Fisher MR105自力式调压阀说明书

Fisher MR105自力式调压阀说明书
Fisher MR105自力式调压阀说明书

调压阀组技术协议

广东国鑫实业股份有限公司 高炉调压阀组 技 术 协 议 书 甲方:广东国鑫实业股份有限公司乙方:石家庄开发区永信泵阀厂 二零一零年五月三十日

技术协议 甲方:广东国鑫实业股份有限公司 乙方:石家庄开发区永信泵阀厂 经甲乙双方友好协商,乙方向甲方提供调压阀组一套,现就该调压阀组的技术性能达成协议如下: 1、调压阀组技术要求:: 入口;D2020 出口:D2020 阀前压力:0.1MPa-0.15MPa 阀后压力:10KPa 前后最大压差:0.12MPa 工作温度;250℃ 环境温度:0-60℃煤气 流量;正常154000Nm3最大176000Nm3 泄漏;0 配带配对法兰(按0.4Mpa设计)、 2、该调压阀组由两台DN700电动硬密封蝶阀和一台DN400电动硬密封调解阀电动执行器采用5100及一台DN300手动硬密封蝶阀组成。电子式电动执行机构采用天津雄华产品,输入输出4~20毫安信号,DN700蝶阀采用6100电动执行器。设备结构长度1200mm;入口、出口公称直径DN2000mm,连接法兰采用国标0.4MPA法兰。阀门材质:密封面和阀轴采用不锈钢,阀体、筒采用16Mn,内腔过流面喷涂碳化钨耐磨材料;使用温度:小于350℃。导流管厚度14mm. 3、供货范围: 调压阀组包括:阀门本体、电子式执行机构、配套法兰、金属包复密封垫片、紧固件等。 阀门制造标准与通用技术标准 1、制造标准为:GB/T9115《钢制管法兰》 JB/T8527《金属密封蝶阀》 GB/T12221《法兰连接金属阀门结构长度》 2、阀门设备制造的备料、焊接、铸造、切削加工、装配及防锈涂装等 各工序过程中分别执行下述标准。 (1) 零件材质应符合有关标准的规定并经过检验合格。 (2) 产品检验应符合JB/T5000.1-1998《产品检验通用技术条件》 (3) 切屑加工应符合JB/T5000.9-1998《切屑加工通用技术条件》 (4) 焊接件应符合JB/T5000.3-1998《焊接件通用技术条件》 (5) 火焰切割件应符合JB/T5000.2-1998《火焰切割件通用技术条件》 (6) 装配应符合JB/T5000.10-1998《装配通用技术条件》 (7) 配管应符合JB/T5000.11-1998《配管通用技术条件》

热风炉调压阀组失灵应急预案标准版本

文件编号:RHD-QB-K3748 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 热风炉调压阀组失灵应急预案标准版本

热风炉调压阀组失灵应急预案标准 版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1调压阀组失灵的原因 1.1调节阀某个控制执行机构故障。 1.2调节阀控制执行机构的线路故障。 1.3调节阀控制的调节器故障。 1.4调节阀某个阀板卡阻。 2调压阀组失灵的现象 2.1调节炉顶压力时不变化(包括自动调节),调节阀阀位不跟踪,现场阀板不动。 2.2炉顶压力自动突然增大或减小,现场某个阀板自动开到最大位或关闭。

2.3常关闭的调节阀在最小位置时打不开。 2.3调压阀组失灵的危害性 3.1高炉失去调节顶压作用,影响高炉操作。 3.2炉顶压力自动突然增大或减小,极易引起高炉失常和炉顶安全事故。 3.3炉顶压力自动突然增大或减小,可引起除尘系统损坏和缩短布袋的使用寿命。 4调压阀组失灵的预防措施 4.1日常操作控制游标,关闭时应≥3%,全开时应≤95%,防止阀板卡死或损坏执行器。 4.2现场执行器防雨防潮设施要求完备,控制线路严禁靠近煤气管,防止损坏执行器和烧损线路。 4.3现场温度高、震动大,热风工二人以上,每天检查调压阀组及执行器和线路,确保完好。 5调压阀组失灵的处理措施

出现以下故障,值班工长迅速做出反应,将事故危害降到最小。若超出30分钟故障不能处理,通知设备科长和煤气技师。 5.1调压阀组某个阀在调节过程中不动(包括自动调节),顶压不变化,阀板不跟踪时: 5.1.1应检查操作器是否为手动状态(8高炉到操作盘上,将操作器设定为手动状态),游标置于操作前的位置,通知热风工到现场进行手动调节(关闭该执行器电源或拔出插头); 2.5.1.2现场进行手动调节时,应和值班工长联系好,缓慢进行调压; 5.1.3通知区域组长和二建人员进行检查。不准带负荷调试执行器,引起高炉顶压大的波动。 5.2调压阀组某个阀在最小位置打不开时: 5.2.1操作器回位10%,迅速关闭该阀电源(或

自力式减压阀说明书

自力式减压阀说明 书

ZZYP型 自力式减压阀运行维护手册

ZZYP型自力式减压阀 一、用途与特点 ZZYP型自力式减压阀(简称调压阀)是利用被调介质自身能量实现自动调节的执行器产品。该产品最大特点,能在无电、无气的场所工作,是一种节能产品。压力设定值可在运行中随意调整。常规产品采用快开流量特性,亦可采用线性、等百分比流量特性。动作灵敏,减压比一般情况下最大可达10,最小为1.25,广泛应用于石油、化工、电力、冶金、食品、轻纺、居民楼群等各种工业设备中的气体、液体、蒸汽等介质低压差减压、稳压(用于控制阀后压力),或泄压、稳压(用于控制阀前压力)的自动控制。 二、结构与原理 1、结构(图1) 调压阀主要由执行机构、调节机构、导压管与接管等四部分组成。执行机构有薄膜式(用于被调压力≤0.6Mpa)、活塞式(用于被调压力>0.6Mpa)、波纹管式(用于高温或腐蚀性流体),调节机构为单座(波纹管平衡)型式(控制压力≤1.0MPa)。 产品外形图

图1 2、原理(图2) 图2a结构为单座式,阀后压力控制,初始状态常开。原理:介质由箭头方向进入阀体,经阀芯、阀座节流后输出。另一路经冷凝器(介质为蒸汽时使用)冷却后,引入执行机构膜室,其压力作用在膜片有效面积上产生一个推力,带动阀杆、阀芯位移,使节流口面积发生变化,达到减压稳压目的。若阀后压力高于设定值,则作用在膜片上的力增大,压缩弹簧,带动阀芯位移,减小调压阀开度,直至阀后压力下降到设定值。同理,若阀后压力低于设定值,由于弹簧反作用力,带动阀芯位移,增大调压阀开度,直至阀后压力上升到设定值 图2b结构为单座式,阀前压力控制,初始状态常闭。原理:介质由箭头方向进入阀体,另一路经冷凝器(介质为蒸汽时使用)冷却后,引入执行机构膜室,其压力作用在膜片有效面积上产生一个推力,带动阀杆、阀芯位移,使阀门开启度增大,若阀前压力高于设定值,则作用在膜片上的力增大,压缩弹簧,带动阀芯位移,增大调压阀开度,直至阀前压力下降到设定值。同理,若阀前压力低于设定值,由于弹簧反作用力,带动阀芯位移,减小调压

自力式调节阀是如何调节温度及流量和压力

自力式调节阀是如何调节温度及流量和压力 自力式调节阀用于调节工业自动化过程控制领域中的介质流量、压力、温度、液位等工艺参数。根据自动化系统中的控制信号,自动调节阀门的开度,从而实现介质流量、压力、温度和液位的调节。 一、自力式温度调节阀工作原理(加热型) 温度调节阀是根据液体的不可压缩和热胀冷缩原理进行工作的。加热用自力式温度调节阀,当被控对象温度低于设定温度时,温包内液体收缩,作用在执行器推杆上的力减小,阀芯部件在弹簧力的作用下使阀门打开,增加蒸汽和热油等加热介质的流量,使被控对象温度上升,直到被控对象温度到了设定值时,阀关闭,阀关闭后,被控对象温度下降,阀又打开,加热介质又进入热交换器,又使温度上升,这样使被控对象温度为恒定值。 阀开度大小与被控对象实际温度和设定温度的差值有关。 二、自力式温度调节阀工作原理(冷却型) 冷却用自力式温度调节阀工作原理可参照加热用自力式温度调节阀,只是当阀芯部件在执行器与弹簧力作用下打开和关闭与温关阀相反,阀体内通过冷介质,主要应用于冷却装置中的温度控制。 三、自力式流量调节阀工作原理

被控介质输入阀后,阀前压力P1通过控制管线输入下膜室,经节流阀节流后的压力Ps输入上膜室,P1与Ps的差即△Ps=P1-Ps称为有效压力。P1作用在膜片上产生的推力与Ps作用在膜片上产生的推力差与弹簧反力相平衡确定了阀芯与阀座的相对位置,从而确定了流经阀的流量。 当流经阀的流量增加时,即△Ps增加,结果P1、Ps分别作用在下、上膜室,使阀芯向阀座方向移动,从而改变了阀芯与阀座之间的流通面积,使Ps增加,增加后的Ps作用在膜片上的推力加上弹簧反力与P1作用在膜片上的推力在新的位置产生平衡达到控制流量的目的。 相关链接:https://www.360docs.net/doc/033189151.html,/product/fmtjf/index.shtml

自力式压差控制阀

自力式压差控制阀详细介绍 ZY-4M系列自力式压差控制阀是一种不依靠外界动力而保持被控制系统压差恒定的水力工况平衡用阀,分供水型(G)和回水型(H)两种,用于城镇供热(空调)的水系统中,保持被控系统(一个小区、一栋楼宇、一个单元、一个用户、一台设备……)的压差为定值,尤其适用于自主调节,分室控温,分户计量的变流量系统。 功能特点 该阀为双阀瓣结构,阀杆不平衡力小,结构紧凑,用于供热(空调)水系统中,恒定被控系统的压差,并有以下的特点: 1、恒定被控系统压差; 2、支持被控系统内部自主调节;排除外网压差波动对被控系统的影响; 3、采用先进技术膜片,理论误差为零,且可承受0.8MPa的压差; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、当被控系统内部无自主调节时,该阀即具备了自力式流量控制阀的功能,设定流量的方法; a、调节控制压差的大小; b、调节被控系统阻力的大小; 6、具备消除堵塞的功能,当控制压差最大时,阀门为全开状态,堵塞在双阀瓣处的污物会在介质压力下清除干净,方法是将导压管端的球阀关闭3-5分钟。 7、控制压差精度±5; 技术参数 1、公称压力1.6MPa(2.5 MPa预定); 2、介质温度0~150℃; 3、工作压差范围0.04~0.4 MPa; 4、结构长度符合GB/T12221中“截止阀及止回阀的结构长度”中的优选尺寸。 5、法兰尺寸符合GB4216.2中灰铸铁法兰尺寸。 自力式压差控制阀在水系统中的几种不同安装方式 安装示意图

连接尺寸与流量系数表 选型 一、建议尽量不变径选用阀门; 二、根据量大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;

减压阀的原理

减压阀的原理: 减压阀是通过调节将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而达到减压的目的。然后依靠控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。 精密减压阀是采用控制阀体内的启闭件的开度来调节介质的流量,将介质的压力降低,同时借助阀后压力的作用调节启闭件的开度,使阀后压力保持在一定范围内,在进口压力不断变化的情况下,保持出口压力在设定的范围内,保护其后的生活生产器具。 精密减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。 按结构形式可分为膜片式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式 精密减压阀的工作由阀后压力进行控制。当压力感应器检测到阀门压力指示升高时,减压阀阀门开度减小;当检测到减压阀后压力减小,减压阀阀门开度增大,以满足控制要求。 精密减压阀——该阀门的减压比必须在一定程度上高于系统值;即使在最大或者最小流量时它也应该能够对正作用或者反作用控制信号做出响应。这些阀门应该针对有用控制范围选择,即最大流量的20%到80%。正常为等比型或者具有等比特性。这些类型的阀门本身具有比例控制所要求的最佳流量特性及流量范围。 减压阀的种类很多,常见的有:先导活塞式减压阀、薄膜式减压阀、波纹管式减压阀、比例式减压阀、自力式减压阀、直接作用活塞式减压阀、背压调节阀等等。它们分别适用于不同的工作介质。 不同的形式有不同的具体工作原理。但总的原理还是:减压阀是通过启闭件的节流,将进口压力减至某一需要的出口压力,并使出口压力保持稳定。但一般减压阀都要求进出口压差必须≥0.2Mpa。 高灵敏度蒸汽减压阀产品介绍: 用途和主要性能:本阀适用于水、蒸汽、空气介质管路上,通过调节使进口压力降低至某一需要的出口压力,当进口压力与流量有变化时,靠介质本身的能量自动保持出口压力在一定范围内,但进口压力和出口压力之差必须≥0.2MPA/CM

RMG调压阀培训材料

RMG调压阀培训 轮南作业区张磊

目录 1.术语和定义 (2) 2.调压阀组工作原理 (2) 2.1 RMG512B型监控调压阀工作原理 (4) 2.2 RMG BD850型工作调压阀 (9) 2.3 RMG711型安全截断阀 (13) 3.操作步骤 (17) 3.1 调压阀组投用步骤 (17) 3.2热备用调压撬压力设定步骤 (18) 3.3 系统正常运行时的压力调节步骤 (19) 3.4 调压阀组短期停运时的操作步骤 (19) 3.5调压阀组长期停运时的操作步骤 (19) 4.调压阀组日常巡检及维护内容 (20) 4.1调压阀组日常巡检内容 (20) 4.2维护保养 (20) 5.常见故障及处理 (21) 5.1 RMG711安全截断阀故障 (21) 5.2 RMG512B监控调压阀故障 (21) 5.3 RMG BD850工作调压阀故障 (22) 6.附件 (23) 6.1 RMG512主阀常用备件(参考图纸512_20_gb_0309) (23) 6.2 RMG650指挥器常用备件(参考图纸650_20_gb_9306) (24) 6.3 RMG711安全截断阀常用备件(参考图纸RMG711-20-GB 0805) (24) 6.4 RMG670指挥器常用备件(参考图纸RMG670-20-gb-9905) (25) 6.5 RMG630指挥器常用备件(参考图纸630-20-gb-9408) (25) 6.6 RMG905过滤器常用备件(参考图纸RMG905_20_gb_9701) (26)

RMG调压阀培训 1.术语和定义 1.1 调压阀:具有不受干扰量影响把被调节压力控制在规定的误差范围内的装置。 1.2 间接作用式调压阀:移动控制元件所需的驱动力是由指挥器提供的调压阀。 1.3 指挥器:一个用来比较被调节量的设定值和反馈值的系统。 1.4 监控调压阀:监控调压阀是与工作调压阀串联的一个调压阀,当被调节量超过工作调压阀设定值时,监控调压阀开始运行,以维持被调节量在允许范围值内(例如在工作调压阀失效时,等等)。 1.5 安全截断阀:通过截断管路中的介质,来确保下游压力不超过设定值的压力保护设备。 1.6 故障开型调压阀:当调压阀主薄膜失效或者移动控制元件所需的驱动力丧失时,其控制元件自动趋于开启的调压阀。 1.7 故障关型调压阀:当调压阀主薄膜失效或者移动控制元件所需的驱动力丧失时,其控制元件自动趋于关闭的调压阀。 2.调压阀组工作原理 本规程介绍的调压阀组主要由RMG711安全截断阀、RMG512B 监控调压阀,以及RMG BD850工作调压阀组成。调压阀组具有超压保护功能,同时为下游提供稳定的燃料气压力。其中两个自力式调压

自力式减压调节阀使用说明书

299H系列减压调节器 简介 警告! 安装, 操作, 和维修过程由不够资格的人员执行可能会导致不适当调节和不安全操作。 任何一种情况都可能导致设备损坏或人身伤害。当安装, 操作, 和维护299H 系列调节器时请使用合格的人员。 手册使用范围 这本说明书提供安装, 调节, 和维护以及一系列对299H调节器的说明。部分对67系列过滤器和设备其它部分的说明可以在单独的说明书里找到。 描述 299H 系列减压调节器提供大容量的压力控制范围和多种类的应用。299H 系列调节器具有一个完整地安装到驱动器外壳上的导向杆。299H 系列调节器可以通过入口大小控制入口压力高达175磅/平方英寸(12,1bar)。 299HR型调节器上具有完整标志的减压元件位于导向杆上,打开可以缓解小量的超压情况。 规格 警告! 导向操作的调节器由导向杆和主阀构成,铭牌上标明了不允许超过的最大入口压力。 299H 系列的规格说明在第2页。一些特殊调节器的规格自出厂时就标在驱动器上壳的铭牌上。 规格 可用的配置 299H型:具有完整地连接到驱动器外壳上的导向杆的导向操作减压调节器。 299HR型:带内部减压阀的299H型调节器可以缓解由热胀引起的小量超压。 体积大小和末端连接类型 见表1 入口大小决定的最大操作压力 1/4×3/8英寸(6,4×9,5mm)…175磅/平方英寸(12,1bar) 3/8英寸(9,5mm)…175磅/平方英寸(12,1bar) 1/2英寸(12,7mm)…175磅/平方英寸(12,1bar) 3/4英寸(19,1mm)…150磅/平方英寸(10,3bar) 7/8英寸(22,2mm)…125磅/平方英寸(8,6bar) 1英寸(25,4mm)…100磅/平方英寸(6,9bar) 1-3/16英寸(30,2 mm)…80磅/平方英寸(5,5bar) 最大出口压力 66磅/平方英寸(4,6bar) 出口(控制)压力范围 见表2 准确压力控制(固定因素)(PFM) 绝对控制压力±1%(3) 充分冲程的最小压差 1.5磅/平方英寸(0,10bar) 控制线连接

常见调压阀及其原理

常见调压阀及其原理 电动调节阀 电动调节阀组成部分包括:电动执行器、执行器与阀门间连接件、阀门部件。阀芯为阀门部件的核心,其原理为将阀杆和电动执行器相连,控制系统控制电动执行器的传输信号而实现。当前阀位和执行器的阀门定位器比较可知,若在死区外,通过执行命令实现节流口开度改变,最终调节介质流量。电动驱动装置和其他相比,具有广泛动力源、操作方便和迅速等优卢电动调节阀的执行过程包括:当管道流体参数(如流量、压力)出现变化,这些参数经过PID计算,将模拟电流信号(4一20mA)传递给RTU上位机,然后在通过偏差信号(4一20mA)传给电动执行器,压力和流量开度的控制可以通过调节阀阀杆内信号实现上下移动。 自力式调压阀 自力式调压阀(FL系列)可分两部分。第一部分为调压器,主要由阀芯、固定阀座、皮膜(和弹簧连接)等组成,在平衡状态下,下游压力P2(通过导压管进人到低压阀腔)与皮膜连接的弹簧压力PM同负载压力Pv(上游压力PI 通过指挥器的调节后进人到高压阀腔)相平衡《第二部分为控制指挥器,在使用自力式调压阀时要对调压器进行出口压力设定,就是通过调整螺丝G,使指挥器弹簧MS的压缩程度发生改变,从而设定出口压力。其控制过程可概况为当外界给出一个干扰信号(用气量和进口压力的改变),则被调参数(出口压力)发生变化,传给测量元件,测量元件发出一个信号和给定值进行比较,得到偏差信号,并被送给传动装置,传动装置根据偏差信号发出位移信号送至调节机构,使阀门动作起来,调节对象输出一个调节作用信号克服干扰作用的影响。 某输气作业区使用问题分析 某输气站在建站时,在对川中的供气管路上使用的DN80电动调节阀是由FISHER调节阀和BIFFI调节型电动执行器组合而成。在实际使用中,当采用自动调节功能时,执行器反复动作发生震荡,系统无法正常工作。主要有以下原因:根据FISHER调节阀的最佳流量控制曲线,阀的开度应在40%至90%范围内调节,如果总让调节阀在小开度范围内工作,气蚀、冲蚀会损坏阀芯,缩短调节阀寿命。此外,小开度使流速加快,噪音增大。 由于民用气存在波峰和波谷,而工况要求在满足流量的同时压力恒定最重要,由于南充站调节阀选型过大造成系统不能正常工作,而恒定压力恰恰是自力式调压阀的优势。 单就功能而言,电动调节阀主要用于长输管道的介质压力及大流量调节,自力式调压阀用于相对流量较小的介质压力调定。 同时,在该输气区还使用了三台DN巧0的塔塔里尼自力式调压阀调压,使用过程中由于P2+PM>Pv时,阀芯将移向固定阀座的位置开度减小,流量减小。分析原因如下: 当管径一定时,压差影响流速的大小,而流速的大小关系到流量的大小,对于气体来讲,压力的提高使得同样的管道在流过同样标方气体的时候,真正的流速下降了,因此对于气体来讲,流量和压力是有关系的。当输气线压力愈接近设

自力式多功能压差控制阀技术说明

自力式多功能压差控制阀技术说明 自力式多功能压差控制阀的理论依据 自力式多功能压差控制阀,是河北平衡阀门制造有限公司科技人员,通过反复试验,技术公关,在自力式压差控制阀的基础上,研制的一种新型节能阀门。该成果是暖通空调需用的自力式控制阀的升级换代产品,除完全具备已有的“自力式压差控制阀”、“自力式流量控制阀”的全部性能外,还同时解决了自力式压差控制阀仅仅支持以用户为主的变流量,而不支持热(冷)源端主动变流量的弊病。总之不管采取任何措施,最终的成本节约,必然从热(冷)源的运行成本体现。 系统运行中要想达到良好的节能效果一般采取如下三种措施: 一是用户主动节能(譬如按热计量收费系统) 二是在水力失调能解决的情况下,尽量的减少不必要的阻力损失三是热(冷)源端根据室外天气变化利用质调节(改变供水温度)、量调节,利用变频技术主动改变流量的供量,或者增减水泵运行的台数。 自力式多功能压差控制阀完全支持以上三种措施。 自力式多功能压差控制阀的性能 1、当用户自主变流量时,通过自力式多功能压差控制的控制,可保持控制压差基本不变,从而避免了相邻用户相互间干扰的问题。 2、当供回水管路产生波动时,可自动消除系统产生的干扰,使控制压差始终不变系,保证系统稳定运行。

3、当热源端根据室外温度变化改变供应流量时,自力式多功能压差控制阀的阀瓣限位装置,控制阀瓣的开启度,使之达到所需求的流量。 4、具备控制压差大幅度调节功能,调节幅度达到1:16。 调节方法 在暖通空调的工程设计中,各个环路的阻力损失是不可精确计算的,而各个环路的最大流量需求是可准确计算的。自力式多功能压差控制阀的控制压差调节功能,正好弥补了设计中的不足。我公司根据多年为客户调网的经验,总结出“以调节控制压差为手段,以实现设计流量为目的”调网方法,该方法经过几千万㎡的供热(冷)系统调网实践证明,完全达到了客户需求的效果。 操作过程 A方案: 1、把控制压差调节器和自动阀瓣控制器调节到最大开度值。 2、了解被控系统设计的最大需求流量值,根据设计流量值调节压差控制器,当经过自力式多功能压差控制阀的流量符合设计流量值后,此时的控制压差即是该环路实际需求的阻力损失。 3、在流量值和控制压差确定后,再手动调节阀瓣控制器,当调节产生阻力时,该控制器正好达到了自动阀瓣的工作位置。 4、当各个环路的自力式多功能压差控制阀,都达到上述要求后即完成了全部调节过程。 B方案:

自立式调节阀工作原理

自立式调节阀工作原理 This model paper was revised by the Standardization Office on December 10, 2020

一、阀前控制原理 自立式阀前压力控制(k),其初始阀芯的位置是在关闭状态。 当阀前压力P1通过阀芯、阀座的节流后变为发后压力P2,通过P1管线输入上膜室作用在膜片上,其作用力与弹簧的反作用力相平衡时阀芯位置决定了阀的开度,从而控制阀前压力。 当阀前压力P1增加时,P1作用在膜片上的作用力也随之增加。此时,膜片上的作用力大于设定弹簧的反作用力,使阀芯向离开阀座方向移动,导致阀的开度变大,流阻变小,P1向阀后泄压,直到膜片上的作用力与弹簧反作用力相平衡为止,从而使P1降为设定值。同理,当阀前压力P1降低时动作方向相反。 自立式阀前压力控制通常情况下是关闭状态,当阀前压力大于设定的压力时,自立式调节阀阀芯开启,起到调压泄压的作用。区别于安全阀的地方时,安全阀为全开,自立式调节阀通过阀前(后)压力控制阀的开度。 二、阀后控制原理 自立式阀后压力控制(B),其初始阀芯的位置在开启状态。 当阀前压力P1通过阀芯、阀座的节流后变为发后压力P2,通过P2管线输入上膜室作用在膜片上,其作用力与弹簧的反作用力相平衡时阀芯位置决定了阀的开度,从而控制阀后压力。 当阀后压力P2增加时,P2作用在膜片上的作用力也随之增加。此时,膜片上的作用力大于设定弹簧的反作用力,使阀芯向阀座方向移动,导致阀的开度变小,流阻变大,P2降低,直到膜片上的作用力与弹簧反作用力相平衡为止,从而使P2降为设定值。同理,当阀前压力P2降低时动作方向相反。

先导式减压阀

先导式减压阀的结构: 按结构形式可分为膜片式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可人为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式 自力式减压阀的工作由阀后压力进行控制。当压力感应器检测到阀门压力指示升高时,减压阀阀门开度减小;当检测到减压阀后压力减小,减压阀阀门开度增大,以满足控制要求。 先导式减压阀——该阀门的减压比必须在一定程度上高于系统值;即使在最大或者最小流量时它也应该能够对正作用或者反作用控制信号做出响应。这些阀门应该针对有用控制范围选择,即最大流量的20%到80%。正常为等比型或者具有等比特性。这些类型的阀门本身具有比例控制所要求的最佳流量特性及流量范围。 减压阀的种类很多,常见的有:先导活塞式减压阀、薄膜式减压阀、波纹管式减压阀、比例式减压阀、自力式减压阀、直接作用自力式减压阀、背压调节阀等等。它们分别适用于不同的工作介质。 不同的形式有不同的具体工作原理。但总的原理还是:减压阀是通过启闭件的节流,将进口压力减至某一需要的出口压力,并使出口压力保持稳定。但一般减压阀都要求进出口压差必须≥0.2Mpa。 A,先导式减压阀产品介绍: 用途和主要性能:本阀适用于水、蒸汽、空气介质管路上,通过调节使进口压力降低至某一需要的出口压力,当进口压力与流量有变化时,靠介质本身的能量自动保持出口压力在一定范围内,但进口压力和出口压力之差必须 ≥0.2MPA/CM 编辑本段 先导式减压阀的工作原理 减压阀出厂时,调节弹簧处于未压缩状态,此时主阀瓣和付阀瓣处于关闭状态,使用时按顺时针转动调节螺钉,压缩调节弹簧,使膜瓣移顶开付阀瓣,介质由a孔通过付阀座到b孔进入活塞上方,活塞在介质压力的作用下,向下移动推动主阀瓣离开主阀座,使介质流向阀后.同时由c孔进入膜片下方,当阀后压力超过调定压力时,推动膜片上移压缩调节弹簧,付阀瓣随之向关闭方向移动,使流入活塞上方的介质减小,压力也随之下降,此时的主阀瓣在主阀瓣弹簧力的推动上下移,使主阀瓣与主阀座的间隙减小,介质流量也随之减小,使阀后压力也随之下降到

自力式自身压差控制阀(旁通式-c)

自力式自身压差控制阀 摘自:河北同力自控阀门制造有限公司 自力式自身压差控制阀的产品介绍: 自力式自身压差控制阀(旁通式-C)在控制范围内自动阀塞为 关闭状态,阀门两端压差超过预设值,阀塞即自动打开。并在 感压膜的作用下自动调节开度,保持阀门两端压差相对恒定, 自力式自身压差控制阀是我公司根据市场需求自主开发的新 产品,依靠自身的压差工作,不需任何外来动力,性能可靠。 自力式自身压差控制阀的性能特点: 自力式自身压差控制阀为电动压差控制阀替代产品。 其优点是无需外动力,靠系统本身压力工作,有效的提高了运行安全系数,比传统电动压差控制阀更为安全可靠,解决了电动压差控制阀对电的信赖和电路出现问题造成机组损伤的机率,并且自力式自身压差控制阀便于安装,节省费用。 自力式自身压差控制阀的用途: 自力式自身压差控制阀应用于冷(热)源机组的保护。安装于集、分水器之间旁通管上,当用户侧部分运行或变运量运行时,系统流量变小,导致压差增大,压差超出设定值时,阀门自动打开,部分流量从此经过,以保证机组流量不小于限制时。 自力式自身压差控制阀应用于集中供热系统中以保证某处散热设备不超压或不倒空。比如某系统高低差较大,且不分高低区系统,这时如按高处定压,低处散热设备可能压爆;如按低处定压,高处倒空。 这种情况如热源在低外可在进入高区分支水管加增压泵,回水管加压差阀使高区压力经过提升后,由阀门再降到低区回水压力;如热源在高处可进入低区供水管加装压差阀,回水加增压泵,使通过阀门压力降低的循环水能回到系统中。 自力式自身压差控制阀的性能参数: 根据用户的要求选择控制压差。

控制压差在0.05~0.4Mpa范围内可任意调节。 恒定阀门两端及控制系统压差,支持用户系统变流量运行。 依靠压差自动工作,无须外接动力,运行安全稳定可靠。 介质温度:0--150℃。 公称压力:1.6Mpa。 自力式自身压差控制阀的安装调试: 适用于分集水器之间旁通管安装保护冷热源 适用于高层建筑分区供暖,安装于高区回水管避免高区倒空和水 垂 1、热源 2、循环水泵 3、系统补给水泵 4、自力式自身压差控 制阀5、加压水泵6、止回阀 7、后部补水压力调节阀8、热用户

塔塔里尼调压阀

塔塔里尼调压阀 1、塔塔里尼调压阀结构:见图11、1 2、13。 由阀体、阀盖、阀芯(导流筒)、阀座、模片、指挥系统组成,其附加件有过滤网和开度指示杆;阀的内部结构与FISHER-310A型调压阀基本相同。 FISHER-310A型调压阀是由主阀、引导装置(指挥器)和导压管组成。主阀由阀体、节流套、主阀膜片、阀座、阀芯、主弹簧等组成。引导装置由引导装置控制弹簧、底部膜片及膜片座板、拨叉组件、中继阀座等组成。属自力式调压阀类。结构型式为轴流式,膜片将阀内腔分隔为左(上游端-低压腔)、右(下游端-高压腔)两腔。 2、工作原理与FISHER-310A型调压阀基本相同。 FISHER-310A型调压阀工作原理: 调压阀的进口压力进入引导装置,并作为引导装置的进口压力。引导装置控制弹簧的设定情况,决定了经调压后的出口(下游)压力的大小。 在操作过程中,假设出口压力低于引导装置控制弹簧的设定压力。引导装置控制弹簧的力将克服出口压力在底部膜片上的作用力。弹簧将把膜片座板及拨叉组件推离中继阀座,从而打开阀门,向阀门主膜片施加负载压力。当这个负载压力超过出口压力作用于阀门主膜片上的力与主阀弹簧的作用力之和时,膜片就将被推离静止的阀芯,节流套的开度就会变得更大,从而把所需要的气体输送到下游系统中。 下游系统的气体需求被满足时,作用于膜板和拨叉组件底部膜片的出口压力,将产生克服引导装置控制弹簧的设定压力,使膜板和拨叉组件移向中继阀座,并关闭之。而作用在主阀膜片上的负载压力将通过膜板和拨叉组件上的小孔,传递给下游系统。采用惯常的控制方式快速关闭阀门时,膜板和拨叉组件上的放空阀的流量会增大。于是作用在主阀膜片上出口压力不断增加,它与主阀弹簧的弹簧力之和,又将克服作用在阀门主膜片上的已经降低了的负载力,把节流套推向静止的阀芯,进而减小下游系统的气体供给。 3、塔塔里尼调压阀的常见故障及处理

自力式压力调节阀说明书..

第一节 ZZY型自力式压力调节阀 1.前言 ZY型自力式压力调节阀(简称调压阀)无需外加能源,利用被调介质自身能量为动力源,引入执行机构控制阀芯位置,改变两端的压差和流量,使阀前(或阀后)压力稳定。具有动作灵敏,密封性好,压力设定点波动小等优点,广泛应用于石油、化工、电力、冶金、食品、轻纺、机械制造与居民建筑楼群等到各种工业设备中用气体、液体及蒸汽介质减压稳压或泄压稳压的自动控制。能在无电、无气的场合使用,附设冷凝器,可在350℃蒸汽下连续工作。 2.原理: 2.1用于控制阀后压力的调压阀,阀的作用方式为压闭型。介质由阀前流入阀体,经阀芯、阀座节流后输出。另一路经导压管、冷凝器(介质为蒸汽时使用)冷却后,被引入执行机构作用于膜片有效面积上,产生一个向下作用力,压缩弹簧,推动阀杆,带动阀芯位移,改变流通面积。达到减压、稳压之目的。如阀后压力增加,作用于膜片有效面积上的力增加,压缩弹簧,带动阀芯,使阀门开启度减小,直至阀后压力下降到设定值为止。同理,如阀后压力降低,作用在膜片有效面积上的力减小,在弹簧的弹力作用下,带动阀芯,使阀门开启度增大,直到阀后压力上升到设定值为止。(例图一)启到减压稳压作用

2.1用于控制阀前压力的调压阀,阀的作用方式为压开型。介质由阀前流入阀体,同时经导压管、冷凝器(介质为蒸汽时使用)冷却后,被引入执行机构作用于膜片有效面积上,压缩弹簧,使阀芯随之发生相应的位移,达到泄压、稳压之目的。如阀前压力增加,作用于膜片有效面积上的力增加,压缩弹簧,带动阀芯,使阀门开启度增大,直至阀前压力下降到设定值为止。同理,如阀前压力降低,作用在膜片有效面积上的力减小,在弹簧的弹力作用下,带动阀芯,使阀门开启度减小,直到阀前压力上升到设定值为止。(图二)启到泄压稳压的作用 一般来说压开型的自力式压力调节阀工作时为常闭,超过压力设定点时打开 启到安全作用,但又于安全阀有所区别,安全阀是超过压力设定点阀门全开,而自力式压开型是随着压力的升高开度相应增大。 3. 规格与技术参数: 3.1公称通径:DN15~350 3.2公称压力:PN16、40、64 3.3流量特性:快开 3.4性能指标:符合Q/SF.J02.01.04-1997 3.5结构型式:单座、双座、套筒(无压开型) 单座时平衡:1.常规型波纹管(受耐压限制);2.活塞式(受温度限制) 双座、套筒(两密封面来平衡) 平衡效果没有单座阀好。 3.6执行机构类型:簿膜式、活塞式、波纹管式 3.6.1.薄膜式;压力≤0.6Mpa(70、120、200、280、400、600) 3.6.2.气缸式;压力较高(50、55、60、65、70、75、80、85、90、95、100、105、110、 115、120、130、160) 3.6.3波纹管;高温或特殊介质(导热油,氧气,氢气等) 35、47.2、104、230、70.8, 注为优选系列 3.7压力调节范围(KPa):15~2000内分段(调节范围不宜过大,过大可能导致弹簧刚度 增大,直接影响调节精度。)参考选型样本。控制压力尽量选取在调节范围的中间值附近。 3.8调节精度:±5%~10%(执行机构和弹簧刚度有关)(特殊的调节精度需协商) 例:ZZYP-16B DN50 阀门行程为14mm, 设定压力为1Kg ,选400CM的执行机构,用组合弹簧刚度4kg/mm, 此时的调节精度为: [(4*15)/400]/1*100%=14% 全行程所需要的推力 3.9调压比:10:1~10:8(阀前压力:阀后压力)压差过高时压力不宜稳定,噪声大,

自力式减压阀说明书

ZZYP型 自力式减压阀运行维护手册

ZZYP型自力式减压阀 一、用途与特点 ZZYP型自力式减压阀(简称调压阀)是利用被调介质自身能量实现自动调节的执行器产品。该产品最大特点,能在无电、无气的场所工作,是一种节能产品。压力设定值可在运行中随意调整。常规产品采用快开流量特性,亦可采用线性、等百分比流量特性。动作灵敏,减压比一般情况下最大可达10,最小为1.25,广泛应用于石油、化工、电力、冶金、食品、轻纺、居民楼群等各种工业设备中的气体、液体、蒸汽等介质低压差减压、稳压(用于控制阀后压力),或泄压、稳压(用于控制阀前压力)的自动控制。 二、结构与原理 1、结构(图1) 调压阀主要由执行机构、调节机构、导压管与接管等四部分组成。执行机构有薄膜式(用于被调压力≤0.6Mpa)、活塞式(用于被调压力>0.6Mpa)、波纹管式(用于高温或腐蚀性流体),调节机构为单座(波纹管平衡)型式(控制压力≤1.0MPa)。 产品外形图 图1 2、原理(图2) 图2a结构为单座式,阀后压力控制,初始状态常开。原理:介质由箭头方向进入阀体,经阀芯、阀座节流后输出。另一路经冷凝器(介质为蒸汽时使用)冷却后,引入执行机构膜室,其压力作用在膜片有效面积上产生一个推力,带动阀杆、阀芯位移,使节流口面积发生变化,达到减压稳压目的。若阀后压力

高于设定值,则作用在膜片上的力增大,压缩弹簧,带动阀芯位移,减小调压阀开度,直至阀后压力下降到设定值。同理,若阀后压力低于设定值,由于弹簧反作用力,带动阀芯位移,增大调压阀开度,直至阀后压力上升到设定值 图2b结构为单座式,阀前压力控制,初始状态常闭。原理:介质由箭头方向进入阀体,另一路经冷凝器(介质为蒸汽时使用)冷却后,引入执行机构膜室,其压力作用在膜片有效面积上产生一个推力,带动阀杆、阀芯位移,使阀门开启度增大,若阀前压力高于设定值,则作用在膜片上的力增大,压缩弹簧,带动阀芯位移,增大调压阀开度,直至阀前压力下降到设定值。同理,若阀前压力低于设定值,由于弹簧反作用力,带动阀芯位移,减小调压阀开度,直至阀前压力上升到设定值。 图2 三、主要参数、性能指标与材料

调 压 阀

调 压 阀 调压阀系列 一、310A 系列调压阀: 该阀由指挥器、调压阀主阀体、节流针阀和导压管等附件组成。310A -32A 调压阀含有一个安装在主阀上面的32A 型指挥器,用作调压或广开式监控用途。 指挥器 调节螺栓 呼吸孔 下阀体 上阀体 下阀体 主弹簧

其主阀为轴流式,由上下阀体、主弹簧、套筒、阀心、托盘、止推环、主膜片等组成,阀心有30%、50%、100%开度三种,依流量大小选用,靠套筒和托盘、托盘垫圈密封。指挥器由喷嘴、挡板、膜片、控制弹簧等组成,调节控制弹簧则控制喷嘴与挡板距离,其气量发生变化而作用于主阀。控制弹簧依出口压力范围不同,我公司310A一般出口压力范围为100—250PSI。 1.2工作原理: 指挥器是指挥调节阀动作的设备,发出调节信号的大小,改变弹簧对喷嘴的压力来实现;调压阀是气动调压阀,以气体能量来驱动阀门的动作;节流针阀用来作用于调压阀膜头上的压差,以改进调压阀的灵敏程度。调压阀入口压力通过外部取压管线进入指挥器,作为指挥器的供给压力。指挥器控制弹簧的设定值决定了出口压力(阀后压力)的大小。 工作时,假定出口压力小于指挥器控制弹簧的设定值,指挥器控制弹簧的力然后克服出口压力作用到底膜上产生的力。弹簧将膜片和轭铁推离继动器底座,将其打开,并向主阀膜片上产生的力与主阀弹簧的力的总和时,膜片被推离静止阀座,使节流套开度更大,将要求的气体供给下游系统。 当下游系统的需气量得到满足时,出口压力就有上升的趋势,增加的出口压力作用到膜片的底膜上后会产生一个力,克服指挥器弹簧的设定压力,使轭架向继动器底座移动,最终关闭。作用到主阀膜片上的加载压力通过膜片和轭架上的小孔进入下游系统。异常控制条件下要求主阀快速关闭时,泄压阀打开以增加泄压速度。作用到主阀膜片上数值增加后的出口压力加上主阀弹簧的弹力,就能克服作用到主阀膜片上数值减小的加载压力,将节流套推向静止阀座,使流向下游系统的气量减少。 1.3指挥器的压力设定: 标准型32A指挥器进行调正时,松动锁定螺母,并转动调节螺钉,然后,上紧锁定螺母,保持调正后的位臵。 ⑴启运: a) 若指挥器取压管装有针阀,则缓慢全开针阀; b)缓慢全开计量支路上游球阀,开该计量支路放空阀,建立流量; c)调整指挥器设定值使之达到要求值;

自力式调节阀

自力式调节阀是一种无需外来能源,依靠被测介质自身压力或温度或流量变化,按预先设定值,进行自动调节的控制装置,是一种节能型仪表。它集控制、执行诸多功能于一身,自成1个独立的仪表控制系统。集变送器、控制器及执行机构的功能于一体。不同于一般含义上的控制阀。 自力式调节阀有自力式压力(微压)调节阀、自力式(压差)流量调节阀、自力式温度调节阀等几类。自力式压力调节阀是其家族成员之一,由于它无需外来能源,产品结构简单,使用方便,维护工作量少等优点,特别适用于城市供热、供暧及没有供电、供气又需控制的场合。据德国报道,城市供热、供暖系统采用该产品,热效率比以前提高30%~40%,节能效果显著。 本文仅就自力式压力调节阀的原理、结构特性及工程应用经验进行论述。 1自力式压力调节阀分类及工作原理 1.1自力式压力调节阀的分类 1)按阀后、阀前控制分为两类:自力式阀后(减压)控制阀;自力式阀前(泄压)控制阀。 2)按是否带指挥器分为两大类:直接作用型自力式调节阀,如图1所示;指挥器操作型自力式调节阀,如图2所示。 1.2工作原理 1)自力式阀后压力调节的工作原理见图3所示。阀前压力P1经过阀芯、阀座的节流后,变为阀后压力P2。P2经过管线输入上膜室内作用在顶盘上,产生的作用力与弹簧的反作用力相平衡,决定了阀芯、阀座的相对位置,控制阀后压力。当P2增加时,P2作用在顶盘上的作用力也随之增加。此时,顶盘上的作用力大于弹簧的反作用力,使阀芯关向阀座的位置。这时,阀芯与阀座之间的流通面积减少,流阻变大,P2降低,直到顶盘上的作用力与弹簧反作用力相平衡为止,从而使P2降为设定值。同理,当P2降低时,作用方向与上述相反,这就是阀后压力调节的工作原理。 2)自力式阀前压力调节的工作原理同阀后压力调节的工作原理(见图4),应注意阀芯反装。 1.3自力式压力调节阀与控制阀的区别这两类产品的区别,主要在于控制阀既需要外界能源(如电源或气源)做驱动能,又需要接受外来控制仪表信号才能改变阀内截流件相对位置,从而实现改变流体流量。而自力式压力调节阀则既不需外来能源,又不需要接受外来控制仪表信号,仅靠被调介质的压力信号,便可实现压力调节。自力式压力调节阀的特点由于自力式压力调节阀没有外来驱动能源,因此该产品的操作力较小,它具有如下特点。 1)平衡式阀芯结构,如平衡型单座,双阀芯平衡型,套筒平衡型等。 2)快开流量特性,其阀芯为平板型。 3)公称通径与阀体特征:DN20~100mm(或125),阀上设有波纹管,阀芯为单座(有的厂家产品DN20mm的没波纹管,阀芯也为单座);公称通径大于100mm时,阀上盖内不设波纹管,阀芯为双阀芯或套筒结构。 4)执行机构种类推荐:设定值≤0.6MPa时,选薄膜式执行机构;设定值>0.6MPa时,选气缸式执行机构。 3安装方式 3.1直管段的设置自力式压力调节阀前、后应尽量保持一定的直管段(一般为6D(管径)左右)。阀前取压点距阀的距离应大于2D;阀后取压应大于6D。阀前、后还应装有压力表,压力表应靠近取压点,以便使设定值与取压值真实一致。 3.2旁路系统的设置为保证检修及出故障时生产能继续运行,最好设置旁路系统。 3.3过滤器的设置该系统中的过滤器在工艺介质干净、没杂质的情况下,可以省略。

关于自力式调节阀的说明

关于自力式调节阀的说明 自力式调节阀又称自力式控制阀,是由阀体、阀座、阀芯、平衡弹簧等部件组成,是一种无需外加能源,利用被调节介质自身压力变化来进行自动调节的阀门,是根据力学原理将被控介质引入执行机构产生力作用推动,控制阀芯元件上下位移达到自动调节,使阀前(或阀后)压力稳定的节能型产品。例如,如果管道中压力升高,那么阀门输出端反馈信号通过信号管传递到执行机构驱动阀瓣使阀门开度变小,从而降低压力使其维持到恒定值,如果管道中压力降低,那么阀门输出端反馈信号通过信号管传递到执行机构驱动阀瓣使阀门开度变大,从而升高压力使其维持到恒定值。自力式调节阀是一种新的调节阀种类,功能原理与一般的调节阀相同,主要区别在于无需外界提供动力和不接受外来仪表控制信号。自力式调节阀按照功能和结构可分为压力自力式调节阀、差压自力式调节阀、温度自力式调节阀、液位自力式调节阀及流量自力式调节阀。该产品最大的特点是能在无电、无气的场所工作,压力设定值在运行中可随意调整。采用快开流量特性,动作灵敏、密封性能好,广泛应用于石油、化工等行业工业设备中气体、液体、蒸汽等介质的自动控制。 自力式调节阀与减压阀的主要区别: 1. 工作目的是不一样的,自力式调节阀重在调节,减压阀是单纯的减压; 2. 减压阀是可以主观进行压力调节,如果阀前压力波动大,调节需

比较频繁。而自力式调节阀是根据一个设定的、客观的数值自动进行动作的,调节后的压力可以是恒定的; 3. 减压阀需要手动调节压差,如果阀前压力变化,阀后压力也是变化的,不能自动调节到固定的压力。而自力式调节阀可以自动地做到背压稳定或者阀前压力稳定; 4. 自力式调节阀的主要目的是维持压力稳定,而减压阀主要作用是将压力降至一定数值之下; 5. 减压阀调节范围更广,而自力式调节阀则只能将压力调节到恒定值; 6. 减压阀调节精度更高,一般为0.5,而自力式调节阀的调节精度一般为8%-10%; 7. 自力式调节阀可以控制压力、差压、温度、液位、流量等,而减压阀功能比较单一,一般只起减压作用; 8. 自力式调节阀既可以调节阀前压力稳定,也可以调节阀后压力稳定,而减压阀只能调节阀后压力,起到减压作用; 9. 应用行业不同,自力式调节阀广泛应用于石油、化工等行业,减压阀主要应用于给水系统、消防系统、采暖系统、中央空调系统等。

相关文档
最新文档