双锥面同步器简介解读

双锥面同步器简介解读
双锥面同步器简介解读

双锥同步器与单锥同步器的同步性能

比较及设计计算

摘要:

本文以原微发技术开发部测绘开发的两轴式前置前驱动变速器DABS13-2为例,对双锥面齿环式同步器和单锥面齿环式同步器的同步性能进行了推理和计算,并通过对二种同步器的比较,说明双锥(多锥)齿环式同步器同步性能上的优点。

关键词:变速器、同步器、双锥面

一.前言

同步器是改善汽车机械式变速器换档性能的主要零部件,它能够使换档操纵轻便快捷,减轻驾驶员的劳动强度;可以保证换档时变速器齿轮啮合不受冲击,消除噪音,提高齿轮及传动系统的平均使用寿命;并对提高汽车行驶安全性和乘坐舒适性,改善汽车起步时的加速性和燃料经济性起着极其重要的作用。

在微发生产的变速器BS09、BS10及BS13等系列产品中,所采用的同步器均为单锥面齿环式同步器(以下简称单锥同步器),在合资公司引进的F5M41变速器产品技术中包含了双锥面齿环式同步器(以下简称双锥同步器)技术。目前,在国外的汽车机械式变速器上,双锥(多锥)同步器技术正处于推广应用的阶段,而国内该技术应用的却很少,同档次的发动机上只有即将投产的一汽大宇的发动机变速器采用了该技术。因此,对我们来说这是一项崭新且很有意义的课题。由于我们还没有这方面的生产实际经验,因此本文仅仅从性能的角度进行了推理,意在抛砖引玉,供大家参考。本文所示的双锥同步器,是在DABS13-2变速器的同步器基础上改制而成的。通过对改制前后的性能比较,阐明双锥面技术的意义。

由于本人水平有限,难免有不当之处,希望多多指教。

二.同步器的结构型式和工作原理

1.同步器的结构型式

通常同步器分为常压式和惯性锁止式两类。常压式同步器由于不能保证被连接零件完全同步之后再换档,故应用不广泛,现已基本淘汰。现代机械式变速器中广泛应用的是惯性锁止式同步器。

惯性锁止式同步器根据锁止位置的不同又分为:锁块式同步器、锁销式同步器和锁环式同步器。锁环式同步器又分为齿环式同步器和增力环式同步器(Porsche)。而齿环式同步器根据同步锥面的数量不同又可分为:单锥式、双锥式和多锥式几种。

DABS13-2变速器是根据日本铃木G13B发动机变速器测绘的,所采用的同步器型式为单

锥齿环式同步器(齿环又称为同步环),图1为DABS13-2变速器的一、二档同步器结构图。

图 1 同步器结构图

1 同步环(齿环);

2 外齿圈;

3 转接套齿;

4 弹簧;5滑块;6齿轮(包含同步锥毂)2.同步器的工作原理

换档时,首先驾驶员踩下离合器踏板,把变速杆脱离原档位,置于空档位置,这时变速器的输入端和输出端的转速有差异,同步器的作用就是使环锥的工作表面上产生摩擦力矩,以加速或减速被接合零件,使二者在最短时间内转速达到一致,在同步状态下换档。

在图1中,转接套齿3通过内花键连接在变速器的二轴上,同步锥毂跟被驱动齿轮6做成一体,两个同步环1是浮套在同步锥毂的锥面上,转接套齿3在圆周方向设有均布的三个槽,三个滑块分别装在三个槽内,压缩弹簧4装在滑块5的内侧。滑块5外侧凸台在弹簧力的作用下,把外齿圈2限定在空档位置。外齿圈2的内接合齿与转接套齿3相配合。同步环1和外齿圈2的接合齿的端面具有倒角,起着换档时的锁止作用。为了防止脱档,同步锥毂3和外齿圈2采用了倒锥形接合齿。动力传递路线为:同步锥毂6 ——〉外齿圈2 ——〉转接套齿3 ——〉二轴。

图2中的A为空档状态;B为换档时的同步状态;C为换档后的接合状态。

换档时在F力作用下,外齿圈2滑动。在弹簧力的

作用,滑块5上端始终顶在外齿圈中部的弧形槽内,外

齿圈轴向移动时使滑块偏转一个角度,致使滑块的一个

端面紧贴于同步环端面上的凸缘上,从而推动同步环轴

向移动,使内、外同步锥面接触。由于力F的作用和转

速差的存在,锥面一经接触即刻产生一定的滑动摩擦力

矩,使同步环相对于外齿圈转动一个角度,转动方向取

决于转速差的方向。图3中b为同步环凹槽,c为滑块,

滑块伸入b槽内,因而同步环只能转动距离a(即半个

齿距)。此时,外齿圈的接合齿一侧倒角面恰好与同步环

接合齿倒角面相对。

两个接合齿倒角面接触之后,由于换档力F继续增

加,外齿圈克服滑块与弹簧力的作用继续移动。因同步环相对于外齿圈已经转过了一个角度,外齿圈的齿端斜面压住了同步环接合齿端斜面。在斜面上产生正压力W,其轴向分力S = W·cos (θ/2)和切向分力F

= W·sin(θ/2)(见图4)。力F的继续存在,使摩擦锥面上产生摩

t

形成拨环力矩,力图使同步环反转而脱离外齿圈齿端锁止倒角斜面。但是作擦力矩,而力F

t

用在同步环上的摩擦力矩阻止同步环反转。随着力F的不断增大,工作锥面上的摩擦力矩不断增加。当摩擦力矩达到等于输入端的惯性力矩时,被连接两端速度相等,惯性力矩消失,摩擦力矩变为零。此时的轴向力仍起作用,在拨环力矩的作用下,将同步环连同输入端零件反转一角度,齿端锁止面脱开,外齿圈可以顺利地通过同步环继续前移。此时,外齿圈克服弹簧力,滑块上端退出弧形槽,让外齿圈通过,完成换档。

图 4

上述同步器的主要优点是轴向尺寸小、性能良好、使用可靠、造价低。缺点是同步力矩较小,在低档换档时表现尤为明显。要想显著增大其同步力矩,则需要扩大同步器的径向尺

寸,这显然不是一个很好的方法。在此背景下双锥同步器应运而生。图5为本人在DABS13-2变速器的基础上,将二档同步器改为双锥面后的结构图。

图 5

1-外齿环 2-钢环 3-内齿环 4-二档齿轮

双锥同步器在工作原理和结构布置上与单锥面齿环式同步器基本上是类似的。所不同的只是它采用了两对摩擦锥面,而不是一对摩擦锥面。它的特点是把原来的两个锥形零件分别做成了四个零件,原来与二档从动齿轮一体的同步锥毂被做成单独的一个零件(钢环),其大端上制有三个凸块,相应的在二档从动齿轮上有三个凹槽,凸块嵌入在凹槽中,这样二档齿轮带动钢环一起转动。原来的一个齿环改成两个齿环,内齿环上制有六个凸块,外齿环上制有六个缺口,凸块嵌入在缺口中,这样外齿环也带动内齿环一起转动。结果是在挂二档时,当二档从动齿轮与二轴之间有相对角速度差时,整个锥体结构中就存在两对滑动摩擦锥面。所以在总体尺寸一样的情况下,加在外齿圈上一定的轴向推力所产生的同步力矩,就等于作用在两对锥面之间的摩擦力矩的总和。对于加在换档杆上一定的推力来说,就能产生大得多的同步力矩,从而缩短同步时间,提高了同步器的工作性能,有利于换档操作。附图二为某变速器产品的双锥同步器齿环和钢环的实物照片。

三.同步器模型及同步过程的理论分析

换档时,首先驾驶员踩下离合器踏板,把变速杆脱离原档位,置于空挡位置,这时变速器的输入端和输出端的转速有差异,而同步转速却是一个新的转速,实际上变速器的输出端连接的是整车,因而具有相当大的转动惯量,故在一般情况下,假设输出端的转速在换档瞬

间是不变的。而输入端则靠同步器的摩擦副作用来达到与输出端同步。

为了对同步器作进一步研究,用如图6所示的简图表示该系统。系统的输入端有第一轴

和离合器从动片等零件的转动惯量J

C 、离合器阻力矩M

C

、同步环摩擦力矩M

S

和输入角速度ω

C

输出端有汽车惯量J

V 、汽车行驶阻力矩M

V

、同步环摩擦力矩M

S

和输出角速度ω

V

。各个量的作

用方向如图6所示。

图6 同步器系统简图

离合器阻力矩M

C

是由于离合器分离不彻底、空气摩擦阻力,以及来自变速器输入端所带动任何附件和变速器的油阻造成的。它的值越小越好,以减小同步器在同步过程中所做的

功。但它的值不易测定,在换档过程中此值可假定是不变的。汽车行驶阻力矩M

V

是由于汽车

行驶时受到的滚动阻力、道路坡度阻力、风阻和后桥等部件中的机械损失造成的。M

V

的变化

对于换档影响不大,所以在换档过程中其数值也可以认为是不变的。同步环上的摩擦力矩M

S 在换档过程中也可以认为是不变的。

对同步过程的理论分析,主要是研究同步力矩和同步时间的关系。根据牛顿第二定律,

M=Jε

式中:M——力矩,N·m;

J——转动惯量,kg·m2;

ε——角加速度,rad/s2。

对于该系统的输入端:

J C ε

C

= -+M

S

- M

C

(1)

式中负号适用于低档换高档,正号适用于高档换低档。同理,对系统的输出端:

J V εV =±M S -M V (2)

在换档过程中M S 、M C 和M V 都不随时间而变化,因此以上二式对时间的积分为

J C ωC =(-+ M S -M C )t + C (3) J V ωV =(±M S -M V )t + D (4)

式中积分常数C 和D 可以按换档时原档位的初始条件计算如下: 同步器输入端的初角速度

设比值,r=—————————————

同步器输出端的初角速度

式中的r 可以称为“同步器传动比”。低档换高档时r >1,高档换低档时r <1。令同步器的输出初角速度为ω,则同步器的输入初角速度为r ω,开始换档时t=0。

则 C=J C r ω (5a ) D=J V ω (5b ) 把上两式代入(3),(4)式,得

J C ωC =(-+ M S -M C )t+J C r ω (3a ) J V ωV =(±M S -M V )t+J V ω (4a )

换档终了时 t=t E ωCE =ωVE 式中: t E ——同步时间;

ωCE ——换档终了时的输入角速度; ωVE ——换档终了时的输出角速度。

于是可以推出: -+ M S -M C r ω ±M S -M V ω

—————— + —— = ———— + —— (6) J C t E J V t E 整理后,得式:

ωJ V J C (r-1) M V J C - M C J V

±M S = ——————— + ————— (7a )

(J V +J C )t E J V +J C

为了研究M S 和t E 之间的关系,把上式改为:

J V J C ω(r-1) M V M C

±M S = ———— [ ———— + ——- - —— ] (7b )

J V +J C t E J V J C

根据统计资料J V /J C 的值一般约为100,所以如取J V /(J V +J C )≈1来简化上述方程,则

ωJ c (r-1) M V J C

±M S ≈ —————— + ———— - M C (8)

t E J V

另外,M V /M C 值一般约为10,而J V /J C ≈100,所以M V J C /J V 约为M C /10。因此(8)式中如果把M V J C /J V 一项忽略不计,即取M V J C /J V -M C ≈-M C ,这就相当于在值中有10%的误差,这是完全现实的。这样(8)式可简化为:

ωJ c (r-1)

±M S ≈ —————— - M C (9)

t E

ωJ c (r-1)

从而得 t E ≈ —————— (10)

±M S + M C

从上式中可以看出,整车的参数对同步器的同步性能影响不是很大。因此在后面的计算中,某些未知的整车参数参考使用了类似车型的数值,其误差对计算结果的影响微乎其微。

对于单锥同步器和双锥同步器,上式中的M S 有所不同,为了便于对比,前面作为单锥同步器的计算公式,下面推算一下双锥同步器的同步力矩M S ’与单锥同步器的M S 之间的倍数关系,只要知道了二者的关系,就可以用M S 代替M S ’,使用上述公式。如图7所示:

μP a d 1

M S = —————— (11) 2sin α

μP a d 2 μP a d 3 M S ’= ————— + ————— 2sin α 2sin α 式中:

P a —— 加在同步器外齿圈上的轴向推力; μ—— 锥面间的摩擦系数;

d 1 —— 外齿环的摩擦锥面平均直径; d 2 —— 外齿环的摩擦锥面平均直径; d 3 —— 内齿环的摩擦锥面平均直径; α—— 摩擦锥面的锥面角。 在上述设计中,

d 1 = 48.9 mm

d 2 = 50.0 mm = 50.0d 1/48.9 d 3 = 46.4 mm = 46.4d 1/48.9

因此

50.0μP a d 1 46.4μP a d 1 96.4μP a d 1 M S ’= —————— + —————— = —————— 48.9×2sin α 48.9×2sin α 48.9×2sin α M S ’= 1.97M S (12)

可见,在同样的换档力的作用下,双锥面产生的同步力矩几乎为单锥面的2倍。四.同步器的设计计算

同步器的设计计算包括许多方面,如防止不同步啮合、防止锥面抱死计算和各部分的强度计算等。本文仅对同步器的同步时间t

与加在换档杆上的换档力P的关系进行演算。由于

E

BS13-2变速器的倒档采用的是滑动齿轮直接挂档,所以下面的计算只涉及一至五档。其中二档对单、双锥同步器分别进行了计算,以进行比较。

㈠.同步器计算用的主要参数

变速器及同步器的主要参数见表一。

表一变速器和同步器主要结构参数

同步器各转动零件的转动惯量见表二。一、二档同步器安放在二轴上,三、四档同步器和五档同步器布置在一轴上,挂不同的档位时应将相应零件的转动惯量转换到相应的轴上。表中的数据是按零件尺寸计算出来的,计算过程如下:

齿轮和轴等基本上都属于圆柱体盘式零件,转动惯量的计算依据下列公式:实心:J = m R2/2 = ρV R2/2 = ρπR2 L R2/2 = ρπD4L/32 (13)

空心:J =ρπ/32 (D4-- d4) L (14)

式中:J ——转动惯量,kg.m2;

m ——零件质量,kg;

ρ——材料密度,kg/m3;

L ——轴向宽度,m;

R、D——零件外轴半径、直径,m;

r、d——零件内孔半径、直径,m。

在BS13-2变速器中,换档同步时参与输入端的转动惯量的零件有20个件号(见附图1)。由于各种零件形状复杂,数据较多,为了减少繁琐,在计算转动惯量时对以上零件的形状按如下方式进行了简化:

⑴所有的圆角、倒角按直角处理;

⑵小孔、小的沟槽、小的轴肩等忽略不计;

⑶齿轮、花键以分度圆为界限,齿端忽略掉,其余按实体处理;等等。

另外,对于同步器弹簧、弹性环等质量很小的零件,其转动惯量忽略不计。在简化图形时,尽量做到照顾全局,使总的结果误差最小。简化后利用公式(13)、(14),采取分段处理的方法,先求出每一段的转动惯量,然后再累加到一起。

1. 首先计算各个零件相对于其回转中心的转动惯量。

⑴离合器从动片:参考《变速器设计》中某轿车离合器的数值:J=2.0485×10-3 kg·m2

⑵一轴(输入轴):ρ=7.8×103 kg/m3

J=ρπ/32(104×21+184×66.5+204×25.5+26.54×15+214×21+214×8.2+

42.34×13.7+24.754×20+254×70.9+204×66.5-84×121)/10-15

= 0.0881×10-3 kg·m2

⑶一轴挡圈(开口):ρ=7.8×103 kg/m3

J=ρπ/32(224-17.54)×1.2×5/6/10-15 = 0.0001×10-3 kg·m2

⑷小挡圈(开口):ρ=7.8×103 kg/m3

J=ρπ/32(30.34-25.94)×1.5×5/6/10-15 = 0.0004×10-3 kg·m2

⑸二轴上空转的一档齿轮:ρ=7.8×103 kg/m3

J=ρπ/32×[(504-354)×31+(90.54-504)×14] /10-15

= 0.7649×10-3 kg·m2

⑹二轴上空转的二档齿轮:ρ=7.8×103 kg/m3

J=ρπ/32×[(504-354)×32+(804-504)×13.5] /10-15

= 0.4752×10-3 kg·m2

⑺高速转接套齿:ρ=6.8×103 kg/m3

J=ρπ/32×[(544-50.54)×20+(50.54-374)×5+(374-264)×16] /10-15

= 0.0264×10-3 kg·m2

⑻高速外齿圈:ρ=7.8×103 kg/m3

J=ρπ/32×[(624-544)×22+(724-624)×8] /10-15

= 0.1798×10-3 kg·m2

⑼高速同步环(2个):ρ=8.9×103 kg/m3

J=ρπ/32×[(504-444)×9+(544-504)×2.5]×2/10-15

= 0.0492×10-3 kg·m2

⑽五档转接套齿:ρ=6.8×103 kg/m3

J=ρπ/32×[(484-444)×18+(444-28.54)×5+(28.54-184)×16.4] /10-15

= 0.0351×10-3 kg·m2

⑾五档外齿圈:ρ=7.8×103 kg/m3

J=ρπ/32×[(584-484)×21+(664-584)×8] /10-15

= 0.1435×10-3 kg·m2

⑿五档同步环(2个):ρ=8.9×103 kg/m3

J=ρπ/32×[(43.54-384)×7.5+(484-43.54)×2.2]×2/10-15

= 0.0262×10-3 kg·m2

⒀五档齿轮衬套:ρ=7.8×103 kg/m3

J=ρπ/32×(254-204)×27/10-15 = 0.0048×10-3 kg·m2

⒁止推盘:ρ=7.8×103 kg/m3

J=ρπ/32×[(464-38.54)×1+(38.54-36.54)×5.5+(36.54-184)×1] /10-15

= 0.0048×10-3 kg·m2

⒂轴承内圈:ρ=7.8×103 kg/m3

J=ρπ/32×(404-204)×16/10-15 = 0.0294×10-3 kg·m2

⒃轴承内圈:ρ=7.8×103 kg/m3

J=ρπ/32×(304-204)×14/10-15

= 0.0070×10-3 kg·m2

2. 计算挂三、四、五档时转换到一轴上的总的当量转动惯量

挂三、四、五档时总的当量转动惯量,等于一、二档从动齿轮自身的转动惯量分别乘以各自的传动比的平方后,加上其他零件自身的转动惯量(乘以1)。

即: J c3 = J c4 = J c5 = ∑(J/i2)(15)

式中:J c3——挂三档时总的当量转动惯量;

J c4——挂四档时总的当量转动惯量;

J c5——挂五档时总的当量转动惯量;

i ——对于一、二档从动齿轮:i为各自的传动比;对于其他零件:i = 1。

3. 计算挂一、二档时转换到二轴上的总的当量转动惯量:

挂一档时总的当量转动惯量,等于一轴上的总的当量转动惯量乘以一档传动比的平方

i

12,即: J

c1

= J c3×i

1

2。

同理,挂二档时总的当量转动惯量为:J c2 = J c3×i 2 2。 式中:J c1 —— 挂一档时总的当量转动惯量;

J c2 —— 挂一档时总的当量转动惯量; i 1 —— 一档传动比; i 2 —— 二档传动比。 计算结果见表二。

㈡ 核算驾驶员加在换档杆上的换档力P 和同步时间t E 的值

在设计同步器时,通常取同步时间t E =0.5s 。为了换档轻便,驾驶员加在换档杆上的力P 一般取在100~150N 以内(轻型汽车取下限,微型汽车取更小值)。

按以下方程计算换档力P 和同步时间t E 的值:

μPld 1

M S = —————— (16) 2sin α

J V J C ω(r-1) M V M C

±M S = ———— [ ———— + ——- - —— ]

J V +J C t E J V J C

为了核算在不同档位时,驾驶员加在换档杆上不同的力P 时,在从低档换高档以及高档换低档的同步时间t E 是否符合要求,把在各不同情况下的r 、ω、M V 、M C 、和M S 的值计算出来,连同J C 列入表格,便于核对。

1. 汽车行驶阻力在同步器输出端造成的阻力矩M V

计算M V 的步骤如下:

1) 最大功率转速n N 时的汽车速度

0.377n N R r

V a = —————— (km/h )

i 0i k

2) 汽车在平路上等速行驶时的行驶阻力

P f = 0.014×(1+V a /19440)G a (N ) P w = KA V a 2 (N )

3) 汽车行驶阻力在同步器输出端造成的阻力矩

一、二档:M v =(P f +P w )R r / i 0 (N ·m ) 三、四、五档:M v =(P f +P w )R r /(i 0i i ) (N ·m )

第12 页共18页

表二同步器各转动零件的转动惯量

__________________________________________________________________________________________________________

第13 页共18页

式中:i

0 ——主减速比,这里取i

= 4.388;

i i ——三、四、五档的传动比;

n N ——发动机最大功率时的转速,这里取n

N

= 5000 r/min;

R

r ——轮胎滚动半径,这里取R

r

= 0.266 m;

G

a ——汽车总重,这里取G

a

=13720 N;

K——空气阻力系数,这里取K = 0.0025;

A——汽车前投影面积,这里取A = 2.5m2;

P w——汽车空气阻力,N;

P f——汽车滚动阻力,N。

计算数据见表三。

表三汽车行驶阻力在同步器输出端造成的阻力矩M

v

2.编制“计算数据汇总表”见表四。

表四计算数据汇总表

表中:⑴ J

C

指输入端转动惯量,数据来自表二。

双锥面同步器简介解读

双锥同步器与单锥同步器的同步性能 比较及设计计算 摘要: 本文以原微发技术开发部测绘开发的两轴式前置前驱动变速器DABS13-2为例,对双锥面齿环式同步器和单锥面齿环式同步器的同步性能进行了推理和计算,并通过对二种同步器的比较,说明双锥(多锥)齿环式同步器同步性能上的优点。 关键词:变速器、同步器、双锥面 一.前言 同步器是改善汽车机械式变速器换档性能的主要零部件,它能够使换档操纵轻便快捷,减轻驾驶员的劳动强度;可以保证换档时变速器齿轮啮合不受冲击,消除噪音,提高齿轮及传动系统的平均使用寿命;并对提高汽车行驶安全性和乘坐舒适性,改善汽车起步时的加速性和燃料经济性起着极其重要的作用。 在微发生产的变速器BS09、BS10及BS13等系列产品中,所采用的同步器均为单锥面齿环式同步器(以下简称单锥同步器),在合资公司引进的F5M41变速器产品技术中包含了双锥面齿环式同步器(以下简称双锥同步器)技术。目前,在国外的汽车机械式变速器上,双锥(多锥)同步器技术正处于推广应用的阶段,而国内该技术应用的却很少,同档次的发动机上只有即将投产的一汽大宇的发动机变速器采用了该技术。因此,对我们来说这是一项崭新且很有意义的课题。由于我们还没有这方面的生产实际经验,因此本文仅仅从性能的角度进行了推理,意在抛砖引玉,供大家参考。本文所示的双锥同步器,是在DABS13-2变速器的同步器基础上改制而成的。通过对改制前后的性能比较,阐明双锥面技术的意义。 由于本人水平有限,难免有不当之处,希望多多指教。 二.同步器的结构型式和工作原理 1.同步器的结构型式 通常同步器分为常压式和惯性锁止式两类。常压式同步器由于不能保证被连接零件完全同步之后再换档,故应用不广泛,现已基本淘汰。现代机械式变速器中广泛应用的是惯性锁止式同步器。 惯性锁止式同步器根据锁止位置的不同又分为:锁块式同步器、锁销式同步器和锁环式同步器。锁环式同步器又分为齿环式同步器和增力环式同步器(Porsche)。而齿环式同步器根据同步锥面的数量不同又可分为:单锥式、双锥式和多锥式几种。

同步器锁止条件分析

同步器锁止问题分析 在这里分同步器设计和换挡操纵机构两方面分析一下: (一)、同步器设计 同步器的容量对同步器同步时间起很大作用,容量增大,换挡力、换档时间均会缩小。 增加锥面尺寸、数量及锥面与同步器锁环间的磨擦系数等都会增大同步器锥面的磨擦扭矩。对于批量定型生产的同步器锥面尺寸由于空间有限,不能改变。但对于摩擦系数改变起来就相对容易。改变同步环材料,及齿轮润滑油对改变锥面磨擦副的磨擦系数作用明显,摩擦系数在变速器的使用过程中的稳定性是影响变速器操作性能的另一重要因素,一般要求用于制作同步环的材料在粘度较小和粘度较大的润滑油中能够保证摩擦系数的稳定性。制作同步环的材料有铜基合金材料锰黄铜和铝黄铜此种材料广泛应用于我厂S5系列变速箱中,经汽研试验证明铝黄铜的摩擦性能略优于锰黄铜,525Q7即采用铝黄铜。另外采用钢环喷钼的方法制作的同步环在提高摩擦系数及增加同步环强度方面有较突出的优点,在中重型卡车的变速箱中应用广泛。其它材料如树脂、碳纤维等摩擦性能优良的新材料相继得到应用。在匹配南汽的变速箱中,我厂在不改变同步器尺寸的情况下,采用喷钼同步环,经整车试驾后,厂方对整车的换挡性能表示满意。 除同步器的容量和材料的摩擦性能外,同步器的锁止条件和同步器的设计形式是关键因素,下面以同步器的锁止条件为主线,分析例举到几种同步器形式,通过分析其性能特点给出各型同步器的设计特点。 同步器的设中锁止,锁止条件的确立须适当,定量描述锁止条件的参数为阻力比: γ= Ti Tc ① Tc:同步器锥面的摩擦力矩 Ti:同步环节圆上的拨环力矩 必须满足条件γ≥1,γ选取过大,虽然可保证在同步器未同步前,同步器齿套决不会推开同步环与锥体接合,但对于锁环式同步器势必要选择较大的锁止角β这会使同步解除力与时间的乘积增大、同步器的啮合力增大、使同步器的操纵性能变坏。相反γ选取过小(接近1)会使同步器性能变差,易产生挂档冲击。 锥面摩擦力矩: T c =c c c r u θsin **F ② 拨环力矩: T i =R i *F*)2 tan 2tan *1(i i i i u u θθ+- ③ F : 同步齿套上的操纵力 r c :同步锥体的有效半径,r c = 31[(D 3w -D 3i )/(D 2w -D 2i ) ④ i u :齿套锁止角斜面与同步环锁止角斜面的摩擦系数

变速器和同步器图解

变速器和同步器图解 三轴五当变速器传动简图 1-输入轴 2-轴承 3-接合齿圈 4-同步环 5-输出轴 6-中间轴 7-接合套 8-中 间轴常啮合齿轮 此变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输出轴)、倒档轴、各轴上齿轮、操纵机构等几部分组成。 两轴五当变速器传动简图

1-输入轴 2-接合套 3-里程表齿轮 4-同步环 5-半轴 6-主减速器被动齿轮 7-差速器壳 8-半轴齿轮 9-行星齿轮 10、11-输出轴 12-主减速器主动齿轮 13-花键毂 与传统的三轴变速器相比,由于省去了中间轴,所以一般档位传动效率要高一些;但是任何一档的传动效率又都不如三轴变速器直接档的传动效率高。 同步器有常压式,惯性式和自行增力式等种类。这里仅介绍目前广泛采用的惯性式同步器。 惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。 惯性同步器按结构又分为锁环式和锁销式两种。 其工作原理可以北京BJ212型汽车三档变速器中的二、三档同步器为例说明。花键毂7与第二轴用花键连接,并用垫片和卡环作轴向定位。在花键毂两端与齿轮1和4之间,各有一个青铜制成的锁环(也称同步环)9和5。锁环上有短花键齿圈,花键齿的断面轮廓尺寸与齿轮 1,4及花键毂 7上的外花键齿均相同。在两个锁环上,花键齿对着接合套8的一端都有倒角(称锁止角),且与接合套齿端的倒角相同。 锁环具有与齿轮1和4上的摩擦面锥度相同的内锥面,内锥面上制出细牙的螺旋槽,以便两锥面接触后破坏油膜,增加锥面间的摩擦。三个滑块2分别嵌合在花键毂的三个轴向槽11内,并可沿槽轴向滑动。在两个弹簧圈6的作用下,滑块压向接合套,使滑块中部的凸起部分正好嵌在接合套中部的凹槽10中,起到空档定位作用。滑块2的两端伸入锁环9和5的三个缺口12中。只有当滑块位于缺口12的中央时,接合套与锁环的齿方可能接合。

同步器设计手册

同步器设计手册

前言 汽车变速器中采用同步器,可以保证换档操作迅速、轻便无冲击,延长齿轮和传动系统的使用寿命,提高汽车在换档和加速起步时的动力性和经济性,改善驾驶舒适性的有效措施。同步器技术目前被广泛应用于各种车型上。同步器的应用是机械变速器发展过程中一次质的飞跃,在我国汽车行业标准QC/T29063中明确规定轻型汽车变速器前进档必需装有同步器结构,中型汽车除一档、倒档外,其余各档也必需装有同步器结构。随着同步器技术不断发展,对于提高变速器传动性能,具有十分重要的经济技术意义。 本手册是在综合同步器理论和实践研究的基础上编写而成。本书结构新颖,文字简洁,图文并茂,通俗易懂。内容包括:同步器结构形式,工作原理,设计参数,结构参数,以及影响同步器性能的因素。本手册可供从事汽车变速器的设计、生产、维修人员参考。 本手册经等人员审阅并提出修改意见,在此表示感谢。由于作者水平有限,难免有不足之处,请广大员工提出宝贵意见。 作者 2007/11/16

目录 绪论 第一章同步器的结构形式及其特点 第一节锁销式同步器 第二节锁环式同步器 第三节锁环式多锥同步器 第二章同步器工作原理 第三章同步器设计参数及其计算 第一节转动惯量及其转换 第二节同步力矩Tc及同步时间 第三节拨环力矩T B 第四节计算实例 第四章结构参数设计 第一节结构参数设计 第二节结构参数设计对换档性能的影响第三节同步器摩擦材料 第五章影响同步器性能的因素 第一节润滑油对同步器性能的影响 第二节其他对同步器性能的影响 第六章同步器试验

绪 论 汽车变速器是汽车传动系中的一个重要部件,它的功能是在不同的使用条件下,改变由发动机传到驱动轮上的转矩和转速,使得汽车得到不同的牵引力和车速,以适应不同的使用条件。同时也可以使发动机在最有利的工况范围内工作。 为保证变速器具有良好的工作性能,对变速器提出以下基本要求: 1. 应有合适的变速档位数和传动比,保证汽车具有良好的动力性和经济 性指标。 2. 较高的传动效率。 3. 应有空档和倒档。 4. 换档操纵迅速轻便、工作可靠,噪声小。 在手动机械式变速器中(Manual Transmission 简称MT ),同步器是改善换档性能的主要零部件。对减轻驾驶员的劳动强度,使操纵轻便,提高齿轮及传动系统的使用寿命,提高汽车行驶安全性和乘坐的舒适性,改善汽车起步时的加速性和经济性起着重要作用。 现以一个五档变速器为例,说明同步器在换档中的作用。 假如汽车正在二档位置上行驶,则变速器通过发动机传来的动力,经过第一轴上的齿轮A 和中间轴常啮合齿轮B 、齿轮P 2传递给第二轴上的齿轮S 2,使动力输出。这时齿轮P 2和 齿轮S 2的圆周线速度 相等,V S2=V P2。当汽车 在良好的路面行驶,驾驶员此时要改善汽车行驶的经济性,要从二档换到三档上行驶,这时驾驶员就要把齿轮S 2和P 2分开,而把齿轮S 3和P 3接合上。此时中间轴 上的齿轮P 3的直径要比P 2大。由于中间轴传动角速度ω不变,则V p3>V P2。同理,由于第二轴上的齿轮S 3的直径小于S2的直径,V S3<V S2。如果在时间t 内踩离合器,由于第二轴与驱动桥、后轮、整车相连,转动惯量很大,齿轮的速度不可能很快降下来。这样,在时间t 内,齿轮S2和S 3的圆周线速度不相等,见图2所示。要经过相当长的时间t x ,等后轮轴停止后,齿轮S2和S 3的圆周线速度相等,同时为零。 P1 S1 图1

中国优质汽车同步器及齿环供应商名单

中国优质汽车同步器及齿环供应商名单 宝驰汽车部件有限公司 保定金龙汽车同步器齿环有限公司 保定永兴汽车同步器制造有限公司 长春天达汽车同步器齿轮制造公司 常州光洋轴承有限公司 大安市汽车零部件有限责任公司 福建晋江市益泰汽车配件厂 福建省石狮市同兴齿轮有限公司 桂林星火机械制造有限公司 贺尔碧格东方齿轮(泰州)公司 济南金华宇制造有限公司 江苏太平洋精锻科技股份有限公司 江苏泰州市追日齿轮厂 江苏追日汽车同步器有限公司 江阴全华丰精锻有限公司 晋江科纳精锻有限公司 晋江市罗山上郭汽车配件厂 晋江西园全顺汽车配件制造公司 昆山正大新成精密锻造有限公司 泸州长江机械有限公司

鲁银集团禹城粉末冶金制品公司 南京金牛机械制造股份有限公司 青岛三星精锻齿轮有限公司 泉州市南天汽车机械配件有限公司瑞安市奥杰汽车变速箱配件有限公司瑞安市润正汽车部件有限公司 上海达耐时汽车配件有限公司 绍兴大中汽车配件有限公司 绍兴市东城汽配机械厂 绍兴市精团机械有限公司 十堰超力达工贸有限公司 十堰精密制造有限公司 十堰民生汽车零部件有限公司 十堰同创工贸有限公司 四川村田机械制造有限公司 台州凯菲杰汽车配件有限公司 泰州市金鹰齿轮有限公司 唐山拓新齿轮厂 天津天海同步器有限公司 天津信特恩粉末冶金有限公司 芜湖众绅机械制造有限公司 武汉泛洲机械制造有限公司

西安鸿信齿轮传动有限公司 兴城市粉末冶金有限公司 浙江衢州永丰金属制品有限公司浙江绍兴市东洲汽车齿轮有限公司浙江省玉环华港机械有限公司 浙江万里扬变速器股份有限公司浙江迅达汽车部件有限公司 浙江玉环钰坤泵业有限公司 中日合资武汉协和齿环有限公司重庆爱优工业有限公司 重庆奥美机械制造有限公司 重庆市璧山顺山机械有限公司 重庆市星极齿轮有限责任公司 重庆斯钛轩汽车车桥有限公司

感应同步器的原理及应用

感应同步器工作原理及应用 摘要:感应同步器是利用电磁原理将线位移和角位移转换成电信号的一种装置。根据用途,可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移线。将角度或直线位移信号变换为交流电压的位移传感器,又称平面式旋转变压器。它有圆盘式和直线式两种。在高精度数字显示系统或数控闭环系统中圆盘式感应同步器用以检测角位移信号,直线式用以检测线位移。感应同步器广泛应用于高精度伺服转台、雷达天线、火炮和无线电望远镜的定位跟踪、精密数控机床以及高精度位置检测系统中。 关键词:感应同步器、原理、应用、直线式、旋转式 Abstract:The inductosyn is a system that transform the linear and angular displacement into electric signal use the Electromagnetic theory.According to its use the inductosyn can be divided into the linear and the rotary,which is use to measure the linear and the angular.The linear inductosyn that transform the linear and angular displacement into AC V oltage is called plane rotary transformer,which is divided into two types than is the linear and the disc.In the precision digital display system or CNC closed-loop system,the disc inductosyn is used to measure the signal of angular and the linear inductosyn is used to measure the signal of linear.The inductosyn is also widely used in the location tracking ,the precision CNC machine tools and the high-precision position detection system of the precision servo turntable, the radar antenna, the artillery and the radio Telescope. Keywords: inductosyn theory use linear rotary 1.感应同步器的工作原理 感应同步器是利用两个平面形绕组的互感随位置而变化的原理而进行工作的。 直线式感应同步器由定尺和滑尺组成,定尺上是连续绕组,滑尺上是分段绕组,滑尺为正余弦绕组。其绕组布置如图1所示。滑尺上展开分布着两个印刷电路绕组,每个节距相当于绕组空间分布的周期,又称极距,一般为2mm,用2τ表示。 滑尺与定尺相互面向平行安装,两者保持0.2mm左右距离。感应同步器的工作原理如图2所示。当定尺绕组加以频率为f,幅值恒定的交流激磁电流I(或电压)时,滑尺两绕组将产生与激磁电流频率相同、幅值随两尺相对位置而变化的感应电势e,滑尺某一绕组与定尺绕组完全重合时,磁通耦合度最大,故该滑尺感应的电势最大;两绕组错开1/4节距(即1/4*2τ=0.5τ)时,滑尺耦合的

《汽车同步器齿环用铜合金管》行业标准

《汽车同步器齿环用铜合金管》行业标准 讨论稿编制说明 1、工作简况 根据全国有色金属标准化技术委员会的通知,关于《汽车同步器齿环用铜合金管》行业标准制订的任务由高新张铜股份有限公司负责起草,并于2007年完成。 本标准为首次制订。我公司在接受此标准项目前已进行了三年多的市场调查跟踪及产品开发,从目前国内外标准状况看,尚无任何国家有此产品的国家标准及行业标准,也无国际标准可循。我公司通过各种途径,收集了德国大众,日本三菱、美国通用等公司企业标准,通过对比分析,再参照GB/T 1528、GB 5231,着手编制了本标准。 在编制该项标准过程中,从现场试验跟踪到实验数据收集,我们深入生产第一线,广泛收集资料,掌握第一手资料。作为生产企业,我们同客户保持广泛的合作,客户对我们的材料使用情况及市场最新的动态及时反馈给我们,从而使标准的制订更趋合理,具有科学性、可操作性。也使我们生产出的产品质量稳定可靠、满足市场的需求。 二、编制原则: 2006年1月,高新张铜股份有限公司接到关于《汽车同步器齿环用铜合金管》行业标准制订的任务后,马上成立了标准制订工作委员会,短时间内制订了工作计划和进度安排,并开始收集相关资料。 2006年6月,起草了“制订《汽车同步器齿环用铜合金管》行业标准”标准的调研函,同时向上海鑫申江铜加工厂,洛阳铜加工厂,上海大众汽车齿轮四厂,无锡代傲,昆山正大精密锻造有限公司,四川长江机械有限公司,武汉泛洲机械有限公司等9家国内主要的铜加工和使用单位进行发函调研。 三、制订背景 由于我国在汽车同步器齿环用铜合金管中,一直没有统一的行业标准,各大汽车配件厂商也一直使用汽车行业制订的标准对供应商进行要求,由于汽车同步器齿环用铜合金管牌号众多,且各企业对加工精度、性能、组织均有不同的要求,给供需双方带来很多不必要的麻烦。为了汽车同步器齿环用铜合金管能向一个正确、合理、规范的方向发展,特制订《汽车同步器齿环用铜合金管》行业标准。 四、制订原则: 1.有利于促进公平竞争和保护供需双方的合法权益。

锁环式惯性同步器结构与工作过程

锁环式惯性同步器结构与工作过程 锁环式惯性同步器是依靠摩擦作用实现同步。它可以从结构上保证接合套与待接合的花键齿圈在达到同步之前不可能接触,以避免齿间冲击和发生噪声。 轿车和轻、中型货车的变速器广泛采用锁环式惯性同步器,其结构和工作原理可以解放CAl091型汽车六档变速器中的五、六档同步器(图14—13a)为例说明。将花键毂15套装到第二轴上后,即用卡环18轴向固定。在花键毂两端与齿圈3和9之间,各有一个青铜制成的同步锁环(也称同步环)4和8。锁环上有断续的短花键齿圈(图14—13b),花键齿的断面轮廓尺寸与齿圈3、9及花键毂15上的外花键齿均相同。 两个同步锁环上的花键齿,在对着接合套的一端,都有倒角(称锁止角),且与接合套齿端的倒角相同。同步锁环具有与齿圈3和9上的锥形摩擦面锥度相同的内锥面,锥面上制出细牙的螺旋槽,以便两锥面接触后,破坏油膜,增加锥面间的摩擦。三个滑块5分别嵌合在花键毂的三个轴向槽b内,并可沿槽轴向滑动。三个定位销6分别插入三个滑块的通孔中。在弹簧16的作用下,定位销压向接合套,使定位销端部的球面正好嵌在接合套中部的凹槽a 中,起到空档定位作用。 滑块5的两端伸入锁环4和8的三个缺口c中。锁环的三个凸起部d分别伸入到花键毂的三个通槽e中,只有当凸起部d位于缺口e的中央时,接合套与锁环的齿方可能接合。

以变速器由五档换入六档(直接档)为例,锁环式惯性同步器的工作过程如图14—14所示。当接合套7刚从五档退到空档时 (图14—14a),齿圈3和接合套7(连 同锁环4)都在其本身及其所联系 的一系列运动件的惯性作用下,继 续沿原方向(如图中箭头所示)旋 转。设它们的转速分别为n 3、n 7 和n 4,此时,n 4=n 7,n 3>n 7,即 n 3>n 4。锁环4在轴向是自由的, 故其内锥面与齿圈3的外锥面并不 接触。 若要挂入六档,可用拨叉拨动 接合套7,并通过定位销6带动滑 块5一起向左移动。当滑块左端面 与锁环4的缺口c (图14—13)的端 面接触时,便推动锁环移向齿圈3, 使具有转速差(n 3>n 4)的两锥面一 经接触便产生摩擦作用(图14— 14b)。齿圈3即通过摩擦作用带动 锁环相对于接合套超前 转过一个 图14-13 锁环式惯性同步器

锁销式同步器故障模式及解决措施

锁销式同步器的常见故障模式及解决措施 方向进乔湘鹤 (浙江万里扬变速器股份有限公司,浙江金华,321000)摘要】介绍锁销式同步器的结构、工作原理及主要故障模式,通过分析故障原因,制定解决措施,提高锁销式同步器的质量和性能。 【关键词】锁销式同步器;故障模式;解决措施 同步器是汽车变速器中影响汽车换挡性能的关键部件之一,同步器按结构一般可分为锁销式同步器和锁环式同步器。相对于锁环式同步器,锁销式同步器因其同步容量大、结构简单,可靠性高及制造成本低等优点,被广泛地应用在中、重型汽车变速器中。 锁销式同步器的结构及工作原理 常用的锁销式同步器的结构如图所示,它由定位销(三根)、同步环、滑动齿套、锁止销(三根)、弹簧(三根)、钢球(三颗)组成,定位销通过弹簧和钢球,连接在滑动齿套的孔中,同步环两端与锁止销铆接固定,空套在滑动齿套上。 换挡过程中,换挡拨叉带动滑动齿套向被同步齿轮移动,滑动齿套通过弹簧及钢球带动定位销移动,定位销将同步环推向被同步齿轮的锥盘,使同步环与被同步齿轮的锥盘接触,滑动齿套与锁销相对偏转,滑动齿套上的锁止面与锁销的锁止面接触。滑动齿套带动锁销移动,使同步环的锥面与被同步齿轮的锥盘锥面接触,产生摩擦力矩,在摩擦力矩的作用下,滑动齿套和被同步齿轮速度趋于一致,同步过程完成后,滑动齿套爬过锁止销的锁止面,齿套内花键挂上被同步齿轮的接合齿,完成换挡。 图1 锁销式同步器结构图 1.定位销 2.同步环 3.滑动齿套 4.锁止销 5.弹簧 6.钢球 锁销同步器的主要故障模式 锁销式同步器的故障模式主要有以下几种形式: 1换挡困难,挂挡困难主要指变速器入挡力较大,譬如减挡时,由于换挡困难,无法入

变速器同步器工作原理

变速器 一、变速器概述 变速器功用: (1)改变传动比,满足不同行驶条件对牵引力的需要,使发动机尽量工作在有利的工况下,满足可能的行驶速度要求。 (2)实现倒车行驶,用来满足汽车倒退行驶的需要。 (3)中断动力传递,在发动机起动,怠速运转,汽车换档或需要停车进行动力输出时,中断向驱动轮的动力传递。 变速器分类: (1)按传动比的变化方式划分,变速器可分为有级式、无级式和综合式三种。 (a)有级式变速器:有几个可选择的固定传动比,采用齿轮传动。又可分为:齿轮轴线固定的普通齿轮变速器和部分齿轮(行星齿轮)轴线旋转的行星齿轮变速器两种。 (b)无级式变速器:传动比可在一定范围内连续变化,常见的有液力式,机械式和电力式等。 (c)综合式变速器:由有级式变速器和无级式变速器共同组成的,其传动比可以在最大值与最小值之间几个分段的范围内作无级变化。 (2)按操纵方式划分,变速器可以分为强制操纵式,自动操纵式和半自动操纵式三种。 (a)强制操纵式变速器:靠驾驶员直接操纵变速杆换档。 (b)自动操纵式变速器:传动比的选择和换档是自动进行的。驾驶员只需操纵加速踏板,变速器就可以根据发动机的负荷信号和车速信号来控制执行元件,实现档位的变换。 (c)半自动操纵式变速器:可分为两类,一类是部分档位自动换档,部分档位手动(强制)换档;另一类是预先用按钮选定档位,在采下离合器踏板或松开加速踏板时,由执行机构自行换档。 二、普通齿轮变速器 普通齿轮变速器主要分为三轴变速器和两轴变速器两种。它们的特点将在下面的变速器传动机构中介绍。 变速器传动机构: (1)三轴变速器这类变速器的前进档主要由输入(第一)轴、中间轴和输出(第二)轴组成。 (2)两轴变速器这类变速器的前进档主要由输入和输出两根轴组成。 三轴五档变速器有五个前进档和一个倒档,由壳体、第一轴(输入轴)、中间轴、第二轴(输

同步器设计

第五节同步器设计 同步器有常压式、惯性式和惯性增力式三种。常压式同步器结构虽然简单,但有不能保证啮合件在同步状态下(即角速度相等)换挡的缺点,现已不用。得到广泛应用的是惯性式同步器。 一、惯性式同步器 惯性式同步器能做到换挡时两换挡元件之间的角速度达到完全相等之前,不允许换挡,因而能完善地完成同步器的功能和实现对同步器的基本要求。 按结构分,惯性式同步器有锁销式、滑块式、锁环式、多片式和多锥式几种。虽然它们的结构不同,但都有摩擦元件、锁止元件和弹性元件。图3—17a所示锁销式同步器的摩擦件是同步环2和齿轮3上的凸肩部分,分别在它们的内圈和外圈设计有相互接触的锥形摩擦面。锁止元件位于滑动齿套1的圆盘部分孔中做出的锥形肩角和装在上述孔中、在中部位置处有相同角度的斜面锁销4。锁销与同步环2刚性连接。弹性元件是位于滑动齿套1圆盘部分径向孔中的弹簧7。在空挡位置,钢球5在弹簧压力作用下处在销6的凹槽中,使之保持滑动齿套与同步环之间没有相对移动。滑动齿套与同步环之间为弹性连接。图3—17b所示锁环式同步器摩擦元件,是通过滑动齿套8及锁环9上的锥面来实现的。

作为锁止元件是锁环9的内齿和做在齿轮10上的接合齿端部。齿轮10和锁环9之间是弹性连接。 图3—17 惯性式同步器结构方菜 a)锁销式b)锁环式 1、8--滑动齿套2--同步环3、10--齿轮4--锁销5--钢球6--销7--弹簧9--锁环 在惯性式同步器中,弹性元件的重要性仅次于摩擦元件

和锁止元件,它用来使有关部分保持在中立位置的同时,又不妨碍锁止、解除锁止和完成换挡的进行。 锁销式同步器的优点是零件数量少,摩擦锥面平均半径较大,使转矩容量增加。这种同步器轴向尺寸长是它的缺点。锁销式同步器多用于中、重型货车的变速器中。 滑块式同步器本质上是锁环式同步器,它工作可靠、零件耐用;但因结构布置上的限制,转矩容量不大,而且由于锁止面在同步锥环的接合齿上,会因齿端磨损而失效,因而主要用于轿车和轻型货车变速器中。 多锥式同步器的锁止面仍在同步环的接合齿上,只是在原有的两个锥面之间再插入两个辅助同步锥,如图3—18所示。由于锥表面的有效摩擦面积成倍地增加,同步转矩(在同步器摩擦锥面上产生的摩擦力矩)也相应增加,因而具有较大的转矩容量和低热负荷。这不但改善了同步效能,增加了可靠性,而且使换挡力大为减小。若保持换挡力不变,则可缩短同步时间。多锥式同步器多用于重型货车的主、副变速器以及分动器中。 惯性增力式同步器又称为波舍(Porsehe)式同步器,见图3—19。它能可靠地保证只在同步状态下实现换挡。只要啮合套和换挡齿轮之间存在转速差,弹簧片的支承力就阻止同步环缩小,从而也就阻止了啮合套移动。只有在转速差为零时,弹簧片才卸除载荷,于是对同步环直径的缩小失去阻

感应同步器的工作原理

感应同步器的工作原理 直线式感应同步器和圆盘式感应同步器的工作原理基本相同,都是利用电 磁感应原理工作。下面以直线式感应同步器为例介绍其工作原理。直线式 感应同步器由两个磁耦合部件组成,其工作原理类似于一个多极对的正余弦旋 转变压器。感应同步器的定尺和滑尺相互平行放置,其间有一定的气隙,一般 应保持在0.25±0.05mm范围内,如图12.2.4 所示。图12.2.4 直线式感应同步器的工作原理 当滑尺上的正弦绕组和余弦绕组分别以1~10kHz 的正弦电压激磁时, 将产生同频率的交变磁通;该交变磁通与定尺绕组耦合,在定尺绕组上将产生 同频率的感应电势。感应电势的大小除了与激磁频率、激磁电流和两绕组之间 的间隙有关外,还与两绕组的相对位置有关。如果在滑尺的余弦绕组上单独施 加正弦激磁电压,感应同步器定尺的感应电势与两绕组相对位置的关系如图 12.2.5 所示。当滑尺处于A 点时,余弦绕组C 和定尺绕组位置相差1/4 节距,即在定尺绕组内产生的感应电势为零。随着滑尺的移动,感应电势逐渐增大,直到B 点时,即滑尺的余弦绕组C 和定尺绕组位置重合时(1/4 节距位置),耦合磁通最大,感应电势也最大。滑尺继续右移,定尺绕组的感应电势随耦合 磁通减小而减小,直至移动到C 点时(1/2 节距处),又回到与初始位置完全相 同的耦合状态,感应电势变为零。滑尺再继续右移到D 点时(3/4 节距处),定 尺中感应电势达到负的最大值。在移动一个整节距(E 点)时,两绕组的耦合 状态又回到初始位置,定尺感应电势又为零。定尺上的感应电势随滑尺相对定 尺的移动呈现周期性变化(如图12.2.5 中的曲线1)。同理,如果在滑尺正弦绕组上单独施加余弦激磁电压,则定尺的感应电势如图12.2.5 中的曲线2 所示。 一般选用激磁电压为1~2V,过大的激磁电压将引起大的激磁电流,导致温升

同步器设计实例

已知条件: 离合器从动片结构尺寸。 变速器档位数、档位排列及各档速比。 变速器各档位齿轮的结构尺寸。 变速器中心距。 匹配发动机最大功率时转速。 1.同步器理论设计计算: 1)转动惯量的计算:换档过程中依靠同步器改变转速的零部件包括:离合器从动片、一轴、中间轴、与中间轴齿轮相啮合的主轴上的常啮齿轮。统称为同步过程的输入端。(见同步系统简图)而输入端的转动惯量Jc的计算步骤是:首先计算上述相关零部件的转动惯量,而后按不同的档位转换到被同步的档位齿轮上去。 园柱体盘式零件的转动惯量计算公式为; 实心J=Q×D2/8g=(γ×π/32g)×D4×L 空心J=Q×(D2-d2)/8g =(γ×π/32g)×(D2+d2)×(D2-d2) 式中:Q—零件重量(克) D—零件外径(厘米) d—零件内径(厘米) g—重力加速度(980厘米/秒2) γ—材料比重(钢:7.85克/厘米3) L—零件厚度(厘米) 转动惯量的转换:基本公式为 J换=J×i=J×主动齿轮齿数/从动齿轮齿数 各档的总转动惯量ΣJ,需要将各相应零件的转动惯量转到被同步的零件上。 ΣJ=J+J换 2)角速度差Δω的计算:在理论设计计算中,一般是按角速度差的最大值计算。所以只有假设在两个角速度中有一个是相当为发动机最大功率时的转速的值,才是同步过程中的最大角速度差。 a.低档换高档:此时汽车处于加速过程,可以假定与整车相连的输出端(二轴及同步器齿套)换档时转速不变,仍为换档前的低档转速。而输入端(被同步齿轮)的转速则高于输

出端转速。输入端需要减速才能同步。只有假定换档前输入端的转速是相应于发动机最大功率的转速n N,才能得到角速度差的最大值Δωmax。所以: ω出=(2×π×n N/60)/i低 ω入=(2×π×n N/60)/i高 Δωmax=ω入-ω出= 2×π×n N/60×(1/i高-1/i低) b)高档换低档:此时汽车处于减速过程,亦可以假定与整车相连的输出端(二轴及同步器齿套)换档时转速不变,仍为换档前的高档转速。而输入端(被同步齿轮)的转速则低于输出端转速。输入端需要加速才能同步。只有假定换档前输入端的转速是相应于发动机最大功率的转速n N,才能得到角速度差的最大值Δωmax。所以: ω出=(2×π×n N/60)/i低 发动机在换档前的角速度ω发为: ω发=ω出×i高=(2×π×n N/60)×i高/i低 输入端(被同步齿轮)换档前的角速度为: ω入= ω发/i低= (2×π×n N/60)×i高/i2低 Δωmax=ω出-ω入 = 2×π×n N/60×(1/i低-i高/i2低) 2. 锁环式同步器的结构参数、尺寸设计计算: 根据同步器计算基本方程式(5): P×μ×R锥/Sinα= Jc×Δω/ t 按已知条件:同步器输入端转动惯量Jc、角速度Δω均可计算出,而同步时间t一般在同步器设计时可取t = 0.5(S)。 根据式(5),即可计算出所需的同步摩擦力矩Mf值。 根据式(4): Mf = P×μ×R锥 / Sinα 其中: 换档力P —为了换档轻便,力P应有所控制。按汽车行业标准QC/T 29063—1992中的有关规定: 轻型车中型车重型车 400N(最大) 500N(最大) 620N(最大) 同步锥面摩擦系数μ:在同步器设计计算时一般可取μ= 0.1

感应同步器的组成和原理

感应同步器的组成和原理 2009年10月22日 感应同步器分为直线型和旋转型两大类,直线型由定子和滑尺组成,用于检测直线位移,旋转型由定子和转子组成,用于检测旋转角度。本节仅介绍直线型感应同步器的组成和原理: 如图3 15所示,直线型感应同步器由定尺和滑尺组成。其定尺是单向均匀感应绕组,绕组节距2 τ通常为2mm。滑尺上有两组励磁绕组,一组称为正弦绕组,另一组为余弦绕组,两个绕组的节距与定子相同,在空间上相互错开1/4节距,于是两个励磁绕组之间相差90°电角度。滑尺安装在被测的移动部件上,滑尺与定尺相互平行,并保持一定的距离,约0.2~0.3mm向滑尺通以交流励磁电压,在滑尺中产生勋磁电流,绕组周围便产生按正弦规律变化的磁场。由电磁感应在定尺绕组上产生感应电压,当滑尺和定尺间产生相对位移时,由于电磁磁耦合强度的变化,就使定尺上的感应电压随位移的变化而变化。 一、感应同步器种类和特点

l感应同步器的种类 感应同步器有测量长度用的直线式和测量旋转角度用的旋转式两种。下面着重介绍直线式.. (1)标准式:是直线式中精度最高的一种,使用最广,在数控系统和数显装置中大量应用:常用型号为GZD一1和GZH一1型。 (2)窄长式:其定尺的宽度比标准式窄,用于精度较低或机床上安装位置窄小且安装面难以加工的情况。 (3)三重式:它的滑尺和定尺上均有粗、中、细:套绕组.定尺上粗中绕组相对位移垂直方向倾斜不同角度,细绕组和标准式的一样。滑尺上的粗、中、细三套绕组组成:个独立的电气通道,粗、中、细的极距分别是4000、100和2mm三通道同时使用即可组成一套绝对坐标测量系统,测量范围为0.002~2000mm在此测量范围内测量系统只有一个绝对零点。单块定尺的长度有200和300mm两种,它特别适用于大型机床、。 (4)带子式:它的定尺绕组是印制在I.8m长的不锈钢带上,其两端固定在机床床身上(一端用弹性固定)滑尺像计算尺的游框那样跨在带状定尺上,可以简化安装,减少安装面,而且能使定尺随机床床身热变形而变形。 (5)感应组件:是将标准式的定、滑尺封装在匣里的感应组件(定尺经调整接长而成组合式定尺),而且将励磁变压器和前置放大器也装在里面,便于安装与使用。 2感应同步器的特点 (1)精度高:感应同步器的极对数多,平均效应所产牛的测量精度要比制造精度高,且输出信号是由滑尺和定尺之间相对移动产生的中间无机械转换环节,所以测量结果只受本身精度的影响。 (2)测量长度不受限制:当测量长度大于250ram时,可以采用多块定尺接长,相邻定尺间隔呵用块规或激光测长仪进行调整,使总长度上的累积误差不大于单块定尺的最火偏差。 (3)对环境的适应性较强:因为感应同步器金属基板和床身铸铁的热胀系数相近,当温度变化时还能获得较高的重复精度.另外它是利用电磁感应产生信号.对尺面防护要求较低。 使用时还需要注意下列影响。 1 。同步回路阻抗不对称列同步精度的影响(如励磁变压器的阻抗和同步器的正弦、余弦阻抗)。

同步器的工作原理及分类

同步器的工作原理及分类 1、无同步器时变速器的换档过程:一般采用移动齿轮或接合套换档,为使换档平顺,应 使待啮合的轮齿的圆周速度必须相等(同步)。 ·下面以无同步器的五档变速器中四、五档的互换过程为例加以说明: 图中: 1—第一轴;2—第一轴常啮齿轮;3—接合套;4—第二轴五档齿轮 5——第二轴;6——中间轴五档齿轮 (1)从低速变高速—四档变五档 1)四档时,V3= V2;欲挂五档,离合器分离接合套3右移,先进入空挡。 2)3与2脱离瞬间,V3= V2而V4 > V2,V4 > V3,会产生冲击,应停留。 3)因汽车传动系惯性质量大V3下降较慢,而V4下降较快,必有V3= V2时,此时挂档应平顺 (2)从高速变低速—五档变四档 1)五档时,V3= V4;欲挂五档,离合器分离,接合套3左移,先进入空挡。 2)3与2脱离瞬间,V3= V4而V4 > V2,V3 > V2,会产生冲击,应停留。 3)因V2 比V 3下降快,必无V3= V2时,此时应使离合器接合,并踩一下加速踏板使V2 > V3,而后再分离离合器待V3= V2时平顺挂档 2、同步器的功用及类型 (1)同步器的作用:是使接合套与待啮合的齿圈迅速同步,缩短换档时间;防止在同步前啮合而产生接合齿之间的冲击 (2)类型:分为常压式、惯性式和自增力式;目前广泛采用摩擦惯性同步装置(锁环、锁销式) 惯性式同步器是依靠摩擦作用实现同步的,在其上面设有专设机构保证接合套与待接合的花键齿圈在达到同步之前不可能接触,从而避免了齿间冲击。 1)锁环式:结构紧凑、便于合理布置,多用于轿车和轻型货车上 2)锁销式:结构形式合理,力矩较大,多适用于中型和大型货车上 3)同步器的一般结构:由同步装置(包括推动件、摩擦件)、锁止装置和接合装置三部分组成 3、锁环式惯性同步器的构造及工作原理 轿车和轻、中型货车的变速器广泛采用锁环式惯性同步器,其细部结构多种多样, 但工作原理是一样的 (1)锁环式惯性同步器的构造

解析手动变速同步器的作用、结构和工作过程

解析手动变速同步器的作用、结构和工作过程 内容简介:汽车手动变速器的换档是控制接合套左右移动,与不同齿轮前的啮合齿啮合组合出不同的档位,为了使接合套与啮合齿顺利的啮合,接合套与啮合齿轮之间的速度必须瞬时同步,以保证平顺换档。 动变速器同步器的作用: 汽车手动变速器的换档是控制接合套左右移动,与不同齿轮前的啮合齿啮合组合出不同的档位,为了使接合套与啮合齿顺利的啮合,接合套与啮合齿轮之间的速度必须瞬时同步,以保证平顺换档。 手动变速器换档即是换的同步器 下面以变速器2档换1档的过程说明同步器在换档时的作用: 后驱手动变速器结构的工作原理图 我们先设发动机的转速为2000转,因为发动机的动力经过离合器传递给变速器的输入轴及输入轴的上齿轮D,所以齿轮D的转速为2000转;齿轮D带动中间轴的齿轮旋转,因为中间轴上的齿轮与轴是一体的,所以中间轴上的齿轮转速相同。中间轴上齿轮驱动输出轴上的齿轮A、B、C,因为齿轮齿数的关系,我们设齿轮A的转速为500转,齿轮B的转速为1000转,齿轮C的转速为1500转。齿轮A、B、C均与输出轴空套连接,所以在空档时没有动力输出。 二档时,接合套与齿轮B前的接合齿啮合,齿轮B通过接合套及花键毂驱动变速器输出轴输出,因为齿轮B的转速为1000转,所以接合套、花键毂及输出轴的转速为1000转。当我们要换一档时,首先踩下离合器踏板,离合器分离,切断发动机与变速器输入轴的动力传递,但是在运动惯性力下,接合套、花键毂及输出轴的转速仍为1000转,而齿轮A的转速为500转,此时,1000转的接合器要与500转的接合齿啮合,必须需要两者之间的瞬时同步。 同步器的作用就是在接合套与接合齿啮合前两者的转速达到瞬时同步,保护换档平顺。同步器的类型: 现在汽车变速器采用的同步器有两种,摩擦惯性锁环式和摩擦惯性锁销式。 (1)锁环式同步器:应用于轿车及小型客车及货车的手动变速器; (2)锁销式同步器:应用于大型客车及货车的手动变速器; 锁环式同步器的结构和工作原理

汽车锁环同步器说明书

同步器说明书 同步器说明书 同步器分为常压式,惯性式和惯性增力式。但是在现在的汽车领域中,得到广泛使用的是惯性式同步器。 惯性式同步器有锁销式,滑块式,锁环式,多片式和多维式几种。

今天我们设计的是以款锁环式同步器。 一,同步器工作原理: 同步器换挡过程由三个阶段组成。 第一阶段:同步器离开中间位置,做轴向移动并靠在摩擦面上。摩擦面相互接触瞬间,由于齿轮的角速度和滑动齿套的角速度不同,在摩擦力矩作用下锁销相对滑动齿套转动一个不大的角度,并占据锁止位置。此时锁止面接触,阻止了滑动齿套向换挡方向移动。 第二阶段:来自手柄传至换挡拨叉并作用在滑动齿套上的力F,经过锁止元件又作用在摩擦面上。由于齿轮的角速度和滑动齿套的角速度不相同,在上述表面产生摩擦力。滑动齿套和齿轮分别与整车和变速器输入转动零件相连接。于是,在摩擦力矩作用下,滑动齿套和齿轮的转速逐渐接近,其角速度差减小了。在角速度差等于零的瞬间同步过程结束。 第三阶段:角速度差等于零,摩擦力矩消失,而轴向力F仍作用在锁止元件上,使之解除锁止状态,此时滑动锁套和锁销上的斜面相对移动,从而使滑动齿套占据了换挡位置。 二,主要参数的确定 1.摩擦系数f 汽车在行驶过程中换挡,特别是在高档区换挡次数较多,意味着同步器工作频繁。同步器是在同步环与连接齿轮之间存在角速度差的条件下工作,要求同步环有足够的使用寿命,应当选用耐磨性能良好的材料。为了获得较大的摩擦力矩,又要求用摩擦因素大而且性能稳

定的材料制作同步环。另一方面,同步器在油中工作,使摩擦因数减小,这就为设计工作带来困难。 摩擦因数除与选用的材料有关以外,还与工作面得表面粗糙度,润滑油种类和温度等因素有关。作为与同步环锥面接触的齿轮部分与齿轮做成一体,用低碳合金钢制成。对锥面的表面粗糙度要求比较高,用来保证在使用过程中摩擦因数变化小。若锥面的表面粗糙度差,在使用过程初期容易损害同步环锥面。 同步环常选用能保证具有足够高的强度和硬度,耐磨性能良好的黄铜合金制造,如锰黄铜,铝黄铜和锡黄铜等。早期用青铜合金制造的同步环因使用寿命短,已经遭淘汰。 由黄铜合金与钢材料构成的摩擦副,在油中工作的摩擦因数f取为0.1. 摩擦因数f对换挡齿轮和轴的角速度能迅速达到相同有重要作用。摩擦因数大,换挡省力或缩短同步时间;摩擦因数小则反之,甚至失去同步作用。为此,在同步环锥面处制有破坏油膜的细牙螺纹槽及与螺纹槽垂直的泄油槽,用来保证摩擦面之间有足够的摩擦因数。 2.同步环主要尺寸的确定 (1)同步环锥面上的螺纹槽 如果螺纹槽螺线的顶部设计的窄些,则刮去存在于摩擦锥面之间的油膜效果好。但顶部宽度过窄会影响接触面压强,使摩擦加快。试验还证明:螺纹的齿顶宽对f的影响很大,f随齿顶的磨损而降低,换挡费力,故齿顶宽不易过大。螺纹槽设计得大些,可使被刮下来的

感应同步器的组成和原理

感应同步器的组成和原理

感应同步器的组成和原理 2009年10月22日 感应同步器分为直线型和旋转型两大类,直线型由定子和滑尺组成,用于检测直线位移,旋转型由定子和转子组成,用于检测旋转角度。本节仅介绍直线型感应同步器的组成和原理: 如图3 15所示,直线型感应同步器由定尺和滑尺组成。其定尺是单向均匀感应绕组,绕组节距2 τ通常为2mm。滑尺上有两组励磁绕组,一组称为正弦绕组,另一组为余弦绕组,两个绕组的节距与定子相同,在空间上相互错开1/4节距,于是两个励磁绕组之间相差90°电角度。滑尺安装在被测的移动部件上,滑尺与定尺相互平行,并保持一定的距离,约0.2~0.3mm向滑尺通以交流励磁电压,在滑尺中产生勋磁电流,绕组周围便产生按正弦规律变化的磁场。由电磁感应在定尺绕组上产生感应电压,当滑尺和定尺间产生相对位移时,由于电磁磁耦合强度的变化,就使定尺上的感应电压随位移的变化而变化。 一、感应同步器种类和特点

l感应同步器的种类 感应同步器有测量长度用的直线式和测量旋转角度用的旋转式两种。下面着重介绍直线式.. (1)标准式:是直线式中精度最高的一种,使用最广,在数控系统和数显装置中大量应用:常用型号为GZD一1和GZH一1型。 (2)窄长式:其定尺的宽度比标准式窄,用于精度较低或机床上安装位置窄小且安装面难以加工的情况。 (3)三重式:它的滑尺和定尺上均有粗、中、细:套绕组.定尺上粗中绕组相对位移垂直方向倾斜不同角度,细绕组和标准式的一样。滑尺上的粗、中、细三套绕组组成:个独立的电气通道,粗、中、细的极距分别是4000、100和2mm三通道同时使用即可组成一套绝对坐标测量系统,测量范围为0.002~2000mm在此测量范围内测量系统只有一个绝对零点。单块定尺的长度有200和300mm两种,它特别适用于大型机床、。 (4)带子式:它的定尺绕组是印制在I.8m长的不锈钢带上,其两端固定在机床床身上(一端用弹性固定)滑尺像计算尺的游框那样跨在带状定尺上,可以简化安装,减少安装面,而且能使定尺随机床床身热变形而变形。 (5)感应组件:是将标准式的定、滑尺封装在匣里的感应组件(定尺经调整接长而成组合式定尺),而且将励磁变压器和前置放大器也装在里面,便于安装与使用。 2感应同步器的特点 (1)精度高:感应同步器的极对数多,平均效应所产牛的测量精度要比制造精度高,且输出信号是由滑尺和定尺之间相对移动产生的中间无机械转换环节,所以测量结果只受本身精度的影响。 (2)测量长度不受限制:当测量长度大于250ram时,可以采用多块定尺接长,相邻定尺间隔呵用块规或激光测长仪进行调整,使总长度上的累积误差不大于单块定尺的最火偏差。 (3)对环境的适应性较强:因为感应同步器金属基板和床身铸铁的热胀系数相近,当温度变化时还能获得较高的重复精度.另外它是利用电磁感应产生信号.对尺面防护要求较低。 使用时还需要注意下列影响。 1 。同步回路阻抗不对称列同步精度的影响(如励磁变压器的阻抗和同步器的正弦、余弦阻抗)。

相关文档
最新文档