涡街流量计的调试与维修

涡街流量计的调试与维修
涡街流量计的调试与维修

涡街流量计的调试与维修

1 概述

VXW系列涡街流量计,具有仪表常数稳定、容易在较恶劣的环境中保证精度、量程范围大、压力损失小、精度高、维护量小等特点,在各生产装置中使用较为普遍。另外它在测量体积流量时,几乎不受流速、密度、压力、温度、粘度等参数的影响。无活动部件的简单设计,也提高了仪表的使用寿命。下面笔者就日常工作中该类型仪表运行过程中出现的一系列问题及处理问题的方法给以叙述。

2 组成及功能

涡街流量计仪表由以下6部分组成:

变送器壳体;涡街发生体;信号检测器;输出放大器;脉冲整形器;输入放大器。

变送器壳体是流体管道的一部分,由于选择了合适的通径、涡街发生体的形状和尺寸比例,流体在壳体内流动时可在较宽雷诺数范围内产生稳定的涡街信号。涡街发生体使流体流经时产生涡列。信号检测器检测涡列并转换成脉冲信号。输入放大器将微弱的电信号进行放大,并滤除干扰信号。脉冲整形器将不规则的电脉冲转换为幅度和宽度一定的方波信号。输出放大器将方波信号进行放大转换为4~20mA直流电流信号输出。

3 工作原理

在流体中插入柱状物体时,在柱状物体的两侧将交替产生有规则的旋涡列,称谓“卡门涡街现象”。卡门涡街的频率与流速成正比。

式中:

F为旋涡频率;

V为管道内平均流速;

d为柱状体迎流面宽度;

D为管道内径;

St为斯特罗哈数。

在雷诺数104~106范围内,是一个无量纲常数。

当旋涡在柱体两侧产生时,柱体受到与流向垂直的交变升力的作用,升力的变化频率就是旋涡频率,利用埋设于柱体内的压电元件检测此升力的变化,将其转换为频率信号送人放大器,由放大器进行放大和整形,得到其频率与流速成比例的方波信号。由上式可见,通过测量涡街频率就可算出流速V,进而求出体积流量,。

4 流量计的调试

在管道内没有液体流动时,由于管线振动所产生的噪声使接收器反常地计数,这时就应该对仪表进行灵敏度调节。

4.1 放大器增益的调整

一般情况下无需对放大器的增益进行调整,除非在更换了传感器之后。通过放大器板A上的AMP电位计调节放大器增益,在示波器上监视放大后的涡流波形,在最小流量时,涡流波形的峰值约为100mVP-P。

4.2 触发电平的调整

触发电平的增加(脉冲发生的灵敏度),会使流量的灵敏度减小。在管道内没有任何液体流动时,因管线振动,脉动流动出现噪声而造成不正常脉冲发生可以通过增加触发电平有效地进行处理。

通过放大器板上的TRG电位计可调节触发电平,放大的涡流波形的峰值无论何时超过预先确定的触发电平,都能转换成一个脉冲。因此,由于增加触发电平,流量灵敏度就会减小。

当触发电平80mVP-P变到350mVP-P,其结果的灵敏度将是80/350=1/4.4(灵敏度比率)

倍。

当改变灵敏度时,结果的最小流量(可测的低限流量)约为1/(灵敏度的开平方乘以标准的最小流量)。

4.3 零点调整

正确的接线,通过低频信号发生器给涡街流量计输入幅度为零的信号,调整零点调节电位计,数字万用表的显示值应为4mA。

4.4 满量程的调整

如果不知道仪表的满量程频率,可通过最大流量,计算出满量程频率乙来调校仪表,其关系式为:

fmax=KQQmax

正确的接线,用信号发生器输出信号至电荷放大器,加大输入信号幅值,转换输出方波,改变信号发生器的输出频率,直到频率计上显示的值是按上式计算出的满量程频率为止。此时,固定频率不变,并调整量程电位计,数字万用表的示值为20mA时为止。

5 故障现象及处理方法

(1)故障现象:通电后五指示、无输出信号。

故障原因:

1)流量积算仪没有24VDC输出;

2)接线有错误或断线;

3)传感器内断线或放大器损坏;

4)管道内无流量或流量太小。

处理措施:

1)检查积算仪输出是否正常;

2)重新接线;

3)维修或更换;

4)缩小仪表安装处的管道内径。

(2)故障现象:没有流量时有信号输出。

故障原因:

1)仪表引线屏蔽或接地不良引人50Hz干扰;

2)周围有强电设备或动力线;

3)管道有强烈振动。

处理措施:

1)加强屏蔽或接地,消除50Hz干扰;

2)使仪表或信号线远离干扰源;

3)采取减振、加强滤波或降低灵敏度。

(3)故障现象:流量指示值波动大。

故障原因:

1)管道振动影响;

2)灵敏度调得过高;

3)传感器发生体上有附着物;

4)压电晶片损坏;

5)工艺过程波动大。

处理措施:

1)加强滤波或减振;

2)降低灵敏度;

3)清洁传感器发生体;

4)更换;

5)将仪表安装在流量波动小的工艺管道上。

(4)故障现象:指示误差大。

故障原因:

1)上游直管段长度不够;

2)仪表常数设定有误;

3)电源电压和负载电阻不符合要求;

4)发生体粘污严重;

5)放大器参数有变化;

6)有气穴现象。

采取措施:

1)改变安装地点,加整流器或降低使用精度,上游直管段大于5D;

2)重新设定参数;

3)按仪表要求提供电源电压;

4)清洗发生体;

5)重新调整;

6)改变安装地点,增加人口压力。

6 在使用过程中的注意事项

(1)仪表维修人员日常巡检过程中应严格关注涡街流量计显示板的左上角低电池指示灯是否闪光,如有闪光现象应尽快更换内部电池。

(2)应避免工艺管道振动,仪表受到强烈冲击,会造成干扰大于流量信号现象,使仪表显示错误的流量。

(3)在仪表投用的初始阶段,要使液体流量缓慢增加,突然增加流量会损坏仪表的涡街发生体。

(4)为了消除杂散电流的干扰,现场布线要离开高压线,电源线和电力设备要有足够的距离。

涡街流量计有多种检侧方式和检测技术,所采用的检测元件也丰富多彩,与各种检测元件配套的测量电路,也有较大的差别,所以仪表出现故障时,表现形式也不同、但这些不同都只限于涡街流量计的前面部分(即检测元件和前置放大电路部分)。后面的信号处理部分:如滤波电路整形电路、A/D转换和微处理器显示单元等都是相似的,所以常见故障也都具有共性。

1.涡街流量计故障判断及处理(通电后,无流量时有信号输出)

( 1 )接通电源,阀门未开,有信号输出

①传感器(或检测元件)输出信号的屏蔽或接地不良,引人了外界电磁干扰;

②仪表过于靠近强电设备或高频设备,空间电磁辐射干扰,对仪表造成影响;

③安装管道有较强的振动;

④转换器的灵敏度过高,对干扰信号灵敏过高;

应采取的措施是加强屏蔽和接地,消除管道振动,调整降低转换器的灵敏度。

( 2 )处于间歇工作状态的涡街流量计,电源未断,阀门关闭,输出信号不回零

这种现象可能的原因与第( 1)种现象相同,主要原因可能是管道振荡影响和外界电磁干扰。应采取调低转换器的灵敏度,提高整形电路的触发电平,可抑制噪声,克服间歇期间的误触发。

( 3 )通电状态下,关断下游阀门,输出不回零,关上游阀门输出回零

这主要来自祸街流量计上游流体脉动压力的影响。如果涡街流量计安装在T型支管上,且上游主管有压力脉动,或者是涡街流量计的上游有脉动的动力源(如活塞式泵或罗茨风机)时,脉动压力造成涡街流量计的假信号。解决的办法就是:把下游阀门安装到涡街流量计的上游,在停机时关闭上游的阀门,,隔绝脉动压力的影响。但安装时,上游阀门应尽量远离涡街流量计,并保证足够的直管段长度。

( 4 )通电状态下,关上游阀门输出不回零,只有关下游阀门输出回零

这种故障是管内流体扰动引起的,扰动来自涡街流一量计下游管道。在管网中如果涡街流量计下游直管段较短且出口与管网中其他管道的阀门相距较近,则这些管道内流体扰动(例如下游其他管道中的阀门开、关、调节阀的频繁动作)传到涡街流量计检测元件,引起假信号。解决办法是加长下游直管段,减小流体扰动的影响。

2 .涡街流量计故障判断及处理(通电通流后无输出信号)

这种故障的出现,有以下几方面原因:

(1)电源断线,实际上电源并未加到转换器上,即转换器未工作;

(2)电源线接错;

(3)检测元件与转换器输人端之间的信号线断线,信号未加到前置放大器输人端;

(4) 转换器中某部件(例如,放大电路、滤波电路、整形电路、输出电路等的某些元件失效;

(5)管道中无流量或流量太小;

(6) 管道堵塞,检测元件被卡死;

(7) 力检测元件损坏;

以上七种故障中的六种均属硬故障,比较容易发现,处理方法也相对简单。第五种故障比较麻烦,特别是“流量太小”这一故障原因,如果不是因阀门开度太小所致,就牵涉到选表问题。要彻底解决,就需要重新选择量程合适的仪表,对工艺管道进行缩径,重新安装。

3 .涡街流量计输出(或指示)信号不随流量变化。这种故障的出现有以下几方面原因:)

故障判断及处理(通电、通流后,

(1 )由于信号线的屏蔽层接地不良或接地点选择不合适,外界电磁干扰十分严重(例如50Hz工频干扰),完全抑制了微弱的涡街信号,输出信号全被噪声干扰淹没,这时调节阀门开度、仪表的增益,都无济于事。

(2)检测元件与转换器之间的连接断线,前置放大器的输人端开路,或检测元件有一根信号线与地短接造成前置放大器输人严重失衡,共模干扰趁机而人,涡街信号被噪声干扰压制,输出端完全被干扰控制。

(3 )前置放大器的增益过高,产生自激振荡现象,输出被锁定在自激频率上。

以上三方面,属于电气方面的原因引起的故障,只有加强屏蔽与接地,合理走线,减小或消除干扰,仪表正常工作才能恢复。

(4)管道(或环境)的强烈振动,当振动方向与仪表检测元件的敏感方向一致时,振动把涡街信号完全抑制,输出信号就是振动频率信号。调整阀门开度也不能改变输出。

解决的方法是,采用减振措施(加管道防振座、固定管道),弄清振动方向,把涡街流量计的传感器绕管轴转动士90 ℃,把检测元件敏感方向调整到与振动方向相垂直,可减小振动的影响口或适当降低前置放大器的增益和触发灵敏度。采取以上措施可消除振动影响。

(5) 脉动流对涡街信号的“锁定”在没有采取有效抑制脉动流影响的情况下,脉动流对旋涡稳定分离的破坏作用不可低估,如果脉动频率与涡街信号频率合拍,可能把涡街信号“锁定”在该频率附近,这时调节阀门和仪表灵敏度,输出信号频率都不会改变。

解决方法是如本章第一节所介绍的那样,在仪表的安装管道设计、施工时采取吸收或降低流体脉动的措施。

4. 涡街流量计故障判断及处理(输出信号不规则、不稳定)

信号不规则主要表现在涡街流量计输出的脉冲信号不规则,脉冲宽度宽窄严重不均,有时有多波、有时有漏波;用频率计测量信号频率时,频率值有明显跳动,显示数字分散度较大;模拟输出信号指示值时大时小,不稳定。

产生这种现象的原因较多,我们分别进行讨论。

(1) 电气方面的原因

电磁干扰的影响,干扰噪声与涡街信号相叠加,使信号时强时弱,出现输出脉冲信号有多波和漏波现象。另外,前置放大器的滤波参数设置、增益和灵敏度调整不合适,也会出现多波和漏波现象。

(2) 检测元件的原因

检测元件被沾污、受潮,灵敏度降低,输出信号减弱,造成漏波;

检测元件灵敏度过高,一些无用的扰动,主旋涡以外的子旋涡及流体噪声都被检测,造成多波现象扩检测元件引线接触不良、检测元件松动等,造成信号时大时小。

(3)安装方面的原因

安装时仪表的测量管与配管不同心、密封垫凸人管内、引起流体扰动、·产生附加旋涡;

测量管道内液体不满管、旋涡不能规则分离;

仪表安装位置与动力源相距过近,管道振动、流场扰动;

安装管道的上、下游直管段长度不足,阻流件产生扰动,影响涡街的稳定性。

(4)一工艺方面的原因

管内流量不稳定;工况参数变化大,流量变化大。

(5) 流体的原因

流体中有块状、团状或带状杂物,冲击、一缠绕发生体和检测元件,涡街不能稳定分离;

存在两相流或多相流,流型多变,涡街信号不稳定;

测量液体流量时,工作压力低、流速较高、可能产生气穴现象。

以上这些故障原因有的可通过调整仪表的参数解决;有的需要与客户密切配合、调整工艺流程、几改变仪表安装位置才有可能解决;而有的则是选表问题,例如对于严重的多相流、脏污流、脉动流,选用涡街流量计是不合适的。

5 .涡街流量计故障判断及处理(测量误差大)

测量误差大的问题,产生的原因也是多方面的。

(1) 仪表方面的原因

仪表超过检定周期,仪表系数K 发生了变化;

设定的参数(例如测量管内径, 标准状态密度和仪表系数)有误;

模拟转换电路的零点漂移或量程调整不对;

供电电源过大地偏离额定值或纹波过大。

以上这几种原因会直接给仪表带来测量误差。应把仪表迅速送检,及时检查设定的各种参数,定期校正仪表的零点和量程,保持仪表的完好率。

(2 )安装方面的原因

上、下游直管段长度不够.

仪表测量管内径与配管内径偏差大;

安装不同心、密封垫凸人管内;

仪表流向装反;

检测元件被杂质覆盖;

检测灵敏度降低,小流量漏计;

管道泄漏(例如安装在地下的管道,小的泄漏不被发现),阀门泄漏,旁通阀泄漏造成累积流量(总量)偏小;

存在两相流、脉动流影响准确计量;

测量管内壁和发生体被腐蚀,发生体表面有沉积物附着,几何参数发生变化,改变了仪表系数,造成测量误差。

由上述种种现象分析可知,提高测量精确度是客户和制造厂的共同心愿,如发现了测量误差较大,应该及时查找原因,及时对仪表进行校准,减少因计量不准造成的损失。

6 .涡街流量计故障判断及处理(测量管道泄漏)

经长期的应用,测量管道发生泄漏也属常见故障,其原因可能有:

(1) 管内压力过高;

(2)管内流体温度过高或管内流体温度变化过快过大,容易引起紧固件松动;

(3) 密封件失效;

(4) 表体或检测元件被腐蚀;

出现测量管道泄漏,应及时修复,以免酿成其他事故。

7 .涡街流量计故障判断及处理(传感器发止异常的啸叫声)

(1) 流速过高,引起发生体或检测元件颤动;

(2)管道内发生气穴现象;

(3)发生体或检测元件松动;

当这种现象发生时,为避免造成发生体或检测元件的损坏,首先应调整阀门,把流量减小,流

智能涡街流量计说明书

一、概述 涡街流量计是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表采用独特的差动技术,配合隔离、屏蔽、滤波等措施,克服了同类产品抗震性差、小信号数据紊乱等问题,并采用了独特的检测探头封装新技术和防护措施,保证了产品的可靠性。产品有管道式和插入式两种结构型式,每种型式都有高温、高压、防腐、防爆、温压补偿一体型等规格,又有整体和分体结构,以适应不同的测量介质和安装环境。 该仪表具有量程比宽,精度高,安装维护方便和介质适应性广等一系列优点。可广泛应用于石油化工、冶金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种低黏度液体、气体、蒸汽等单相流体的工艺计量和节能管理。 二、工作原理 涡街流量计根据卡门涡街理论,在流体中设置旋涡发生体,当流体流经旋涡发生体时,它的两侧就形成了交替变化的两排旋涡,这种旋涡被称为卡门涡街。斯特罗哈尔在卡门涡街理论的基础上又提出了卡门涡街的频率与流体的流速成正比,并给出了频率与流速的关系式: f = St × V/d 式中: f 涡街发生频率 (Hz) St 斯特罗哈尔系数(常数) d 旋涡发生体迎流面宽度 V旋涡发生体两侧的平均流速(m/s ) 图1 这些交替变化的旋涡就形成了一系列交替变化的负压力,该压力作用在检测探头上,便产生一系列交变电信号,经过检测放大器转换、整形、放大处理后,输出脉冲频率信号,或进一步转换成与流量成正比的4 ~ 20mA.DC标准电流信号。 三、基本特点 ●安装简便,维护十分方便。 ●应用范围广,压力损失小,运行费用低。 ●结构简单牢固,无可动部件,使用寿命长。 ●采用抗机械振动,抗冲击和抗脏污的结构新设计。 ●从检测探头到运放电路实现了高度的互换性和通用性。 ●可现场显示,也可远距离传输,还可与计算机控制系统联网。 ●检测元件不直接接触测量介质,尤其适合恶劣环境下的流量测量。 ●操作简单,全部参数设定和调试在出厂前已完成,一般通电后即可正常工作。

仪表设备维护检修规程(流量章节)

仪表设备维护检修规程 第三节流量仪表 1 总则 1.1 主题内容与适用范围 1.1.1 主题内容 本节规程规定了兴发金冠化工有限公司常用测流量仪表的技术标准、检查校验、使用维护以及检修的内容和方法。 1.1.2 适用范围 本节规程适用于电磁流量计、科氏力质量流量计、涡街流量计、玻璃转子流量计、金属转子流量计、孔板流量计、智能式涡轮流量计、旋进漩涡流量计的维护与检修。 1.2 编写及修订依据 编写及修订参考了上述仪表的有关资料、说明书 2 电磁流量计 2.1 主题内容与适用范围 本规程规定了电磁流量计的维护、检修、投运及其安全注意事项的具体技术要求和实施程序。 本规程适用兴发金冠化工有限公司亚砜车间生产装置使用的横河仪表产AXF025C型电磁流量计,(以下简称电磁流量计),其他同类型仪表亦应参照使用。

2.2 基本工作有理 该电磁流量计是设计用来测量导电流体的流量。测量原理是基于法位第电磁感应定律。 2.3 构成及功能。 2.3.1 结构构成 该电磁流量计为一体型,结构主要由磁路系统、测量导管、电极、外壳、衬里和转换器等部分组成。 传感器是将导电流体流量信号变成与之成正比关系的感应电压,将由导电电极送至转换器。 转换器是一个高弧阻抗,且能抑制各种干扰成分的转换器。可按不同的接线,把感应电压转化为电流或频率。目前,我厂用的都是将感应电压转换成标准统一的4-20mADC信号,并由转换器数字面版显示流量值。 2.3.2 主要技术性能 2.3.2.1 性能指标:基本误差;0.35% of rate 2.3.2.2 规格: 用途:防爆型; 输出信号:4-20mACD; 电源:230VAC±10%; 流体温度:-40~130℃; 环境温度:-40~60℃; 流体导电率:1μS/cm以上; 公称通径:2.5~400mm 2.4 完好条件 2.4.1 零部件完整、符合技术要求,即 a.铭牌应清晰无误。

涡街流量计的调试与维修

涡街流量计的调试与维修 1 概述 VXW系列涡街流量计,具有仪表常数稳定、容易在较恶劣的环境中保证精度、量程范围大、压力损失小、精度高、维护量小等特点,在各生产装置中使用较为普遍。另外它在测量体积流量时,几乎不受流速、密度、压力、温度、粘度等参数的影响。无活动部件的简单设计,也提高了仪表的使用寿命。下面笔者就日常工作中该类型仪表运行过程中出现的一系列问题及处理问题的方法给以叙述。 2 组成及功能 涡街流量计仪表由以下6部分组成: 变送器壳体;涡街发生体;信号检测器;输出放大器;脉冲整形器;输入放大器。 变送器壳体是流体管道的一部分,由于选择了合适的通径、涡街发生体的形状和尺寸比例,流体在壳体内流动时可在较宽雷诺数范围内产生稳定的涡街信号。涡街发生体使流体流经时产生涡列。信号检测器检测涡列并转换成脉冲信号。输入放大器将微弱的电信号进行放大,并滤除干扰信号。脉冲整形器将不规则的电脉冲转换为幅度和宽度一定的方波信号。输出放大器将方波信号进行放大转换为4~20mA直流电流信号输出。 3 工作原理 在流体中插入柱状物体时,在柱状物体的两侧将交替产生有规则的旋涡列,称谓“卡门涡街现象”。卡门涡街的频率与流速成正比。 式中: F为旋涡频率; V为管道内平均流速; d为柱状体迎流面宽度; D为管道内径; St为斯特罗哈数。 在雷诺数104~106范围内,是一个无量纲常数。 当旋涡在柱体两侧产生时,柱体受到与流向垂直的交变升力的作用,升力的变化频率就是旋涡频率,利用埋设于柱体内的压电元件检测此升力的变化,将其转换为频率信号送人放大器,由放大器进行放大和整形,得到其频率与流速成比例的方波信号。由上式可见,通过测量涡街频率就可算出流速V,进而求出体积流量,。 4 流量计的调试 在管道内没有液体流动时,由于管线振动所产生的噪声使接收器反常地计数,这时就应该对仪表进行灵敏度调节。 4.1 放大器增益的调整 一般情况下无需对放大器的增益进行调整,除非在更换了传感器之后。通过放大器板A上的AMP电位计调节放大器增益,在示波器上监视放大后的涡流波形,在最小流量时,涡流波形的峰值约为100mVP-P。 4.2 触发电平的调整 触发电平的增加(脉冲发生的灵敏度),会使流量的灵敏度减小。在管道内没有任何液体流动时,因管线振动,脉动流动出现噪声而造成不正常脉冲发生可以通过增加触发电平有效地进行处理。 通过放大器板上的TRG电位计可调节触发电平,放大的涡流波形的峰值无论何时超过预先确定的触发电平,都能转换成一个脉冲。因此,由于增加触发电平,流量灵敏度就会减小。 当触发电平80mVP-P变到350mVP-P,其结果的灵敏度将是80/350=1/4.4(灵敏度比率)

智能涡街流量计使用说明书(三线制)

智能涡街流量计使用说明书

目录 一,产品概述 二,测量原理 三,结构与技术参数 四,流量计的选型 五,流量计的安装 六,流量计的电气连接 七,故障排除与日常维护

一、 产品概述 1. 概述 涡街流量仪表是根据卡门涡街理论,利用了流体的自然振动原理,以压电晶体或差动电容作为检测部件而制成的一种速度式流量仪表。 该仪表具有无可动部件、测量范围度大、介质适应性广、测量精度高、检定周期长、 传输信号距离远、压力损失小、结构简单、运行可靠、使用寿命长、安装维护方便等许多显著优点。可广泛应用于石油化工、治金机械、食品、造纸,以及城市管道供热、供水、煤气等行业的各种液体、气体、蒸气等单相流体的工艺计量和节能管理。 2. 产品特点 ● 采用抗机械震动,抗冲击和抗脏污的结构新设计。 ● 采用最先进的集成电路,信号处理精度高,高抗干扰性,可靠性高。 ● 可选用加宽量程型号,获得优越的小流量性能和扩宽的流量范围。 ● 可选用电容式流量计,抗震性能好,最高测量温度达到400 ℃。 二、 测量原理 涡街流量计是由设计在流场中的旋涡发生体、检测探头及相关的电子线路等组成。当液体流经三角柱形旋涡发生体时,它的两侧就成了交替变化的两排旋涡,这种旋涡被称为卡门涡街(图1),在此基础上得出了频率与流体的流速的关系: F= St ×V/d 式中:f ————————————涡街发生频率(Hz ) V ————————旋涡发生体两测的平均流速(m/s )St-----------------------斯特罗哈尔系数(常数) 这些交替变化的旋涡就形成了一系列替变化的负压力,该压力作用在检测深头上,便产生一系列交变电信号,经过前置放大器转换、整形、放大处理后,输出与旋涡同步成正比的脉冲频率信号(或标准信号) 旋涡发生体 探头 交变力 图1 三、 结构与技术参数 1. 流量计的结构形式 流量计是由表体与检测放大器及连接这两部分的连接杆组成,表体及其组成部件和连接杆均由1Cr18Ni9Ti 不锈钢材质制成,具有防腐耐用之优点;仪表根据安装方式不同分三种结构形式,分别是满管式、简易插入式、球阀插入式,结构形式如下图所示:

孔板流量计工作原理

孔板流量计工作原理 充满管道的流体,当它们流经管道内的节流装置时,流束将在节流装置的节流件处形成局部收缩,从而使流速增加,静压力低,于是 在节流件前后便产生了压力降,即压差,介质流动的流量越大,在节 流件前后产生的压差就越大,所以孔板流量计可以通过测量压差来衡量流体流量的大小。这种测量方法是以能量守衡定律和流动连续性定 律为基准的。 孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用可靠等特点。详细介绍: 一、概述孔板流量计又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成,广泛应用于气体、蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定,使用 可靠等特点。孔板节流装置是标准节流件可不需标定直接依照国家 标准生产,1.国家标准GB2624-81<流量测量节流装置的设计安装和使用;2.国际标准ISO5167<国际标准组织规定的各种节流装置; 3.化工部标准GJ516-87-HK06。 二、工作原理充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力

差。在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。 孔板流量计由截流元件孔板、均压环、三阀组和智能多参数变送器组成。 三阀组: 三阀组的作用是将差压变送器的正负压室与引压管导通或切断,导通或切断差压变送器。 停用时:关闭负压阀,打开平衡阀,关闭正压阀. 投用时:打开正压阀,关闭平衡阀,打开负压阀.在有隔离液的情况下要确保三阀组不能同时打开,防止隔离液因为差压而跑掉. 五阀组比三阀组多2个排污阀。 初次使用时应先打开平衡阀,再打开低压侧负压阀,接着是打开高压侧正压阀,最后关闭平衡阀,变送器工作,这样操作很好的保护了变 送器。在变送器的工作过程中也可以打开平衡阀给变送器调零等操作 孔板流量计的安装位置是直管的前10D后5D。 造成孔板测量不准的几个原因:

涡街流量计工作原理

涡街流量计 涡街产生原理: 涡街流量计是利用流体力学中著名的卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,均要产生漩涡分离。当这些漩涡排列成两排、且两例漩涡的间距与同列中两相邻漩涡的间距之比满足下式时,h/l=0.281 ,就能得到稳定的交替排列漩涡,这种稳定而规则地排列的涡列称为“卡门涡街”。这个稳定的条件是冯?卡门对于理想涡街研究分析得到的,后来一般把错排稳定的涡街称作“卡门涡街”。这就是卡门涡街流量计的名称由来,如图1所示 图1 卡门涡街示意图 理论和实验的研究都证明,漩涡分离频率,即单位时间内由柱体一侧分离的漩涡数目f与流体速度V1成正比,与柱体迎流面的宽度d成反比,即: 式中f—漩涡分离频率。 Sr—斯特劳哈尔数(无量纲)。对于一定柱型在一定流量范围内是雷诺数的函数。 V1—漩涡发生体两侧的流速m/s。 d—漩涡发生体迎流宽度mm。 为了计算方便起见,可用管道内平均流速 试验可以测定Sr数,其数值与柱体的断面形状、柱体流道的相对尺寸以及流动雷诺数有关。大量的试验表明,对于许多经过适当选择的柱型,由于斯特劳哈尔数在很宽的雷诺数范围内可以看成是常数。一旦柱体和流道的几何尺寸及其形状确定后,f便与平均速度V成为简单的正比关系,因而检测出漩涡的频率,便可以测得流速,并以此推知其流量。这就是涡街流量计的基本原理。

当流体流动受到一个垂直于流动方向的非流线形柱体的阻碍时,柱体的下游两侧会发生明显的旋涡,成为卡门涡列,涡列的形成与流体雷诺数有关。如图2,漩涡形成示意图,图3卡门涡街示意图。 图2:漩涡形成示意图 图3:卡门涡街

智能式涡街流量计校准规范

智能式涡街流量计校准规范 在智能式涡街流量计中,正确的校准是能够让智能式涡街流量计正常的工作准确的方法,那么校准改如何操作呢?下面就为大家介绍下:对蒸汽、氮气、二氧化碳、氢气等测量的智能式涡街流量计的校准要求在不断增加。由于采用这些气体进行大规模校准的设施并不多,因此采用另一种流体进行校准几乎是唯一的选择,且在许多情况下是一种合理的、可替代的选择。如果流动条件可以估算出来,那么就可以在与操作条件不同的条件下对智能式涡街流量计进行校准,估算流动条件所采用的参数通常为关于该智能式涡街流量计入口直径的雷诺数。首先,将操作条件范围转换为雷诺数范围。其次,所选定的校准设备要符合所规定的雷诺数范围。然后,在不同的压力条件下或采用不同的气体进行校准。在一定精度等级范围内,标准差压智能式涡街流量计的雷诺特性是众所周知的。同样,智能式涡街流量计的特性也是已知的。在某些情况下,有必要在进行最终校准之前先进行几次测试以鉴定该智能式涡街流量计的运行情况是否符合雷诺定标系数。将来,还需要做一些工作来鉴定智能式涡街流量计的性能,并确定高压气体情况下智能式涡街流量计的性能。年检校准的基本要求校准应满足的基本要求如下:校准可以找地方计量所或者第三方校准单位,如上海计量测试,广东省计量科学研究院等非营利性机构,都必须得有国家办法的CNAS计量资质。 那么不仅仅是智能式涡街流量计的校准是这样的规范要求,同时其他的流量计的规范要求也是如此。如果一台流量计连校准都不是按照规

范要求来做的话,这台流量计会让人觉得使用时担心的,会不会在安装后短期内出现任何的故障问题。所以在要求厂家的质量的同时也是要求生产厂商也能够做出一定的职业操守来规范自己。也就是让使用者放心使用。以上就是如何校准智能式涡街流量计的方法,希望对大家有一定的帮助!!

涡街流量计安装及使用说明

涡街流量计安装及使用说明 涡街流量计安装环境要求: 1.尽可能避开强电设备、高频设备、强开关电源设备。仪表的供电电源尽可能与这些设备分离。 2.避开高温热源和辐射源的直接影响。若必须安装,须有隔热通风措施。 3.避开高湿环境和强腐蚀气体环境。若必须安装,须有通风措施。 4.涡街流量仪表应尽量避免安装在振动较强的管道上。若必须安装,须在其上下游2D处加设管道紧固装置,并加防振垫,加强抗振效果。 5.仪表最好安装在室内,安装在室外应注意防水,特别注意在电气接口处应将电缆线弯成U形,避免水顺着电缆线进入放大器壳内。 6.仪表安装点周围应该留有较充裕的空间,以便安装接线和定期维护。、 (二)仪表管道安装要求: 1.涡街流量仪表对安装点的上下游直管段有一定要求,否则会影响介质在管道中的流场,影响仪表的测量精度。仪表的上下游直管段长度要求见图 注:调节阀尽可能不安装在涡街流量仪表的上游,而应安装在涡街流量仪表的下游10D处。 2.上、下游配管内径应相同。如有差异,则配管内径Dp与涡街仪表表体内径Db,应满足以下关系0.98Db≤Dp≤1.05Db上、下游配管应与流量仪表表体内径同心,它们之间的不同轴度应小于0.05Db。3.仪表与法兰之间的密封垫,在安装时不能凸入管内,其内径应比表体内径大1-2mm。 (三)涡街流量计的安装步骤

1.按开口尽寸的要求在管道上进行开口,具使开口的位置满足直管段的要求。 2.将连接上法兰的整套流量计放入开好口的管道中。 3.对两片法兰两边实行点焊定位。将流量计拆下,将法兰按要求焊接好,并清理管道内所有凸出部分。 4.在法兰的内槽内装上与管道通径相同的密封垫圈,将流量计装入法兰中间,并使流量计的流向标与流体方向相同,然后用螺栓连接好。 (四)流量计在水平管道上的安装: 测量气体流量时,若被测气体含有少量的液体,流量计应安装在管线的较高处。 测量液体时,若被测液体中含有少量的气体,流量计应安装在管线的较低处。 (五)流量计在垂直管道的安装: 测量气体时,流量计可以安装在垂直管道上,流向不限。 若被测气体中含有少量的液体,气体流量应由下向上。 测量液体流向时,液体流向应由下向上。

孔板流量计的安装注意点和原理分析

孔板流量计的安装注意点和原理分析 一、孔板流量计的安装注意事项 1.气体取压口最好在管道上部;液体取压口在侧面以下但不要在正下方,沉积颗粒会堵着取压口的;蒸汽的话取压口在管道侧面; 2.孔板方向不要弄错了,标“+”的为正向,“-”为负向,“+”是迎着流体过来的方向。 3.正负取压口引出的导压管在任何情况下都要保持平行; 4.孔板一般都要配合差压变送器用的,导压管与差压变送器连接时要注意正负压不要装反,“H”为正,“L”为负; 5.测气体的话差压装置建议放在管道上方,液体的话放在管道下部,测蒸汽嘛如果有配冷凝罐的话,应当保持冷凝罐在同一水平面高度上。 6.直管段要求了,按计算书计算出安装孔板时要求的前后直管段长度,通常为前20D后10D来装(D是指孔板的口径)节流装置V锥流量计与孔板流量计性能比较:V锥形流量计(又称内锥、V锥、V型锥流量计)是新一代差压式流量计测量仪表,由专用的节流装置锥形管与通用的差压变送器、二次仪表配套构成。锥形管是专利技能产品,对残旧的差压装置作了很大的技能改进,它由一圆形测量管和置入测量管内并与测量管同轴的特型芯体构成。芯体与测量管内圆柱面之间构成异径环型过流裂痕,对流过的流体进行节流,其节流历程同环型孔板、经典文丘里管的节流历程近似。锥形管的特殊构造,有效的消除了而今在用孔板、喷嘴的性能毛病,使之在运用历程中不永存类似孔板等节流件的锐缘磨蚀与积污纰漏,并能对节流前管内流体速度散播梯度及大概永存的各种非轴对称速度散播进行额外有效的流动排解(整流),从而能实现高切确度与高平乱性的流量测量。锥形管流量计可用于对各种液体、气体和蒸汽的测量,是尺寸孔板等残旧节流式仪表的梦想换代产品,为改进而今的工业、能源计量成果,供给了一项有效、可靠的计量手腕。 二、产品性能机理简析 孔板流量计为何能有如此优秀的技能性能?最本原的原因是靠其简单而又科学合理的构造及其所造成的节流模式。应该说,锥形管是环形孔板与经典文丘里管的技能再发家,它将环形孔板、经典文丘里管、耐磨孔板以及锥形入口孔板的性能优特性融会在一齐,彻底消除了孔板的计量性能毛病,使之造成了一项齐全”择优遗传杂交”特性的新型节流式流量测量仪表。尺寸孔板的首要计量性能毛病:①运用历程中,额外减省爆发节流件锐缘磨蚀和积污,造成流出系数缓缓变换,导致难以克制的流量测量差池。②在中低雷诺数测量区,流出系数随流量工况变革而变革的幅度较大,导致编制性的测量差池。③安设直管段哀求过高,以及孔板安设的峻厉圭臬哀求难以达标,经常造成运用安设附加差池较大,该差池经常难以定量评估。④压损大。

涡街流量计技术要求

涡街流量计技术要求 1、测量介质:氯气 2、口径:DN25 3、材质:316L不锈钢 4、传感器材料:哈氏合金 5、测量温度:-200℃~120℃ 6、供电电压:20~30VDC 7、测量误差:±0.2%,重复性:±0.1% 8、介质电导率:>5uS/cm 9、流速范围:0.3—12m/s 10、额定压力:PN1.6 11、过程温度:-25℃—140℃ 12、防护等级:IP67 13、输出信号:两线制4—20mA 14、通讯:Hart通讯协议,RS485 15、显示器、累计器:字母/数字型,瞬时流量,累计流量,故障显示 16、适用电源:220V AC/24VDC 17、带安装附件 18、带自诊断,故障报警,小流量切除功能 19、安装形式:一体式 20、连接形式:法兰连接 类 LUCB系列插入式涡街流量计、LUCB系列涡街流量计 参数及要求 ◆测量介质:气体、液体、蒸气

温压补偿型涡街流量计——迪元仪表 ◆连接方式:法兰卡装式、法兰式、插入式 ◆口径规格法兰卡装式口径选择 25,32,50,80,10 ◆法兰连接式口径选择 100,150,200 ◆流量测量范围正常测量流速范围雷诺数1.5×104~4×106;气体5~50m/s; 液体0.5~7m/s 正常测量流量范围液体、气体流量测量范围见表2;蒸气流量范围见表3 ◆测量精度 1.0级 1.5级 ◆被测介质温度:常温–25℃~100℃,高温–25℃~150℃ -25℃~250℃ ◆输出信号脉冲电压输出信号高电平8~10V 低电平0.7~1.3V ◆脉冲占空比约50%,传输距离为100m ◆脉冲电流远传信号 4~20 mA,传输距离为1000m ◆仪表使用环境温度:-25℃~+55℃ 湿度:5~90% RH50℃ 分离式涡街流量计——迪元仪表 ◆材质不锈钢, 铝合金 ◆电源 DC24V或锂电池3.6V ◆防爆等级本安型iaIIbT3-T6,防护等级 IP65

涡街流量计检修作业指导书

涡街流量计检修作业指导书 1.危害辨识 1.1.检修时防止管道内的高温、高压介质喷出伤人。 1.2.检修时防止管道内介质泄漏造成气体中毒。 1.3.防止拆除仪表时管道内介质泄漏可能对环境污染。 1.4.拆卸信号线时,应注意线路绝缘,防止长时间接地导致烧毁安全栅和卡件通道。 2.准备阶段 2.1.物质:有毒气体监测仪、防护眼镜、抹布。 2.2.工具:活动扳手2把,常用工具1 套,万用表1块。 23人员:熟练仪表工1?2人,监护人员1人。 2.4.票证:由项目负责人开具《设备检修作业安全许可证》视现场情况 和检修需要开具《高处安全作业证》、《动火作业证》。 2.5.方案:根据实际检修工作,由项目负责人编写详细检修方案和安全 方案。 2.6.安全学习:根据实际检修安全,由项目负责人组织学习防中毒、防 余压伤人、防蒸汽烫伤、防止环境污染。 3.实施阶段

3.1.由项目负责人联系工艺运行岗位当班班长落实各项工艺安全措施; 由项目负责人联系DCS 系统当班人员,将与被检修仪表相关的联锁、报警装置解除。工艺运行岗位当班班长和DCS 系统当班人员在《设备检修作业安全许可证》等检修票证上签字后,项目负责人开始执行检修作业。 3.2.检查涡街流量计外包塑料布是否完好,检查仪表外壳、油漆等是否 完好,是否有腐蚀现象。 3.3.检查涡街流量计电源供电是否正确(220VAC 还是 24VDC ),检查现场电源接线是否正确(相、中、地线或正、负、屏蔽地),检查仪表供电保险、内部保险是否完好。 3.4.检查涡街流量计显示屏指示是否正常,是否有报警代码出现,按报警代码含义检查相关位置。检查涡街流量计内部参数设置是否正确。 3.5.检查仪表输出信号线接线和DCS 接线是否正确一致,检查输出信号 是否在4?20mADC之间,输出数值是否与仪表显示屏和 DCS 系统指示一致。 3.6.检查涡街流量计安装的管道是否有持续的振动或高频噪声,将其消除。 3.7.检查调节流量的调节阀、手阀是否有震荡、自激、噪声等

涡街流量计的组成保养及保修

涡街流量计的组成,保养及保修 涡街流量计的组成,保养及保修 涡街流量计是一种非常高端的先进仪表,对介质流量的测量十分的准确 涡街流量计由涡街、轴承、前置放大器、显示仪表组成。它的工作原理是当流体沿着管道的轴线方向流动,并冲击涡街叶片时,便有与流量qv、流速V和流体密度ρ乘积成比例的力作用在叶片上,推动涡街旋转。在涡街旋转的同时,叶片周期性地切割电磁铁产生的磁力线,改变线圈的磁通量。根据电磁感应原理,在线圈内将感应出脉动的电势信号,此脉动信号的频率与被测流体的流量成正比,即:其中,qv为流体的体积总量,N为变送器产生的脉动总数;ξ为流量系数。时常产生误差的因素有以下几点: (1)涡街流量计应慎用有些易结晶化工物料在温度正常的状况下能正常丈量,由于保送流体的导管都有良好的伴热保温,在保温工作时不会结晶,但是涡街流量计传感器的丈量管难以施行伴热保温,因而,流体流过丈量管时易因降温而惹起内壁结上一层固体。由于改用其他原理的流量计丈量也同样存在结晶问题,所以在无其他更好办法的状况下,可选用丈量管长度十分短的一种“环形”(oring)涡街传感器,并将流计的上游管道伴热保温予以强化。在管道衔接问题上,流量

传感器拆装需便当,一旦结晶时能便当地拆下维护。 (2)管内液体未充溢由于背压缺乏或流量传感器装置位置不良,致使其丈量管内液体未能充溢,毛病现象因不充溢水平和活动情况有不同表现。若少量气体在水管管道中呈分层流或波状流,毛病现象表现为误差增加,即流量丈量值与实践值不符;若活动是气泡流或塞状流,毛病现象除丈量值与实践值不符外,还会因气相霎时遮盖电极外表而呈现输出晃动;若程度管道分层活动中流通截面积气相局部增大,即液体未满管水平增大,也会呈现输出晃动,若液体未满管状况较严重,致使液面在电极以下,则会呈现输出超满度现象。 (3)涡街流量计的液体中含有固相液体中含有粉状、颗粒或纤维等固体,可能产生的问题有; ①浆液噪声; ②电极外表玷污; ③导电堆积层或绝缘堆积层掩盖电极或衬里; ④衬里被磨损或被堆积物掩盖,流通截面积减少。 涡街流量计传感器保养知识 涡街流量计广泛用于石油、化工、冶金、科研等领域的计量、控制系统。配备有卫生接头的涡街流量传感器可以应用于制药、食品等行业。智能一体化涡街流量计结构为防爆设计,可以显示流量总量,瞬时流量和流量满度百分比。电池采用长效锂电池,单功能积算表电池使用寿命可达5年以

孔板流量计

孔板流量计 孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及引的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体.蒸汽和液体的流量测量.具有结构简单,维修方便,性能稳定。 孔板流量计工作原理 充满管道的流体流经管道内的节流装置,在节流件附近造成局部收缩,流速增加,在其上、下游两侧产生静压力差。 在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其基本公式如下: c-流出系数无量纲 d-工作条件下节流件的节流孔或喉部直径 D-工作条件下上游管道内径 qm-质量流量Kg/s qv-体积流量m³/s ß-直径比d/D无量纲 流体的密度Kg/m³ 可膨胀性系数无量纲 孔板流量计结构 节流装置组成 节流件:标准孔板、标准喷嘴、长径喷嘴、1/4圆孔板、双重孔板、偏心孔板、圆缺孔板、锥形入口孔板等 取压装置:环室、取压法兰、夹持环、导压管等 测量管 孔板流量计的安装要求:对直管段的要求一般是是前10D后5D,因此在选购孔板流量计时一定要根据流量计的现场工矿情况来选择适合现场工矿的流量计。 孔板流量计特点 ▲节流装置结构易于复制,简单、牢固,性能稳定可靠,使用期限长,价格低廉。 ▲孔板计算采用国际标准与加工 ▲应用范围广,全部单相流皆可测量,部分混相流亦可应用。 ▲标准型节流装置无须实流校准,即可投用。 ▲一体型孔板安装更简单,无须引压管,可直接接差压变送器和压力变送器。 选择孔板流量计所需要的参数 1、管道的口径(管径*壁厚) 2、孔板流量计测量的介质 3、被测介质的工作温度 4、被测介质的工作压力(最大压力、最小压力、正常压力)

涡街流量计使用说明书

一、使用时的注意事项 1.1、确认收货时 1.1.1、在您拿到本产品时,请确认运输途中有没有磕碰划伤等。 1.1.2、根据产品铭牌的标注,请确认与您要买的型号是否相符。 1.2、运输与储存时 1.2.1、尽可能的利用本公司的包装,将流量计直接运送到安装现场。 1.2.2、运送过程中不要强烈碰撞、也不要让雨水淋湿。 1.2.3、保管时尽量利用本公司的原包装进行保管,保管的地方应符合下列条件要求: 1不会有淋雨水的地方 2振动或碰撞尽量少的地方 3温度:-40℃—+55℃ 4湿度:5%—90% 1.2.4、使用过的流量计保管时,要将内部的残留液体及粘附物完全清洗干净,另外注意在电源接口处要密封,以防潮湿。 1.3、安装时 1.3.1、使用时要在流量计规定的条件下使用,超出这个规定使用是不可行的,如果因此而造成流量计损坏,维修的费用会由您自己承担。 1.3.2、流量计出现问题以后,尽可能的与我们或维修商联系,以便尽快的把问题解决。 1.3.3、安装之前必须认真阅读说明书,由于没有按照说明书操作造成的流量计损坏,维修费用自己承担。 二、产品用途及工作原理 2.1、用途 LUGB涡街流量计广泛用于石油、化工、电力、轻工等部门工业管道中测量

液体或气体的流量。由于传感器材料为1Cr18Ni9Ti,也可用于城市供水、供热、锅炉供水、医疗行业流体管道的流量测量。 防爆型涡街流量传感器,采用的是本安防爆技术。电池供电的涡街流量计其防爆标志为“Ex iaⅡBT4”,适合不高于Ⅱ类B级的0区、1区、2区含有T1~T4组的危险场所使用;靠安全栅供电的涡街流量计其防爆标志为“ExiaⅡBT5”,适于Ⅱ类B级的0区、1区、2区含有T1~T5组的危险场所使用。 2.2、工作原理 图一:卡门涡街工作原理图 LUGB涡街流量计是利用卡门涡街原理,用来测量蒸汽、气体及低粘度的液体的流量仪表。当流体流过与被测介质流向垂直放置的旋涡发生体时,在其后方两侧交替地产生两列旋涡,称之为卡门涡街,如上图1所示。在一定雷诺数范围内(2×104~7×106),旋涡所产生的频率f与介质的平均速度V及旋涡发生体的迎流面宽度d之间有下列关系: f=St式中St为斯特劳哈尔数,它是无量纲常数,当R =2×104~7×106 eD 时约为0.15~0.22,通过压电元件检测出旋涡产生的频率f,就可计算出平均流 =A*V,,其中A为管道横截面积。 速V,从而确定管道内的体积流量:Q V 三、产品的特点 我公司生产的涡街流量计是借鉴日本OVAL公司的产品设计理念结合国内企业的使用特点,经过多年的研发而推出的产品。本产品是按照日系国家标准JIS Z8766:2002《涡街流量计—流量测定方法》,进行生产的,因此我公司的涡街流量计有这国内同类产品没有的精确性和稳定性,除具备普通涡街流量计的特点外,还具有下述突出特点:

《涡街流量计》检定规程简介

《涡街流量计》检定规程简介 摘要:JJG198-1994《速度式流量计》检定规程在涡街流量计检定方面起了很积极的作用。但由于该规程包括流量计种类过多,造成了通用性条款多,专门适用于涡街流量计的条款少的局面。而近年来,涡街流量计快速发展,其检定要求和检定技术也有所提高,JJG198-1994已不适应发展的需要,因此,急需单独制定涡街流量计检定规程。 一、概述 JJG1029-2007《涡街流量计》检定规程经国家质检总局于2007年8月21日批准,并于2007年11月21日起施行。涡街流量计适用于气体、液体和蒸汽流量的测量。 涡街流量计利用卡门涡街原理。在流体中安放漩涡发生体,流体在漩涡发生体下游两侧交替地分离释放出两列有规律的交错排列的漩涡,在一定雷诺数范围内,该漩涡的频率与漩涡发生体的几何尺寸、管道的几何尺寸有关,漩涡的频率正比于流量,此频率可由探头检出。 式中:b——阻流件的宽度,m;U—流经流量计的流体平均流速,m/s;f——漩涡的频率,Hz;Sr——斯特罗哈尔数(Strouhalnumber)。 JJG198-1994《速度式流量计》检定规程在涡街流量计检定方面起了很积极的作用。但由于该规程包括流量计种类过多,造成了通用性条款多,专门适用于涡街流量计的条款少的局面。而近年来,涡街流量计快速发展,其检定要求和检定技术也有所提高,JJG198-1994已不适应发展的需要,因此,急需单独制定涡街流量计检定规程。 二、制定依据 JJG1029-2007制定的主要技术依据:JJF1002-1998《国家计量检定规程编写规则》、JJF1004-2004《流量计量名词术语及定义》、GB/T1314-1991《流量测量仪表基本参数》、GB17820-1999《天然气》、GB50251-1994《输气管道工程设计规范》、GB/T13609-1999《天然气取样导则》、GB/T13610-2003《天然气组分分析——气相色谱法》、GB3836.1-2000《爆炸性气体环境用电气设备第一部分通用要求》、GB3836.2-2000《爆炸性气体环境用电气设备第二部分隔爆型“d”》、GB3836.3-2000《爆炸性气体环境用电气设备第三部分增安型“e”》、JJF1015-2002《计量器具型式评价和型式批准通用规范》、JJF1016-2002《计量器具型式评价大纲编写导则》、GB/T17626.2-1998《电磁兼容试验与测量技术静电放电抗扰度试验》、GB/T17626.3-1998《电磁兼容试验与测量技术射频电磁场辐射抗扰度试验》、GB/T2423.1-2001《电工电子产品环境试验试验A:低温试验方法》、GB/T2423.2-2001《电工电子产品环境试验试验B:高温试验方法》、GB/T2423.3-1993《电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法》、

详解孔板流量计

详解孔板流量计 差压式流量计作为经典与最古老的流量计,应用范围最为广泛。不过随着电子式流量计如(电磁、涡街等)流量计的兴起,我们有些新的行业朋友,还真不一定熟悉这种流量计,今天这一期,给大家好好讲解这个差压式流量计。 差压式流量计在化工生产中得到最广泛的应用,也是操作人员最为熟悉的一种流量计,它的节流装置(1)安装在生产工艺管道(2)上,并由引压管(3)和差压变送器(4)三个部分组成流量测量系统(如图3—1所示)。下面对差压式流量计,差压变送器及差压式流量计的安装分别予以介绍。 图3-1 差压式流量计的组成 差压式(也称节流式)流量计是基于流体流动的节流原理,利用流体经节流装置时产生的压力差而实现流量测量的。差压式流量计一般是由能将流体的流量变换成差压信号的节流量(孔扳、喷嘴)和用来测量压差值的差压计或差压变送器及显示仪表组成。 这种流量计,目前在化工、炼油及其它工业中应用很广,应用的历史也较长久,因此已经积累了丰富的实践经验和完整的实验资料。对于常用的孔板、喷嘴等节流装置,国内外已把它们标准化了,并称为“标准节流装置”。因此,这种流量计所用的标准节流装置可以根据计算结果直接投入制造和使用,不必用实验方法进行单独标定。但对于非标准化的特殊节流装置, 在使用时,均应进行个别标定。 一.节流装置的流量测量原理 节流现象及其原理: 流体在有节流装置的管道中流动时,在节流装置前后的管璧处,流体的静压产生差异的现象称为节流现象,如图3—2所示 图3—2 流体流经节流装置时的节流现象

现在,我们对流体流经节流装置前后的变化情况作进一步分析。 连续流动着的流体,在遇到安插在管道内的节流装置时,由于节流装置的截面积比管道的截面积小,形成流体流通面积的突然缩小,在压力作用下,流体的流速增大,挤过节流孔,形成流速的扩大而降低。与此同时,在节流装置前后的管壁处的流体静压力就产生了差异,形成静压力差△p(△p=P1- P2),如图3-3所示。并且p1>p2, 图3—3 孔扳附近流束及压力分布情况 此即为节流现象,从图中可以看出,节流装置的作用在于造成流束的局部收缩从而产生的压差.并且,流过的流量愈大在节流装置前后所产生的压差也愈大,因此可以通过测量压差来衡量流体流量的大小。由于节流装置造成流束的收缩,同时流体又是保持连续流动的状态,因此在流束截面积最小处的流速达到最大,在流速截面积最小处,流体的静压力最低。 同理,在孔板出口端面处,由于流速已比原来增大,因此静压力仍旧比原来的为低(即图中P2

涡街流量计的工作原理和特点

涡街流量计的工作原理和特点 本文由https://www.360docs.net/doc/036284674.html,提供 涡街流量计的工作原理是在流体中设置旋涡发生体,从而发生体两侧交替地产生有规则的旋涡,旋涡列在旋涡发生体下游非对称地排列,产生一定的频率,通过公式f=St*v/(1-1.27d/D)*d,(St为斯特劳哈尔数,为无量纲数,与旋涡发生体及雷诺数有关;v为流速;d为发生体迎面宽度;D为公称通径)即可得出流速。 一般的来说,涡街流量计输出信号(频率)不受流体物性和组分变化的影响,是指仪表系数仅与旋涡发生体形状和尺寸以及雷诺数有关。它的优点是:结构简单牢固,安装维护方便;适用多种类流体,液、气、蒸汽及部分混合相皆适用;精确度较高,一般达±1%R左右;流量范围宽,可达10:1或20:1或更大;压头损失小;无零点飘移;价格相对便宜;缺点是:不适于低雷诺数Re<20000的情况,对高粘度、低流速、小口径的使用有限制;对环境的要求较高,应尽量杜绝有振动的场所,且上游侧需要有较长的直管段;仪表系数较低,口径愈大愈低。信号分辨率降低,故口径不宜过大,一般应用于DN15~DN300mm。 1.优点 涡街流量计结构简单牢固,安装维护方便(与节流式差压流量计相比较,无需导压管和三阀组等,减少泄漏、堵塞和冻结等)。 适用流体种类多,如液体、气体、蒸气和部分混相流体。 精确度教高(与差压式,浮子式流量计比较),一般为测量值的(±1%~±2%)压损小(约为孔板流量计1/4~1/2)。输出与流量成正比的脉冲信号,适用于总量计量,无零点漂移;在一定雷诺数范围内,输出频率信号不受流体物性(密度,粘度)和组分的影响,即仪表系数仅与旋涡发生体及管道的形状尺寸有关,只需在一种典型介质中校验而适用于各种介质。 2、局限性 涡街流量计不适用于低雷诺数测量(ReD≥2×104),故在高粘度、低流速、小口径情况下应用受到限制。 旋涡分离的稳定性受流速分布畸变及旋转流的影响,应根据上游侧不同形式的阻流件配置足够长的直管段或装设流动调整器(整流器),一般可借鉴节流式差压流量计的直管段长度要求安装。与涡轮流量计相比仪表系数较低,分辨率低,

涡街流量计说明书

一. 工作原理 在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生两列有规则的旋涡,这种旋涡称为卡门涡街,如图(一)所示。 图(一) 旋涡列在旋涡发生体下游非对称地排列。设旋涡的发生频率为f ,被测介质来流的平均速度为V ,旋涡发生体迎流面宽度为d ,表体通径为D ,根据卡曼涡街原理,有如下关系式: f=St.V/〔(1-1.25d/D )d 〕 式中: f -发生体一侧产生的卡门旋涡频率 St -斯特罗哈尔数 V -流体的平均流速 d -柱体流面宽度 D-管道径 在漩涡发生体中装入电容检测探头或压电检测探头及相应匹配电路,即可构成电容检测式涡街流量/传感器或压电检测式涡街流量传感器。 图(二) 在曲线表中St =0.17的平直部分,漩涡的释放频率与流速成正比,即为涡街流量传感器测量围度。只要检测出频率f 就可以求得管流体的流速,由流速V 求出体积流量。 Q =3600f/K 或M=ρ3600 f/K 式中:K =仪表常数(1/m 3)。 M=质量流量 Q =体积流量(m 3/h ) St 0.2 0.15 0.1

ρ=介质密度(kg/m3) F=频率Hz 二. 主要技术指标

三、传感器的选型 3.1.尊敬的用户,当您要选用产品时,请仔细阅读选型样本,并做好以下工作: 1.认真核对被测介质的工况条件:温度、压力、管径等工艺参数。 2.认真核对被测介质的使用流量围,特别是最小流量值以最终确定使用仪表的口径及配管参数。 3.确定仪表的安装地点,保证直管段,并为仪表的安装维护创造好的环境条件。 3.2.涡街流量仪表选型表(符合JB/T9249-1999标准)

涡街流量计常见问题及处理

涡街流量计常见问题及处理 大多数涡街流量计累计流量清零 操作如下: 1:在正常测量画面情况下,按一下ENT键;输入清零密码XX; 2:输完密码后再按一下ENT键,进入“累积量选择”菜单; 3:再按一下ENT键,进入编辑状态,编辑状态下菜单选择项会“闪烁”,然后按NEXT键进行选择菜单内容,选择“清零”后,再按一下ENT键,使“闪烁”功能停止即可; 4:最后,再按一下ESC键退出即完成操作 用涡街流量计测量流量时,要满足什么条件 1.介质要满足,比如说粘稠度不能太高,不能是气液混合 2.流量方向要一致 3.流量要达到测量下限 4.要有足够的直管段 5.管道上不能有强烈的震动 6.温度不能太高,一般在350度以下 涡街流量计为什么累计流量显示正常,瞬时流量显示不正常 进入流量积算仪的菜单,发现有一项 瞬时流量滤波功能FLTR设置的数值为:3 ,试着把它改为:1

,结果返回测量状态,流量计瞬时流量和累计流量都显示正常。于是又查看了说明书,终于明白了造成该流量积算仪不显示瞬间流量而显示累计流量的原因是:该流量积算仪具有数字滤波克服流量波动功能,瞬时流量的显示不影响累计流量的计量。因为流量信号不大, FLTR设为:3数字偏大,滤波高,反应慢,导致显示不正常。改为1 ,滤波效果低,反应稍快,显示结果正常。但不管是哪一种情况都不影响累计流量的计量。 涡街流量计口径50,在工作中瞬时流量计不归零怎么处理 看该流量是否稳定。该涡街是分体还是一体。 如果流量稳定一般是干扰引起,分体表着重考虑转换器到传感器电缆是否完好。一体表可把表拆下用独立电源供电看流量是否归零。 如果流量不稳定一般是管道震动引起。 涡街流量计显示压力错误? 检查接线是否错误,是否断线; 在室温下测量其阻值大约为5000欧姆;

LUGB涡街流量计说明书

LUGB系列涡街流量计 使用说明书

目录 一. 概述工作原理 - - - - - - - - - - - - - - - (3) 二. 技术参数 - - - - - - - - - - - - - - - - - - - (4) 三. 流量范围- - - - - - - - - - - - - - - - - - - (4) 四. 安装结构图- - - - - - - - - - - - - - - - - - (5) 五. 安装及接线 - - - - - - - - - - - - - - - - - - (6) 六. 流量计参数整定 - - - - - - - - - - - - - - - - (9) 七. 流量计信号检测、调整和校验方法 - - - - - - - - - (10) 八. 维护及故障排除 - - - - - - - - - - - - - - - - (10) 九. 订货须知 - - - - - - - - - - - - - - - - - - - (11) 十. 智能流量计操作说明 - - - - - - - - - - - - - - (12)

一概述 LUGB系列涡街流量计是一种采用压电晶体作为检测元件,输出与流量成正比的标准信号的流量仪表。该仪表可以直接与DDZ-Ⅲ型仪表系统配套,也可以与计算机及集散系统配套使用,对不同介质的流量参数进行测量。该仪表根据流体涡街的检测原理,其检测涡街的压电晶体不与介质接触,仪表具有结构简单、通用性好和稳定性高的特点. LUGB系列涡街流量计可用于各种气体、液体和蒸汽的流量检测及计量。 LUGB系列涡街流量计可以与本公司生产的智能流量积算仪配套使用,也可以和其它仪表厂商生产的智能仪表配套使用,具有通用性强的特点。 二工作原理 涡街流量计的基本原理是卡门涡街原理,?即“涡街旋涡分离频率与流速成正比”。 流量计流通本体直径与仪表的公称口径基本相同。如图一所示,?流通本体内插入有一个近似为等腰三角形的柱体,柱体的轴线与被测介质流动方向垂直,底面迎向流体。 当被测介质流过柱体时,在柱体两侧交替产生旋涡,旋涡不断产生和分离,?在柱体下游便形成了交错排列的两列旋涡,即“涡街”。理论分析和实验已证明,?旋涡分离的频率与柱侧介质流速成正比。 式中: f──柱体侧旋涡分离的频率(Hz); V──柱侧流速(m/s); d──柱体迎流面宽度(m); Sr ──斯特劳哈尔数。是一个取决于柱体断面形状而与流体性质和流速大小基本无关的常数。 图一圆管内的涡街 三产品特点 传感器测量探头采用特殊工艺封装,耐高温可达350℃ 敏感元件封状在探头体内,检测元件不接触测量介质,使用寿命长 传感器采用补偿设计,提高仪表抗震性 结构简单、无可动件,耐用性高 在规定雷诺数范围内,测量不受介质温度、压力、粘度影响 流量计可应用于防爆场合,安全性好

相关文档
最新文档