半导体的基本能带结构

半导体的基本能带结构
半导体的基本能带结构

第七章半导体电子论

杂质、光照、温度

和压力

空穴

电子

载流子——

光照将价带中的电子激发到导带中

形成电子—空穴对

2c E g

c

0 2

E g

k k

g E

直接带隙半导体

E k

q k k

'k E

E k

k 'k q

间接带隙半导体

电子-空穴对复合发光

电子的有效质量

空穴的有效质量

[0

0i k k i E k( )] (k k

k k0 0)

1 2E

2 2(k x 2 ) (k 0x k x

k 0x )12(

2

kE y 2 ) (k 0y k y k 0y )2

()()Ek Ek

12(2kE z2 ) (k0z k k z 0z)2

E k( ) E k( )0

12[(2kE2 ) (k0x k k x 0x)2 (2kE y2 ) (k0y k y k0y)2 (2kE z2 ) (k0z k k z 0z) ]2 x

2 2 2

E(k)E(k0) 2m* (k x k0x)2 2m*y (k y k0y )2 2m*z (k z k0z)2

x

有效质量的计算

e ik r

u (r

)

nk

nk

V

(2

[

r m

(

p

2 V(r)

k p)u

nk(r) [E n(k) 2

k

2 ]u nk(r)

2m m 2m

p 2) k p]u

nk(r ) [E n(k ) 2

k

[ V(r

2m m 2m

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅(其它典型半导体)的晶体结构建模与能带计算 注:本教程以Si为例进行教学,学生可计算Materials Studio库文件中的各类半导体。 一、实验目的 1、了解单晶硅的结构对称性与布里渊区结构特征; 2、了解材料的能带结构的意义和应用; 3、掌握Materials Studio建立单晶硅晶体结构的过程; 4、掌握Materials Studio计算单晶硅能带结构的方法。 二、实验原理概述 1、能带理论简介 能带理论是20世纪初期开始,在量子力学的方法确立以后,逐渐发展起来的一种研究固体内部电子状态和运动的近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,了解材料的能带结构是研究各种材料的物理性能的基础。 能带理论的基本出发点是认为固体中的电子不再是完全被束缚在某个原子周围,而是可以在整个固体中运动的,称之为共有化电子。但电子在运动过程中并也不像自由电子那样,完全不受任何力的作用,电子在运动过程中受到晶格原

子势场和其它电子的相互作用。晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能量值。能量愈大,线的位置愈高。孤立原子的电子能级是分立和狭窄的。当原子相互靠近时,其电子波函数相互重叠。由于不同原子的电子之间,不同电子与原子核之间的相互作用,原先孤立原子的单一电子能级会分裂为不同能量的能级。能级的分裂随着原子间距的减小而增加。如图1所示,如果N 个原子相互靠近,单一电子能级会分裂为N个新能级,当这样的能级很多,达到晶体包含的原子数目时,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。各种晶体能带数目及其宽度等都不相同。相邻两能带间的能量范围称为“带隙”或“禁带”。晶体中电子不能具有这种能量。完全被电子占据的能带称“满带”,满带中的电子不会导电。完全未被占据的称“空带”。部分被占据的称“导带”,导带中的电子能够导电。价电子所占据能带称“价带”。 能带理论最突出的成就是解释了固体材料的导电性能。材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导带时,电子就可以在带间任意移动而导电。图2是不同导电性材料的典型能带结构示意图。导体材料,常见的是金属,因为其导带与价带之间的非常小,在室温下,电子很容易获得能量而跳跃至导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导带,所以无法导电;一般半导体材料的能隙约为1至2电子伏特,介于导体和绝缘体之间。半导体很容易因其中有杂质或受外界影响(如光照,升温

半导体能带理论

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

半导体材料能带测试及计算

半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置.

图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样: 背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试:

用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。 2. 根据(αhv)1/n = A(hv – Eg),其中α为吸光指数,h为普朗克常数,v为频率,Eg为半导体禁带宽度,A为常数。其中,n与半导体类型相关,直接带隙半导体的n取1/2,间接带隙半导体的n为2。

能带理论--能带结构中部分概念的理解小结

本文是关于能带结构概念部分学习的小结,不保证理解准确,欢迎高中低手们批评指教,共同提高。 能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。 1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只

要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 2. 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valenc e band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 3. 费米能级(Fermi level)是绝对零度下电子的最高能级。根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。

CdO电子结构的第一性原理计算

收稿日期:2008205205; 修订日期:2008206230 作者简介:宋永东(19582  ),陕西户县人,副教授.主要从事电子技术与半导体理论的科研和教学工作. CdO 电子结构的第一性原理计算 宋永东1,黄 同2,吕淑媛3 (1.延安大学物理与电子信息学院,陕西延安716000;2.延安大学西安创新学院,陕西西安710100;3.西安邮电 学院电信系,陕西西安710021) 摘要:基于密度泛函理论(Density Functional Theory )框架下的第一性原理平面波超软赝势方法,计算了岩盐、氯化铯以及纤锌矿构型CdO 的体相结构、电子结构和能量等属性。利用精确计算的能带结构和态密度,从理论上分析了CdO 材料基态属性及其化学和电学特性,理论结果与实验结果相符合,这为CdO 光电材料的设计与大规模应用提供了理论依据。同时,计算结果也为精确监测和控制这一类氧化物材料的生长过程提供了可能性。关键词:CdO ;电子结构;第一性原理;相变 中图分类号:TN201 文献标识码:A 文章编号:100028365(2008)0821106204 Firs t 2Pri ncip le Calc ula ti o n of Ele c t r o nic S t r uc t ur e of CdO SONG Yong 2dong 1,HUANG Tong 2,L V Shu 2yu an 3 (1.College of Physics &Electronic Information ,Yan πan U niversity ,Yan πan 716000,China ;2.Xi πan G reation Collgeg of Yan πan U niversity ,Xi πan 710100,China ;3.Department of T elecommunication ,Xi πan Institute of Post and T elecommunication ,Xi πan 710072,China) Abs t rac t :The phase structure ,electronic structure and energy of CdO in rocksalt ,ce sium chloride and wurtzite are calculated utilizing first 2principle ultra 2soft p seudo 2potential approach of the plane wave based upon the Density Functional Theory (DFT ).The ground state ,electronic and chemical propertie s are analyzed in terms of the precise calculated band structure and density of state ,the theoretical re sults agree well with the experimental value ,and can provide theorical asis for the de sign and application of optoelectronics materials of CdO.Meanwhile ,the calculated re sults can provide the po ssibility for more precise monitoring and control during the growth of CdO materials. Ke y w ords :CdO ;Electronic structure ;First 2principle s ;Phase transformation 透明导电薄膜(TCOS )由于其低的电阻率、高的透光率而成为具有优异光电特性的电子材料之一,现已在太阳能电池[1]、液晶显示器[2]、气体传感器[3]、紫外半导体激光器等领域得到应用。氧化镉(CdO )作为一类宽禁带化合物半导体材料,由于在导电和可见光透过方面具有优异的性能,现已在新型透明导电薄膜方面受到人们的重视,被认为是一种有潜力的光电材料[4~7],可用于太阳能电池、电致变色器件、液晶显示器、热反射镜、平板显示装置、抗静电涂层及光电子装置等领域。与其它透明导电薄膜材料相比,CdO 薄膜具有很多优点,如生长温度低,可在室温下获得结晶取向好的高迁移率薄膜;在未掺杂情况下,由于薄膜中存在大量的间隙Cd 原子和氧空位作为浅施主,因此CdO 薄膜有很高的载流子浓度,使得CdO 在未掺杂 的情况下就有很高的电子浓度和电学性能;同时CdO 薄膜的禁带宽度(E g =2.26eV ,对应的吸收波长在550nm )在太阳可见光辐射区,可以作为Si 、Cd Te 、CuL nSe 2(CIS )等太阳能电池的窗口材料,对应不同的 制备方法,禁带宽度有一定的变化。近年来,基于密度泛函理论的第一性原理计算已用来研究这类材料的光学性质。本文计算了各种构型CdO 电子结构,并与相关文献进行了比较。1 理论模型和计算方法1.1 理论模型 氧化镉是n 型半导体化合物,室温下其稳定的结晶态为立方NaCl 型结构,空间群为Fm 23m ,晶胞参数a =4.674!。另外,CdO 还存在闪锌矿、氯化铯以及纤锌矿型3种亚稳态结构。第一性原理计算表明,大约在89GPa 压力下,立方NaCl 结构的CdO 晶体转变为CsCI 结构,晶胞体积减少约6%,其各种构型的晶体结构如图1所示。

密度泛含理论第八章 全电子(AE)能带理论方法

第八章 全电子(AE)能带理论方法 LMTO和LAPW 全电子方法与赝势方法的主要差别在于 将价电子和芯电子同等处理,原子和固 体能量的自洽迭代,电子密度都是全电 子的,原则上属于最精确的计算方法。 1

2 §1。LMTO 方法 ? 线性化丸盒轨道(L inearized M uffin-T in O rbitals )方法。 Ref.: O.K.Andersen: Phys.Rev. B12, 3060(1975) O.K.Andersen 虽然LMTO 方法已经发展到第三代(FPLMTO )和第四代(GW or sX-LDA)-FPLMTO 但其方法的物理图像和主要框架仍然是来的LMTO 方法。

Muffin-tin potential 1.MT势(Muffin-tin potential,丸盒势,松饼势) a) 一般不交叠,最大为接触球,势是球对称的。 b) 不同原子有不同的MT半径。R MT=R A,R B。 A B A B A V0 ΔV A ΔV B 2R B 2R A 3

4 1.MT 势(Muffin-tin potential ) c) 球对称势的深度ΔV t (ΔV A , ΔV B )可以不同,与原子有关。d) 球外的MT 势为V 0,是共同的。具体计算时可调整为0。 ?? ?>≤=s r or V s r r V r V '0 ') '()'(0s 是MT 球半径。2. 原子球近似(ASA ) LMTO 方法常常作原子球近似(A tomic S phere A pproximation) 以便简化计算。但应注意: 原胞中原子球的总体积=原胞体积 因此,原子球近似所取的原子球是相互交叠的。也称Wigner-Seitz 球。 单原子原胞 (7.5.1)

1.6 回旋共振及常见半导体的能带结构 -1

1.6 回旋共振及 常见半导体的能带结构

1. k 空间的等能面 22 ()(0)2n k E k E m * =+ 导带底E C 在k=0处,导带底附近 一维情况: 2 222 ()(0)()2x y z n E k E k k k m → * -=++ 三维情况: 当E (k )一定时,对应于多组不同的(k x , k y , k z ),将这些不同的(k x , k y , k z )连接起来构成一个封闭面,其上能值均相等,称为等能面。 等能面为球面 载流子的有效质量是各向同性时,等能面为球面 1) 能带极值在k =0

2222 y x z ()(0)() 2x y z k k k E k E m m m ***=+++ 椭球等能面 设导带极小值Ec 位于k=0处,取椭球主轴为坐标系,则导带底附近能带可表示为: 有效质量是各向异性时,等能面为椭球面。 0 222*11=???? ????=k x x k E m 0 222*11=???? ????=k y y k E m 0 222*11=???? ????=k y y k E m *** ,,z y x m m m 分别代表沿椭球三个主轴的有效质量:

旋转椭球等能面 t y x m m m ==** l m m =*z 坐标原点置于旋转椭球中心,并使k z 轴与旋转椭球长轴重合。横向有效质量;2222()(0)() 2x y z t l k k k E k E m m +=++ 则等能面可表示为: 纵向有效质量; y x k k ,沿 轴的有效质量相等: 沿 轴的有效质量:z k

能带结构分析现在在各个领域的第一原理计算

能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。 记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。通过能带图,能把价带和导带看出来。在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。 DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从DOS图也可以清晰地看出带隙、价带、导带的位置。要理解DOS,需要将能带图和DOS结合起来。分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。否则显示的就是整个体系原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。研究的是体系中所有电子的能量状态。根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。我们经常提到的总能量,就是体系电子的总能量。 这些是我看书的体会,不一定准确,大家多多批评啊! 摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子

金属、半导体和绝缘体能带结构区别

金属、半导体和绝缘体的能带结构区别本论文从能带的形成过程和电流的产生机理两方面来说明金属、半导体和绝缘体的能带结构区别。 1.能带(Energy Band)的形成过程 当孤立的原子结合在一起形成固体时,相邻的原子之间会产生各种交互作用,原子之间的排斥力和吸引力最后在一定的原子间距达到平衡. 由量子力学可知,晶体中相同原子孤立存在时,各自的电子波函数没有相互作用,因而各原子可以有完全相同的电子能级结构。当相同原子相互接近时,其电子波函数便开始重迭.根据量子力学的泡利不相容原理,在一个系统中,不允许有两个电子具有相同的量子状态,因而孤立原子的能级必然产生分裂,这些新产生的分裂能级不再是某个原于所独有,而是属于原子共有。在固体中,大量原子结合在一起,相互极为接近的大量分裂能级最终成为一个连续的能带。 量子力学计算表明,晶体中若有N个原子,由于各原子间的相互作用,对应于原来孤立原子的每一个能级,在晶体中就变成了N条靠得很近的能级,称为能带。如图1所示:

图1 能带的宽度记作?E ,数量级为 ?E ~eV 。若N~1023,则能带中两能级的间距约10-23eV 。 能带的一般规律:越是外层电子,能带越宽,?E 越大; 点阵间距越小,能带越宽,?E 越大; 两个能带有可能重叠。如图2所示: 图 2

2.电流产生机理 电流的产生要求电子能够在电场的作用下加速移动至新的能量状态,即要求在电子现有能量状态附近必须有空能级。举例来说,如果一个能带中只有很少几个电子,而有大半的能态是空的,则电子很容易在能带中由这个能态运动到另一个能态,从而发生电荷的迁移,产生导电行为。 对于金属、绝缘体和半导体来说,因其导电性不同,所以其能带结构也不相同。在绝缘体结构中0K时“价带”已被全部占据,导带是全空的,因而价带中的电子于无法进行电荷运输,因为价带中没有空能级。导带中虽有空能级但无电子,因而也不可能进行电荷运输;半导体的电子能带结构与绝缘体相仿,但其禁带宽比绝缘体小得多.例如Si为1.1eV,而金刚石为5eV。这一较小的禁带宽度使价带中的电子能较容易地在热或光的作用下激发到高能带即导带中而起导电作用;金属的能带结构又不同,能带或是重叠,或是半填满。固而在一个能带内总是既有电子又有空能态,电子在电场作用下便能自曲地运动,从而导致很高的导电性。如图3所示:

第六章半导体的物质结构和能带结构

第6章 异质结和纳米结构 1、试讨论用窄禁带n 型半导体和宽禁带p 型半导体构成的反型异质结中的能带弯曲情况,画出能带图。 答: 2、仿照第4章对pn 同质结的讨论方法,完成突变pn 异质结接触电势差表达式(6-5)和势垒区宽度表达式(6-7)的推导过程。 解:设p 型和n 型半导体中的杂质都是均匀分布的,其浓度分别为N A1和N D2。势垒区的正负空间电荷去的宽度分别为(x 0-x 1)=d 1,(x 2-x 0)=d 2。取x=x 0为交界面,则两边势垒区中的电荷密度可以写成 ? ?? -=<<-=<<22201101)(,)(,D A qN x x x x qN x x x x ρρ 势垒区总宽度为 211002)()(d d x x x x X D +=-+-= 势垒区的正负电荷总量相等,即 Q x x qN x x qN D A =-=-)()(022101 Q 就是势垒区中单位面积上的空间电荷数值。因此上式可以简化为 1 2 0210)()(A D N N x x x x =-- 设V(x)代表势垒区中x 点得电势,则突变反型异质结交界面两边的泊松方程分别为 )()(0111 212x x x qN dx x V d A <<=ε )()(202 2 2 22x x x qN dx x V d D <<=ε ε1ε2分别为p 型及n 型半导体的介电常数。对以上两式分别积分一次得 )()(011111x x x C x qN dx x dV A <<+=ε )()(2022 22x x x C x qN dx x dV D <<+=ε C 1‘C 2是积分常数,有边界条件决定。因势垒区外是电中性的,电场集中在势垒区内,故边 界条件为 0)(1 111=- ==x x dx dV x E

电子结构计算方法概述

第二章电子结构计算方法概述 物体所表现的宏观特性都由物体内部的微观结构决定,块状材料在力学、热学、电学、磁学和光学等方面的许多基本性质,如振动谱、电导率、热导率、磁有序、光学介电函数、超导等都由电子结构决定1。因此,定量、精确地计算材料的电子结构在解释实验现象、预测材料性能、指导材料设计等方面都具有非常重要的意义和作用,也是一个富有挑战性的课题。 2.1 第一性原理计算方法概述 2.1.1 基本概念 与其它理论计算方法类似,电子结构的计算方法大体上也可划分为两类:半经验(或经验)计算方法与第一性原理(First-Principles)计算方法(也有“从头算(ab initio)”这个叫法)。前者是指在总结归纳某些实验现象与结果的基础上建立起相应的理论模型、计算公式与参数,然后推广应用到研究其它现象和性质的理论方法;后者则指 、电子电量e、普朗仅需采用5个基本物理常数,即电子的静止质量m 克(Plank)常数h、光速c和玻尔兹曼(Boltzmann)常数k B,而不需要其它任何或经验或拟合的可调参数,就可以应用量子力学原理(Schr?dinger方程)计算出体系的总能量、电子结构等的理论方法2。在计算过程中,它只需知道构成体系的各个元素与所需要模拟的环境(如几何结构),因此有着半经验方法不可比拟的优势。

量子力学是20世纪最伟大的发现之一,它构成了整个现代物理学(甚至现代化学)的基石,其矩阵力学形式最先由海森堡(W. K. Heisenberg)于1925年创立。但量子力学最流行的表述形式却是薛定谔(Schr?dinger)于次年建立的与矩阵力学形式等价的波动力学形式,它的核心是粒子的波函数及其运动方程——薛定谔方程。对一个给定的系统,我们可能得到的所有信息都包含在系统的波函数当中。因此,第一性原理计算方法的基本思路就是将多个原子构成的体系理解为由电子和原子核组成的多粒子系统,然后求解这个多粒子系统的薛定谔方程组,获得描述体系状态的波函数Φ以及对应的本征能量——有了这两项结果,从理论上讲就可以推导出系统的所有性质2。 原则上,任何材料的结构和性能都能依照上述基本思路、通过第一性原理计算得到;但实际上,除个别极简单的情况(如氢分子)外,物体中电子和核的数目通常达到1024 /cm3的数量级,再加上如此多的粒子之间难以描述的相互作用,使得需要求解的薛定谔方程不但数目众多,而且形式复杂,即使利用最发达的计算机也无法求解。这正如量子力学的奠基者之一——狄拉克(Dirac)在1929年所说:“量子力学的普遍理论业已完成……作为大部分物理学和全部化学之基础的物理定律业已完全知晓,而困难仅在于将这些定律确切应用时将导致方程式过于复杂而难于求解。”3因此Kohn认为,当系统的电子数目大于103时,薛定谔方程式的直接求解将是个不科学的课题,人们必须针对材料的特点作合理的简化和近似3。

半导体的能带图

重要半导体的能带图(参考资料) ——Xie Meng-xian. (电子科大,成都市)—— 能带结构就是晶体电子的能量E与波矢k之间的关系曲线。现在已经发展出了许多能带结构的计算方法和实验方法,并且对于一系列半导体的能带结构进行了理论计算和实验验证。 能带结构的计算一般都是在一定的晶格周期性势场形式下、基于单电子近似来求解Schr?dinger方程;这里重要的是如何选取晶格周期性势场的近似模型。因此,依据势场模型的选取就有多种不同的计算能带结构的方法,例如Hartree-Fock方法、量子缺陷方法、赝勢方法等。 图1 若干半导体的能带结构(计算)

图1是采用赝勢方法计算而得到的若干重要半导体的能带结构图(未考虑电子自旋)。见到,图中所有半导体的价带顶都位于Brillouin区中心(Γ点),然而导带底却不一定;因此就有所谓直接跃迁能带结构的半导体(直接禁带半导体)和间接跃迁能带结构的半导体(间接禁带半导体)之分:Si、Ge、GaP、AlP、AlSb、AlAs等是间接禁带半导体;GaAs、InP、InAs、InSb、GaSb、ZnS、ZnSe、ZnTe、CdTe等是直接禁带半导体。α-Sn(灰锡)具有金刚石型的晶体结构,它是一种半金属(即禁带宽度为0的半导体);其他类似的半金属有HgSe和HgTe。 图2~图5示出的是一些重要的宽禁带半导体的能带结构。这些新型的半导体往往被称为第三代半导体材料(第一代是Si,第二代是GaAs)。GaN、AlN、InN是直接禁带半导体,SiC、BN是间接禁带半导体。它们在高功率、高温、微波、低噪声等应用领域内具有优良的性能;特别,氮化镓基的半导体不仅在微波领域、而且在高效率发光(蓝色光)领域内,都表现出了突出的成效。 图2 三种碳化硅的能带结构

重要半导体的能带图(参考资料)

重要半导体的能带图(参考资料) 能带结构就是晶体电子的能量E与波矢k之间的关系曲线。现在已经发展出了许多能带结构的计算方法和实验方法,并且对于一系列半导体的能带结构进行了理论计算和实验验证。 能带结构的计算一般都是在一定的晶格周期性势场形式下、基于单电子近似来求解Schr?dinger方程;这里重要的是如何选取晶格周期性势场的近似模型。因此,依据势场模型的选取就有多种不同的计算能带结构的方法,例如Hartree-Fock方法、量子缺陷方法、赝勢方法等。 图1若干半导体的能带结构(计算)

图1是采用赝勢方法计算而得到的若干重要半导体的能带结构图(未考虑电子自旋)。见到,图中所有半导体的价带顶都位于Brillouin区中心(Γ点),然而导带底却不一定;因此就有所谓直接跃迁能带结构的半导体(直接禁带半导体)和间接跃迁能带结构的半导体(间接禁带半导体)之分:Si、Ge、GaP、AlP、AlSb、AlAs等是间接禁带半导体;GaAs、InP、InAs、InSb、GaSb、ZnS、ZnSe、ZnTe、CdTe等是直接禁带半导体。α-Sn(灰锡)具有金刚石型的晶体结构,它是一种半金属(即禁带宽度为0的半导体);其他类似的半金属有HgSe和HgTe。 图2~图5示出的是一些重要的宽禁带半导体的能带结构。这些新型的半导体往往被称为第三代半导体材料(第一代是Si,第二代是GaAs)。GaN、AlN、InN是直接禁带半导体,SiC、BN是间接禁带半导体。它们在高功率、高温、微波、低噪声等应用领域内具有优良的性能;特别,氮化镓基的半导体不仅在微波领域、而且在高效率发光(蓝色光)领域内,都表现出了突出的成效。 图2三种碳化硅的能带结构

能带结构是目前采用第一性原理

能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。 1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。

2. 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valenc e band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 3. 费米能级(Fermi level)是绝对零度下电子的最高能级。根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 4. 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态,原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中,k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-k relationship)。能量色散决定了半导体

Bi_Te基热电材料的能带结构计算

研究与探索 Bi T e基热电材料的能带结构计算 单扬文,黄 琥,栾伟玲 (华东理工大学机械与动力工程学院,上海200237) 摘 要:采用基于密度泛函理论的自洽赝势方法,计算了Bi-Te基热电材料不同化学配比下的电子结构。介绍了Bi2T e3材料的能带以及态密度,并计算了不同配比材料的载流子有效质量。 计算结果显示:随着碲含量的增加,Bi Te基热电材料从N型半导体向P型转变,在导电性质确定的情况下,塞贝克系数随着碲含量的增加而升高。 关键词:热电材料;第一性原理;能带;有效质量 中图分类号:O471 文献标识码:A 文章编号:1005 7439(2007)01 0001 03 C alculation of Energy Band of Bi Te Based Thermoelectric Material SHAN Yang wen,HUANG Hu,LUAN Wei ling (Scho ole o f M echenical&Po wer Eng ineering,East China U niv ersity of Science and T echnolog y,Shanghai200237,China) Abstract:Energ y band of Bi T e based thermoelect ric material w as calculated using the density functional theo ry.Based on the compar ison o f band structures o f Bi T e mater ials with v ario us composito n,t he effect o f T e co ntent on thermo electr ic pr operties w as obtained.Calculatio n r esults show ed that the lake o f T e widened the band gap,w hile the ex cess of T e nar ro wer ed the band gap.W ith the increase o f T e content,electr ical pola rity of the material chang ed fr om N ty pe to P type,and the value o f Seebeck co efficient increased according ly.Ex perimental measurements displa yed hig h consist ent w ith the calculatio n results. Keywords:t her moelectr ic material;first pr inciple theo ry;energ y Band;effectiv e mass Bi2T e3化合物及其固溶体合金是研究最早也是最成熟的热电材料之一,这种材料在室温下表现出优异的热电性能,热电优值ZT可达1[1]。但是Bi2T e3作为热电材料也存在着许多缺陷,如机械性能差、化学配比难以精确控制、制备成本高等。采用计算方法获得理想的组分配比提高Bi Te基材料的性能,可以缩短实验时间并降低成本[2]。 采用材料的组成原子状态和物理学基本定律计算材料的性质,出发点是求解多粒子系统的量子力学薛定谔方程。近年来相关理论和数值算法的飞速发展,使得基于密度泛函理论的第一性原理方法成为凝聚态物理、量子化学和材料科学中的常规计算研究手段,研究涉及的材料物性包括几何构型、电子结构,结果具有相当的可靠性,某些精确 基金项目:国家自然科学基金项目(50472046),上海市曙光计划。的计算产生的误差甚至比实验误差还小。本文利用第一性原理计算方法,对不同成分的Bi Te基固溶体进行计算,希望能为Bi T e基热电材料的成分优化设计提供电子结构信息,为实验制备Bi Te基热 电材料提供可靠的理论指导。 图1 Bi2T e3的晶体结构1 理论模型与计算方法 Bi2Te3的晶体结构属 R-3m三方晶系,沿轴方 向可以视为六面体层状结 构(图1),同一层上有相同 的原子种类,层与层之间呈 -Te1-Bi-T e2-Bi-Te1 -的原子排布方式。其中, Bi-Te1之间以共价键和离 子键相结合,Bi-T e2之间 1 第28卷第1期2007年2月 能源技术 ENERGY TECH NOLOGY V ol.28 N o.1 F eb. 2007

相关文档
最新文档