掌握载流子的扩散和漂移运动、爱因斯坦关系。 [考试内容] ①半导体中载流子的各种散射机制 ②电导率和迁移率 ③电阻率和迁移率与杂质浓度和温度的关系 ④载流子的扩散和漂移运动,爱因斯坦关系 ⑤强电场效应,热载流子 第五章非平衡载流子 [考试要求] 本章要求学生掌握非平衡载流子的注入与复合,了解各种复合理论,连续性方程。[考试内容] ①非平衡载流子的注入与复合 ②各种复合理论 ③连续性方程 第六章p-n结 [考试要求] 本章要求学生掌握p-n结概念及其能带图,掌握理想p-n结的电流电压关系,了解p-n 结电容,了解实际p-n结的电流电压关系、p-n结击穿、p-n结隧道效应等。 [考试内容] ①p-n结及其能带图 ②理想p-n结的电流电压关系 ③实际p-n结的电流电压关系、p-n结击穿 ④p-n结电容 ⑤p-n结隧道效应隧道结 第七章金属和半导体接触 [考试要求] 本章要求学生掌握金属半导体接触的能带图及其电流电压关系,了解欧姆接触和肖特基势垒。 [考试内容] (1)学习要求 ①金属半导体接触的能带图及其电流电压关系 ②欧姆接触 ③肖特基势垒 第八章半导体表面与MIS结构

半导体基础知识

课时授课计划 课程模拟电路授课班级14电子2任课教师尚文文 课时序号 1 授课日期 3.9 编制日期 3.1 课型理论节次7、8 教具 课 题 第一讲半导体基础知识 目的要求1.了解本征半导体的结构和特征 2.掌握杂质半导体的结构和特征 3.牢固掌握P型和N型半导体的特点 重点与难点重点P型和N型半导体的特点难点本征激发 课程导入 模拟电子电路的核心是半导体器件,而半导体器件是由半导体材料制成的。因此,我们必须首先了解半导体的有关知识,尤其应当了解半导体的导电特性。 教 学 设 计 讨论法、练习法 作业与思、考1.何谓本征半导体?其导电能力由什么因素决定。 2. P型和N型半导体的特点? 3.半导体的导电能力与哪些因素有关? 课后记事

第一讲半导体基础知识 目的要求: 1.了解本征半导体的结构和特征 2.掌握杂质半导体的结构和特征 3.牢固掌握P型和N型半导体的特点 重点难点:重点P型和N型半导体的特点 难点本征激发 教学方法 手段: 结合电子课件讲解 复习提问 1.三、四、五价化学元素有哪些? 2.惰性气体有何特点? 课堂讨论 1.何谓本征半导体?其导电能力由什么因素决定。 2. P型和N型半导体的特点? 3.半导体的导电能力与哪些因素有关? 布置作业: 课时分配: 课堂教学环节复习提问新课讲解课堂讨论每课小结布置作业 时间分配(分钟)8 75 10 5 2 二.授课内容 引言 模拟电子电路的核心是半导体器件,而半导体器件是由半导体材料制成的。因此,我们必须首先了解半导体的有关知识,尤其应当了解半导体的导电特性。 一、半导体:物质按其导电能力的强弱,可分为导体、绝缘体和半导体。 1、导体 导电能力很强的物质,叫导体。如低价元素铜、铁、铝等。 2、绝缘体 导电能力很弱,基本上不导电的物质,叫绝缘体.如高价惰性气体和橡胶、陶瓷、塑料等高分子材料等. 3、半导体 (1)定义:导电能力介于导体和绝缘体之间的物质,叫半导体。如

半导体工艺流程

这可能最简单的半导体工艺流程(一文看懂芯片制作流程) 本文来源于公众号“半导体产业园” 上一期我们聊了CMOS的工作原理,我相信你即使从来没有学过物理,从来没学过数学也能看懂,但是有点太简单了,适合入门,如果你想了解更多的CMOS 内容,就要看这一期的内容了,因为只有了解完工艺流程(也就是二极管的制作流程)之后,才可以继续了解后面的内容。那我们这一期就了解一下这个CMOS 在foundry公司是怎么生产的(以非先进制程作为例子,先进制程的CMOS无论在结构上还是制作原理上都不一样)。 首先要知道foundry从供应商(硅片供应商)那里拿到的晶圆(也叫wafer,我们后面简称wafer)是一片一片的,半径为100mm(8寸厂)或者是150mm(12寸厂)的晶圆。如下图,其实就是类似于一个大饼,我们把它称作衬底。 但是呢,我们这么看不太方便,我们从下往上看,看截面图,也就是变成了下图这个样子。

下面我们就看看怎么出现我们上一期提到的CMOS模型,由于实际的process需要几千个步骤,我在这里就拿最简单的8寸晶圆的主要步骤来聊。 制作Well和反型层: 也就是通常说的阱,well是通过离子植入(Ion Implantation,后面简称imp)的方式进入到衬底上的,如果要制作NMOS,需要植入P型well,如果制作PMOS,需要植入N型well,为了方便大家了解,我们拿NMOS来做例子。离子植入的机器通过将需要植入的P型元素打入到衬底中的特定深度,然后再在炉管中高温加热,让这些离子活化并且向周围扩散。这样就完成了well的制作。制作完成后是这个样子的。 在制作well之后,后面还有其他离子植入的步骤,目的就是控制沟道电流和阀值电压的大小,大家可以统一叫做反型层。如果是要做NMOS,反型层植入的是P型离子,如果是要做PMOS,反型层植入的是N型离子。植入之后是下面这个模型。

半导体工作原理

半导体工作原理 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

半导体工作原理 半导体技术对我们的社会具有巨大影响。您可以在微处理器芯片以及晶体管的核心部位发现半导体的身影。任何使用计算机或无线电波的产品也都依赖于半导体。 当前,大多数半导体芯片和晶体管都使用硅材料制造。您可能听说过“硅谷”和“硅经济”这样的说法,因为硅是所有电子设备的核心 二极管可能是最简单的半导体设备,因此,如果要了解半导体的工作原理,二极管是一个很好的起点。在本文中,您将了解到什么是半导体、其工作原理以及使用半导体制造二极管的过程。下面,让我们先来了解一下硅元素。 硅是一种很常见的元素——例如,它是砂子和石英的主要组成元素。如果在元素周期表中查找硅,您会发现它的位置在铝的旁边,碳的下方和锗的上方。 硅元素在周期表中位于铝的旁边和碳的下方 碳、硅和锗(锗和硅一样,也是半导体)的电子结构具有一种独特的性质——它们的最外层轨道上都有四个电子,这使它们能够形成很好的晶体。四个电子可与四个相邻的原子形成完美的共价键,从而产生晶格。我们都知道晶态构型的碳就是钻石,而硅的晶态构型是一种银色、具有金属外观的物质。 在硅的晶格中,所有硅原子都完美地与四个相邻原子形成作用键, 因此没有可用于传导电流的自由电子。所以硅晶体是一种绝缘体 而不是导体 金属通常是良好的导电体,因为它们一般都具有可以在原子间轻松运动的“自由电子”,而电子的流动便会形成电流。尽管硅晶体看上去很像金属,但是实际上它们不是金属。在硅晶体中,所有外层电子都形成了完美的共价键,因此这些电子不能到处运动。纯净的硅晶体几乎就是绝缘体——只能流过很小的电流。

相关文档
最新文档