物理基本概念和基本规律

物理基本概念和基本规律
物理基本概念和基本规律

物理基本概念和基本规律 吕叔湘中学 庞留根

1. 物体的运动决定于它所受的合力和初始运动条件:

.

2. 伽利略斜面实验是牛顿第一定律的实验基础,把可靠的事实和深刻的理论思维结合起来

的理想实验是科研究的一种重要方法。

3.牛顿第二定律中的F 应该是物体受到的合外力。

应用牛顿第二定律时要注意同时、同向、同体.

4. 速度、加速度、动量、电场强度、磁感应强度等矢量必须注意方向,只有大小、方向都

相等的两个矢量才相等。所有物理量必须要有单位。

5. 同一直线上矢量的运算: 先规定一个正方向, 跟正方向相同的矢量为正,跟正方向

相反的矢量为负,求出的矢量为正值,则跟规定的方向相同,求出的矢量为负值,则跟规定的

方向相反

6. 力和运动的合成、分解都遵守平行四边形定则。三力平衡时,任意两力的合力跟第三力

等值反向。 三力的大小必满足以下关系:︱F 1-F 2︱≦ F 3 ≦ F 1+F 2

7. 小船渡河时

若V 船 > V 水 船头垂直河岸时,过河时间最小;航向(合速度)垂直河岸时,过河的位

移最小。 若 V 船 < V 水 船头垂直河岸时,过河时间最小;只有当V 船 ⊥ V 合 时,

过河的位移最小。

8. 平抛运动的研究方法——“先分后合”,

9. 功的公式 W=FScos α 只适用于恒力做功,变力做功一般用动能定理计算。

10. 机械能守恒定律适用于只有重力和弹簧的弹力做功的情况,应用于光滑斜面、自由

落体运动、上抛、下抛、平抛运动、光滑曲面、单摆、竖直平面的圆周运动、弹簧振子

等情况。

11. 功能关系--------功是能量转化的量度

⑴重力所做的功等于重力势能的减少

⑵电场力所做的功等于电势能的减少

⑶弹簧的弹力所做的功等于弹性势能的减少

⑷合外力所做的功等于动能的增加

⑸只有重力和弹簧的弹力做功,机械能守恒

静匀

匀速圆周运动 匀加速直线运动

2. 静止 匀速运动 匀加速直线运动 匀减速直线运动 匀变速曲线运动 4. F= - kx 简谐运动

3. F 大小不变且始终垂直V 力和运动的关

系 V=0 V ≠0

1. F=0 V=0 V ≠0 F 、V 同向 F 、V 反向 F 、V 夹角α F=恒量 5. F 是变力 F 与v 同向————————变加速运动 F 与v 反向————————变减速运动

⑹重力和弹簧的弹力做功以外的力所做的功等于机械能的增加

⑺克服一对滑动摩擦力所做的净功等于机械能的减少

⑻克服安培力所做的功等于感应电能的增加

12. 应应用动能定理和动量定理时要特别注意合外力。

应用动量定理、动能定理、动量守恒定律、机械能守恒定律解题时要注意研究对

象的受力分析,研究过程的选择;

应用动量守恒定律、机械能守恒定律还要注意适用条件的检验。

应用动量守恒定律、动量定理要特别注意方向。

13. 碰撞的分类:

14. 做匀速 圆周运动的物体所受到的合力大小一定等于mv 2 /r, 合力的方向一定沿半径

指向圆心。

做非匀速 圆周运动的物体沿半径方向的合力大小也等于mv 2 /r (v 为该点的速度)

15. 天体做匀速圆周运动的向心力就是它受到的万有引力。GmM/r 2 =ma =mv 2 / r =m ω2 r

GM 地 =gR 地 2

16.第一宇宙速度——在地面附近环绕地球做匀速圆周运动的最小发射速度(最大运行速度), v 1=7.9km/s

第二宇宙速度——脱离地球引力的束缚,成为绕太阳运动的人造行星, v 2≥11.2km/s

第三宇宙速度 ——脱离太阳引力的束缚,飞到太阳系以外的宇宙空间去

v 3≥16.7km/s

17. 简谐振动过程中,F= - kx, 回复力的大小跟位移成正比,方向相反。位移增大,加速

度增大,速度减小。位移最大,加速度最大,速度为0。位移为0,加速度为0,速度最

大.

18. 单摆振动的回复力是重力沿切线方向的分力,在平衡位置,振动加速度为0,但是还

有向心加速度。

19. 物体做受迫振动时的频率等于驱动力的频率,跟物体的固有频率无关。

20. 简谐运动中机械能守恒,在平衡位置动能最大,势能最小。1/2 mv 2+1/2 kx 2=1/2 KA 2

21. 共振——驱动力的频率等于做受迫振动物体的固有频率时,做受迫振动物体的振幅

最大。声音的共振叫共鸣。

22. 波从一种介质传播到另一种介质时,频率不变,波长和波速相应改变。v=λf.

声波在真空中不能传播,电磁波在真空中速度最大,等于光速c 。

声波是纵波,电磁波是横波。

23. 波传播的过程是振动形式和振动能量传播的过程,质点并不随波迁移,每一个质点

都在各自的平衡位置附近做振幅相同的简谐振动。波形图特别要注意周期性和方向性。

24. 波的叠加:两列沿同一直线传播的波,在相遇的区域里,任何一个质点的总位移,都等于

两列波分别引起的位移的矢量和;两列波相遇以后,仍像相遇以前一样,各自保持原有的波

形,继续向前传播.

25. 两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。

波峰与波峰(波谷与波谷)相遇处振动加强,△s= ± k λ k=0、1、2、3……

完全弹性碰撞 —— 动量守恒,动能不损失。(质量相同,交换速度) 完全非弹性碰撞—— 动量守恒,动能损失最大。(以共同速度运动) 非完全弹性碰撞—— 动量守恒,动能有损失。碰撞后的速度介于上面

两种碰撞的速度之间。

波峰与波谷相遇处振动减弱。△s= ±(2k+1)λ/2 k=0、1、2、3……

干涉和衍射是波的特征。

26.波能够发生明显衍射的条件:障碍物或孔的尺寸比波长小,或者跟波长差不多。

27.人耳能听到的声波频率在20hz——20000hz之间,低于20hz的声波叫次声波,高于

20000hz的声波叫超声波,超声波可以用于定向发射、超声波探伤、超声波清洗,医疗诊断等。

28.由于波源和观察者有相对运动,使观察者发现频率发生变化的现象叫多普勒效应。

波源和观察者相互接近,观察者接收到的频率增大;二者远离时,观察者接收到的频率减小。

29.牛顿运动定律只适用于低速运动的宏观物体,对微观粒子和接近光速运动的物体不

适用。

30.分子动理论的主要内容:物质是由大量分子组成,(r=10-10m,m=10-26kg)分子在

永不停歇地做无规则运动,分子间同时存在有相互作用的分子引力和分子斥力。

31.布朗运动既不是固体分子的运动,也不是液体分子的运动,只是液体分子无规则运

动的反映。温度越高,固体颗粒越小,布朗运动越激烈。温度是分子无规则运动平均动能的标志

32.分子间的作用力(引力和斥力)都随分子间的距离增大而减小,斥力减小得更快。

都随分子间的距离减小而增大,斥力增加得更快。

33.分子间的距离等于r0时,分子势能最小(为负值),距离增大,分子势能增大,距

离减小,分子势能也增大。

34.改变物体内能的方式有两种:做功和热传递。两种方式效果相同但本质不同。

35. 热力学第一定律:系统内能的变化等于外界对系统所做的功与从外界吸收的

热量之和。ΔE=W+Q

36. 热力学第二定律:热量总是从高温物体传到低温物体,但是不可能自动从低温物体传

递到高温物体,而不引起其它变化。(这是按照热传导的方向性来表述的。)不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化。机械能可以全部转化为内能,内能却不可能全部转化为机械能。(这是按照机械能与内能转化过程的方向性来表述的。)

第二类永动机是不可能制成的。

37. .绝对零度(-273.15°C)不可以达到,永动机不可能造出。

38.气体分子运动的特点——分子间的距离较大,分子间的相互作用力很微弱;分子间的碰撞十分频繁;分子沿各个方向运动的机会均等;分子的速率按一定规律分布(“中间多,两头少”)。

39.气体压强的微观意义——大量的气体分子频繁地碰撞容器器壁而产生的。单位体积内的分子数越大,气体的平均速率越大,气体的压强越大。

40.元电荷——电子(质子)所带的电量(e=1.60×10-19C)为所有电量中的最小值,叫做元

电荷。

41.第一个用电场线描述电场的科学家是——法拉第。电场线并不存在,是人为画出的。电

场线不闭合,磁感应线是闭合的曲线。沿电场线方向电势逐渐降低,电场线的密疏表示电场强度的大小。

42.用比值定义的物理量如电场强度E=F/q、电势差U=W/q、电容C=Q/U 、电阻R=U/I、

磁感应强度B=F m/IL等都跟等式右边的物理量无关。

43. 电容器跟电源连接时,U 不变,d 减小,C 增大,Q 增大,E 增大.

44. 电容器充电后跟电源断开,Q 不变, d 减小,C 增大,U 减小, E 不变.

45. 带电粒子在匀强电场中的运动—— 加速:qU=1/2mv 2 偏转:类平抛运动.

46. 应用部分电路欧姆定律I=U/R 时,I 、R 、U 三个量必须是同一段电路的,部分电路欧姆

定律I=U/R 不适用含有电源、电动机的电路。

47. 电功W=UIt 、电功率P=UI 适用于任何电路;电热Q=I 2Rt 、热功率P=I 2R 只适用于纯电

阻电路。对纯电阻电路有W=Q 、对非纯电阻电路有W >Q 。电动机的电功率等于机械功

率加上热功率。

48. 两电阻串联的分压关系 U 1=U R 1/(R 1+R 2) U 2= U R 2/(R 1+R 2)

49. 两电阻并联的分流关系

I 1=I R 2/ (R 1+R 2) I 2= I R 1/(R 1+R 2) R=R 1R 2/(R 1+R 2)

50. 电源的电动势等于外电路断开时的路端电压,路端电压随外电阻的增大而增大。

51. 电源的电动势等于U —I 图线跟纵轴的交点的值,内电阻等于U —I 图线的斜率。

52. 用伏安法测量电阻时,

安培表内接时,R 测=U/I=R x +R A 大电阻(R X >>R A )用内接法; 安培表外接时,R 测=U/I=R X R V /( R X +R V ) 小电阻 ( R X <

53. 电压表的改装——串联一个大电阻 (U- Ug ) / Ug = R 1 / Rg ∴ R 1 = Rg(U- Ug ) / Ug

= (n-1) Rg 54. 安培表的改装——并联一个小电阻 (I – I g ) R 2 = I g R g ∴ R 2 = R g I g / (I – I g )

= R g / (n-1)

55. 用欧姆表测电阻时,必须先选择量程,进行调零,测量时待测电阻要跟电源断开,读数

要乘以倍率,指针应在中央1/3刻度附近。若指针偏转太大,应换用较小量程,重新进

行调零,若指针偏转太小,应换用较大量程,重新调零后进行测量。测量结束,要拔出

表笔,并将选择开关置于OFF 或交流500V 档。欧姆表的黑表笔跟表内电池的正极相连。

56. 各种材料的电阻率都随温度而变化:金属的电阻率随温度的升高而增大,电阻温度计(铂)

就是根据这一特性制成,有些合金如锰铜和康铜的电阻率几乎不随温度而变化,常用来

制作标准电阻。半导体的电阻随温度的升高而减小,例如热敏电阻。

57. 超导现象:当温度降低到绝对零度附近时,电阻突然减小为零的现象。当超导体中有电

流通过时,由于不产生热量,电流可以维持很长时间不消失。

58. 二极管的单向导电作用——二极管正极的电势高于负极电势时,导通,电阻很小;

反之,二极管截止,电阻很大。

59. 右手定则应用在确定电流的磁场方向和电磁感应中感应电流的方向;左手定则应用在确

定磁场对通电导线的作用力方向和洛仑兹力的方向。

60. 带电粒子在匀强磁场中只受洛仑兹力作用时,做匀速圆周运动。圆周运动的半径跟动量

成正比,圆周运动的周期跟半径、速度无关。在复合场中的运动要根据受到的合力和初

始条件决定。带电粒子在速度选择器中做匀速直线运动的条件是:qvB=qE.. R 1 Ig U Ug U 1=U- Ug

Rg G R 2 Rg Ig I 2 I G

61. 电磁感应现象:不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就

有感应电流产生。产生感应电动势的那部分导体相当于电源。产生感应电动势的条件:

a.磁通量发生变化。

b..回路中的一部分导体做切割磁感应线运动。

c.. 线圈中的电流发

生变化(自感现象)

62. 判断感应电流的方向:a.楞次定律(“增反减同” )b.右手定则. .

感应电流的效果总是阻碍产生感应电流的原因。

63. 自感现象:由于导体本身的电流发生变化而产生的电磁感应现象叫自感现象。自感线圈

中的电流不能突变。

64. 日光灯——镇流器跟灯管串联,启动器跟灯管并联,电路图如右图。

镇流器的作用——启动时,产生高电压,帮助点燃; 正常工作时的感抗限制电流,保护灯管。

注意:灯管两端的电压与镇流器的电压之和不等于电源电压。 启动器的作用——自动开关。可用普通开关或短绝缘导线代替。

65. 线圈在匀强磁场中匀速转动时产生正弦交流电,从中性面开始计时,表达式为

e=NB ωSsin ωt.

66. 交流电的有效值是根据电流的热效应来规定的,正弦交流电的有效值等于最大值的

0.707。交流电表、电器铭牌上指示的值都是有效值。

67. 计算电路中的热量用有效值,计算电路中的电量用平均值。

计算某一时刻的值用瞬时值。

68. 变压器可以改变交流电的电压和电流,但不能改变交流电的功率,也不能改变直流

电的电压电流

69. 变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制,变压器的低压线圈匝

数少而通过的电流大,应当用较粗的导线绕制。

70. 减小输电线路上的功率(电压)损失的基本方法是用变压器提高输电电压:输电功率一

定的情况下,电压提高n 倍,输电电流减小到1/n ,输电线路上的电压损失减小到1/n ,

输电线路上的功率损失减小到1/n 2

71. 对于纯电阻电路,欧姆定律仍然适用,只是要用有效值。

电感对交流电的阻碍作用叫感抗, X L =2πf L, 交流电的频率越大、自感系数越大,

感抗越大。电感是“通直流,阻交流,通低频、阻高频”。

电容对交流电的阻碍作用叫容抗, X C =1 / 2πf C, 交流电的频率越大、电容越大,

容抗越小。电容是“通交流,阻直流,通高频、阻低频”。

72. LC 振荡电路的固有周期

73. 麦克斯威建立了电磁场理论,预言了电磁波的存在,

赫兹用实验证实了电磁波的存在。

74. 麦克斯韦电磁场理论的两大支柱:变化的磁场

产生电场,变化的电场产生磁场。

75. 电磁波的传播速度v 与频率f 、波长λ的关系是 v=λf

75. 电磁波由一种媒质进入另一种媒质时频率不变, 传播速度和波长会发生变化。

~ S LC

T π2=

77. LC 振荡电路发射的电磁波的波长。

78. 电磁波的发射——开放电路、调制 电磁波的接收——调谐、检波 79. 晶体二极管的导电特性是单向导电性。当二极管正极电势高于负极时,二极管导通,当二极管负极电势高于正极(反向电压)时,二极管截止。对理想二极管可认为:导通时二极管电阻为零,截止时二极管电阻无穷大。 80. 惠斯顿电桥平衡条件 R 1 R 4=R 2 R 3 81. 光的色散表明棱镜对不同色光的折射率不同, 红光的偏折角度最小,折射角最大,红光的折射率最小。 82. 光谱:

83. 光谱分析:每种原子都有自己的特征谱线,根据不同的特征谱线来确定物体的化学组成。

84. 平面镜的角放大作用:光源不动,平面镜转过α角,反射光线转过2 α角。

85. 全反射的条件:当光从光密介质入射到光疏介质,入射角等于或大于临界角C ,

sinC=1/n

86. 激光的特点和应用:

⑴ 激光是一种人工产生的相干光,容易产生干涉现象;

⑵ 激光的平行度非常好,可以用来进行精确的测距(激光雷达)

⑶ 激光的亮度高,可以利用激光束来切割各种物质,焊接金属以及在硬质材料上打孔.

医学上可以用激光作“光刀”来切开皮肤、切除肿瘤等。

87. 光(波)的干涉条件——两列频率相同、振动情况完全相同的光(波)。

干涉加强的条件:两列光波到该点的距离之差为半波长的偶数倍,

干涉减弱的条件:两列光波到该点的距离之差为半波长的奇数倍。

88. 相邻两条干涉条纹的间距ΔX=L λ/d L 为双缝到屏的距离,d 为双缝间距,λ为波长。

双缝干涉条纹的条纹间距跟光的波长成正比。红光的干涉条纹的间距比紫光的干涉条纹

的间距大。

89. 肥皂泡、水面上的油膜、玻璃上的油污、压紧的两块玻璃上呈现的彩色花纹都是光的干

涉现象。.

90. 干涉现象的应用:a.检测各种镜面的平整度(精度可达10-6 cm ,b.在照相机、摄象机等

镜面上镀一层增透膜,以增加透过的光线,增透膜的厚度等于光在薄膜中波长的1/4。

91. 光能够发生明显衍射的条件是,障碍物或孔的尺寸比波长小,或者跟波长差不多。

92. 光的干涉和衍射证明了光具有波动性,光的偏振说明光是横波。光的电磁说(光是一种

电磁波)进一步完善了波动说,光电效应证明了光具有粒子性。因此说光具有波粒二象

性。一切微观粒子都有波粒二象性。

红 紫 光谱 连续光谱: 炽热的固体、液体和高压气体发光产生的光谱,包含一切波长的光谱 明线光谱:低压气体发光产生的光谱,只含有一些原子的特征谱线

(原子光谱) 发射光谱 吸收光谱——高温物体发出的白光经某低温物质被部分吸收后形成 LC

c cT πλ2?==

93. 大量光子的行为表现为波动性,个别光子的行为表现为粒子性,波长越长,波动性越明

显,频率越高,粒子性越明显。

94. 物质波 一切运动着的物体,小到电子、质子,大到行星、太阳,都有一种波跟它对应,

这种波叫做物质波。(德布罗意波) 德布罗意公式—— λ= h/p=h/mv

95. 光电效应的实验规律:

⑴ 对每一种金属,都有某一极限频率。入射光频率必须大于极限频率才能产生光电效应 ⑵ 光电子的最大初动能只随入射光频率的增大而增大,跟入射光的强度无关

⑶ 单位时间内发射出的光电子数与入射光的强度成正比

⑷ 光电效应的产生是瞬时的。

96. 爱因斯坦光子说的内容:在空间传播的光不是连续的,而是一份一份的每一份叫做一个

光子,光子的能量跟它的频率成正比,即E=hv 。

97. 爱因斯坦光电效应方程—— E K = hv-W W 为金属的逸出功。W=h ν0

98. 电磁波的产生机理:无线电波是LC 振荡电路产生的;红外线、可见光、紫外线是原子

的外层电子受激发产生的;X 射线是原子的内层电子受激发产生的;γ射线是原子核受激发产生的。

99. 红外线最显著的作用是热作用,紫外线的主要作用是化学作用,X 射线的穿透本领很大,

γ射线的的穿透本领更大(几厘米的铅板)。

100. 红外线的应用:遥控遥感、加热物体等。紫外线的应用:杀菌、消毒、防伪(验钞)

等。X 射线的应用:透视、探伤等。γ射线的应用:探伤、医疗等。

101. 玻尔假设的主要内容:

⑴..原子的能量是不连续的(量子化的),虽然电子做加速运动,但并不向外辐射能量 ⑵. 原子的不同能量状态与电子沿不同的圆轨道绕核运动相对应,电子的可能轨道的分

布也是不连续的

⑶.电子从一个轨道跃迁到另一轨道时,辐射(或吸收)一定频率的光子. hv=E m –E n 102. α粒子散射实验的实验结果:绝大多数直线穿过, 只有少数发生很大偏转,极少数甚

至被弹回

103.卢瑟福根据α粒子散射实验提出了原子的核式结构模型学说。

104.天然放射性现象表明了原子核内部是有复杂的结构,并且是能够发生转变的。 105.核反应方程式两边的质量数和电荷数都是守恒的。

106.半衰期——放射性元素的原子核有半数发生衰变上所需的时间,叫做这种元素的半衰期。

放射性元素的半衰期跟原子所处的物理状态或化学状态无关,只由原子核内部因素有关。 107.原子核是由质子和中子组成。质子和中子通称为核子。质子数等于核电荷数,核子数等

于质量数。

108.原子核中核子之间存在巨大的核力,核力是短程力,只发生在相邻的两个核子之间。 109.放射性同位素的主要应用:利用它的射线; 做为示踪原子。 110. 放射线的性质:

带电量 质量数 符号 电离性 穿透性 实 质 来 源

α射线 +2e 4 (p ) 很强 很小 (一张普通纸) 高速的氦核流 v≈0.1c 两个中子和两个质子结合成团从原子核中放出

He 42

β射线 -e 0

弱 很强 (几毫米铝板) 高速的电子流v≈c 原子核中的中子转换成质子时从原子核中放出 γ射线 0 0 γ 很小 更强 (几厘米铅板)

波长极短的电磁波 原子核受激发产生的 111.利用质能方程求能量:在ΔE=Δmc 2中,若Δm 用千克做单位,则ΔE 用焦耳做单位,

若Δm 用原子质量u 做单位,直接乘以931.5后,ΔE 用Mev 做单位。

112.裂变—一个重核分裂成两个中等质量的核的反应。原子弹、目前的原子能发电站都是裂变的应用。

113.核反应堆是核电站的核心设施,核反应堆的组成——铀棒(核燃料)、控制棒(镉棒,控

制反应速度)、减速剂(石墨、重水,使中子的速度减慢,便于铀俘获)、冷却水(或液态钠,使反应释放的热量输出发电)、水泥防护层(避免反射线对人体伤害和对环境污染)。 114.聚变---轻核结合成质量较大的核叫聚变。(热核反应)氢弹及太阳内部都是发生的聚变。

115.基本粒子: 电子 0-1 e 、质子11 H (p) 、中子10 n 、α粒子 42

He 、 光子 00

γ 、正电子 0+1 e

116. 重要的物理现象或史实跟相应的科学家

单摆的等时性 伽利略

单摆的周期公式 惠更斯 电流的磁效应 奥斯特

电磁感应定律 法拉第 首先用电场线描述电场 法拉第

电子电量的测定 密立根 分子电流假说 安培

预言了电磁波的存在 麦克斯韦 建立了电磁场理论 麦克斯韦

用实验证实了电磁波的存在 赫兹 光的微粒说 牛顿

光的波动说 惠更斯 光的电磁说 麦克斯韦

光的干涉现象 杨氏 电子的发现 汤姆生

中子的发现 查德威克 质子的发现 卢瑟福

人工放射性同位素发现 小居里夫妇 α粒子散射实验 卢瑟福

圆满解释氢光谱 玻尔 原子的核式结构模型 卢瑟福

天然放射性的发现 贝克勒耳 光电效应规律光子说 爱因斯坦

质能方程 爱因斯坦 相对论 爱因斯坦

MeV n Kr Ba n U 6.200+1

09236141561023592+3+→+MeV n He H H 6.171

042213

1++→+e 0

1-

大学物理C基本概念和规律总结

热学基本概念和规律 物理常数考试会给,玻尔兹曼常数k =1.38×10-23 J/K 气体摩尔常数R =8.31 J/(mol?K ) 摄氏温标和热力学温标的换算273+=t T ,热学所有公式都必须使用热力学温标。 一、理想气体状态方程:(平衡态下) 二、压强、温度的统计意义: 三、能量均分定理: 四 五、等体摩尔热容 六、热力学第一定律 因为理想气体内能只随温度变化,所以任何过程理想气体的内能改变都可以使用 等体过程 等压过程 等温过程 + 系统吸热 系统放热 内能增加 内能减少 系统对外界做功 外界对系统做功 Q W E ?22 211 T V P T V P RT pV ==是摩尔数νν平均平动动能是分子数密度理想气体的压强---=k k n n p εε32是分子速率是单个分子的质量,v m kT v m k 23212==ε5 3 2 1==i i i kT 双原子分子常温下单原子分子为理想气体的自由度,的能量一个自由度均分到单个理想气体分子的每是摩尔数理想气体的内能ννRT i E 2=)(2212T T R i T R i E -=?=?νν理想气体内能的改变R i C V 2=R R i C p +=2 等压摩尔热容R C R C R C R C P V P V 27 25 25 23 ====理想气体双原子分子理想气体单原子分子E Q T C E W V ?=?=?=ν0)(12V V p W -=T C p ?=νW E Q +?=T C E V ?=?ν1 2ln 0 V V RT W Q E ν===?E W Q ?+ =T C E V ?=?ν

西安交通大学大学物理教学大纲(128)

“大学物理(A)”课程教学大纲 英文名称:University Physics 课程编号:PHYS1009 课程类型:必修 学时:128 学分:8 适用对象:理工科各专业学生 先修课程:高等数学高中物理 使用教材及参考书: 教材:大学物理(吴百诗主编)科学出版社 参考书:吴锡珑主编“大学物理教程”高教出版社 程守洙主编“普通物理学”高教出版社 张三慧主编“大学物理学”清华大学出版社 一、课程的性质、目的及任务 物理学是研究物质的基本结构﹑相互作用和物质最基础最普遍运动形式(机械运动,热运动,电磁运动,微观粒子运动等)及其相互转化规律的学科。 物理学的研究对象具有极大普遍性,它的基本理论渗透在自然科学的一切领域、应用于生产技术的各个部门,它是自然科学许多领域和工程技术发展的基础。 以物理学基础知识为内容的大学物理课程,它所包括的经典物理、近代物理和物理学在科学技术上应用的初步知识等都是一个高级工程技术人员必备的。因此,大学物理课是我校理工科各专业学生的一门重要必修基础课。 开设大学物理课程的目的,一方面在于为学生较系统地打好必要的物理基础;另一方面使学生初步学习科学的思想方法和研究问题的方法,这对开阔思路、激发探索和创新精神、增强适应能力、提高人才素质等,都会起到重要作用。学好物理课,不仅对学生在校的学习十分重要,而且对学生毕业后的工作和进一步学习新理论﹑新技术﹑不断更新知识等,都将发挥深远影响。 二、课程的基本要求 1.使学生对物理学所研究的各种物质运动形式以及它们之间的联系有比较全面和系统的认识;对大学物理课中的基本理论、基本知识能够正确地理解,并且有初步应用的能力。 2.通过教学环节,培养学生严肃的科学态度和求实的科学作风。根据本课程的特点,在传授知识的同时加强对学生进行能力培养,如通过对自然现象和演示实验的观察等途径,培养学生从复杂的现象中抽象出带有物理本质的内容和建立物理模型的能力、运用理想模型和适当的数学工具定性分析研究和定量计算问题的能力以及独立获取知识与进行知识更新的能力,联系工程实际应用的能力等。 3.在理论教学中,要根据学生情况精讲基本内容,有些内容可安排学生自学或讨论,并要安排适当课时的习题课;要充分利用演示实验、录像等形象化教学手段,应尽量发挥计算机多媒体在物理教学中的作用,以提高教学效果。在教学过程中,还要处理好与中学物理的衔接与过渡,一方面要充分利用学生已掌握的物理知识,另一方面要特别注意避免和中学物理不必要的重复。在与后继有关课程的关系上,考虑到本课程的性质,应着重全面系统地讲 授物理学的基本概念、基本规律和分析解决问题的基本方法,不宜过分强调结合专业。

大学物理复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: k z j y i x r ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 k t z j t y i t x t r )()()()(++= 3、 位移?: z y x ?+?+?=? r s z y x ?≠?≠?+?+?=222)()()( 无限小位移:dr ds k dz j dy i dx r d ≠=++=???? 4、 瞬时速度: dt r d v = dt ds = = 5、 瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角速度dt d θω= 角加速度 22 dt d dt d θωα== 法向加速度速度方向的变化)(2 n n e r v a = 切向加速度速度大小的变化)(t αr e dt dv a t ==

例题:1.质点运动学(一):2,4,5,8;2.质点运动学(二):1,2,3,5; 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 例题:3、牛顿定律 2,3,5,8,9 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 二、 内容提要 (一) 冲量 1、 冲量: )212 1 t t dt F I t t -?=? 2、 动量: m = 3、 质点的动量定理: 12 2 1 m m dt t t -=?? 4、 动量守恒定律 条件:系统所受合外力为零或合外力在某方向上的分量为零; ∑-==n i i i m 1 恒矢量

上海交通大学版大学物理学习题答案之4动量和角动量习题思考题

习题 4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。在质点旋转一周的过程中,试求: (1)质点所受合外力的冲量I ; (2)质点所受张力T 的冲量I T 。 解: (1)根据冲量定理:???==t t P P d dt 00 P P F 其中动量的变化:0v v m m - 在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零 (2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。 重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量=2πmg /ω,方向为竖直向上。 4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。求: (1)力F 在1s 到3s 间所做的功; (2)其他力在1s 到s 间所做的功。 解: (1)由做功的定义可知: J S v Fdt v Fvdt Fdx W x 6.1253 131x 21=?====???椭圆 (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。 4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求: (1)质点在任一时刻的动量; (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。

解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j (2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。 4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。今有一质量为m =20g 的子弹以0v =600m/s 的水平速度射穿物体。刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。求: (1)子弹刚穿出时绳中张力的大小; (2)子弹在穿透过程中所受的冲量。 解: (1)解:由碰撞过程动量守恒可得: 10Mv mv mv += 代入数据 123002.060002.0v +?=? 可得:s m v /7.51= 根据圆周运动的规律:T-G=2v M R 2184.6v T M g M N R =+= (2)根据冲量定理可得: s N mv mv I ?-=?-=-=4.1157002.00 4-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m/s kg 102.122??-,中微子的动量为236.410kg m/s -??,两动量方向彼此垂直。(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为 kg 108.526-?,求其反冲动能。 由碰撞时,动量守恒,分析示意图,可写成分量式: ααcos sin 21m m = ααsin cos 21m m P +=

初中物理基本概念.docx

初中物理基本概念 第一章机械能 1. 一个物体能够做功,这个物体就具有能(能量)。 2. 动能:物体由于运动而具有的能叫动能。 3. 运动物体的速度越大,质量越大,动能就越大。 4. 势能分为重力势能和弹性势能。 5. 重力势能:物体由于被举高而具有的能。 6. 物体质量越大,被举得越高,重力势能就越大。 7. 弹性势能:物体由于发牛弹性形变而具的能。 8. 物体的弹性形变越大,它的弹性势能就越大。 9. 机械能:动能和势能的统称。(机械能=动能+势能)单位是:焦耳 10. 动能和势能之间可以互相转化的。方式有:动能f 重力势能:动能一弹性 势能。 11. 自然界中可供人类大量利用的机械能有风能和水能。 第二章分子运动论初步知识 1. 分子运动论的内容是:(1)物质由分子组成;(2)—切物体的分子都永 丕停息地做无规则运动。(3)分子间存在相互作用的引力和斥力。 2. 扩散:不同物质相互接触,彼此进入对方现象。 3. 固体、液体压缩时分子间表现为斥力大于引力。固体很难拉长是分子间表 现为引力大于斥力。 4. 内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。

(内能也称热能) 5. 物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越 大。 6. 热运动:物体内部大量分子的无规则运动。 7. 改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能 是等效的。 8. 物体对外做功,物体的内能减小:外界对物体做功,物体的内能增大。 9. 物体吸收热量,当温度升高时,物体内能增大;物体放出热量,当温度降 低时,物体内能减小。 10. 所有能量的单位都是:焦耳。 11. 热量(Q):在热传递过程中,传递能量的多少叫热量。(物体含有多少 热量的说法是错误的) 12. 比热(C):单位质量的某种物质温度升高(或降低)1£,吸收(或放 出)的热量叫做这种物质的比热。(物理意义就类似这样回答) 13. 比热是物质的一种属性,它不随物质的体积、质量、形状、位置、温度 的改变而改变,只要物质相同,比热就相同。 14. 比热的单位是:焦耳/(千克?C),读作:焦耳每千克摄氏度。 15. 水的比热是:C=4.2X 103焦耳/(千克?C),它表示的物理意义是:每 千克的水当温度升高(或降低)1C时,吸收(或放出)的热量是4.2 × 103 焦耳。 16. 热量的计算: ①C吸=cm(t-t o)=cm?t 升(Q吸是吸收热量,单位是焦耳;C是物体比热,单

(完整版)大学物理上册复习提纲

《大学物理》上册复习纲要 第一章 质点运动学 一、基本要求: 1、 熟悉掌握描述质点运动的四个物理量——位置矢量、位移、速度和加速度。会处理两类问题:(1)已知运动方程求速度和加速度;(2)已知加速度和初始条件求速度和运动方程。 2、 掌握圆周运动的角速度、角加速度、切向加速度和法向加速度。 二、内容提要: 1、 位置矢量: z y x ++= 位置矢量大小: 2 22z y x ++= 2、 运动方程:位置随时间变化的函数关系 t z t y t x t )()()()(++= 3、 位移?: z y x ?+?+?=? 无限小位移:k dz j dy i dx r d ++= 4、 速度: dt dz dt dy dt dx ++= 5、 加速度:瞬时加速度: k dt z d j dt y d i dt x d k dt dv j dt dv i dt dv a z y x 222222++=++= 6、 圆周运动: 角位置θ 角位移θ? 角速度dt d θω= 角加速度22dt d dt d θ ωα== 在自然坐标系中:t n t n e dt dv e r v a a +=+=2 三、 解题思路与方法: 质点运动学的第一类问题:已知运动方程通过求导得质点的速度和加速度,包括它沿各坐标轴的分量;

质点运动学的第二类问题:首先根据已知加速度作为时间和坐标的函数关系和必要的初始条件,通过积分的方法求速度和运动方程,积分时应注意上下限的确定。 第二章 牛顿定律 一、 基本要求: 1、 理解牛顿定律的基本内容; 2、 熟练掌握应用牛顿定律分析问题的思路和解决问题的方法。能以微积分为工具,求解一维变力作用下的简单动力学问题。 二、 内容提要: 1、 牛顿第二定律: a m F = 指合外力 a 合外力产生的加速度 在直角坐标系中: x x ma F = y y ma F = z z ma F = 在曲线运动中应用自然坐标系: r v m ma F n n 2 == dt dv m ma F t t == 三、 力学中常见的几种力 1、 重力: mg 2、 弹性力: 弹簧中的弹性力kx F -= 弹性力与位移成反向 3、 摩擦力:摩擦力指相互作用的物体之间,接触面上有滑动或相对滑动趋势产生的一种阻碍相对滑动的力,其方向总是与相对滑动或相对滑动的趋势的方向相反。 滑动摩擦力大小: N f F F μ= 静摩擦力的最大值为:N m f F F 00μ= 0μ静摩擦系数大于滑动摩擦系数μ 第三章 动量守恒定律和能量守恒定律 一、 基本要求: 1、 理解动量、冲量概念,掌握动量定理和动量守恒定律,并能熟练应用。 2、 掌握功的概念,能计算变力作功,理解保守力作功的特点及势能的概念。 3、 掌握动能定理、功能原理和机械能守恒定律并能熟练应用。 4、 了解完全弹性碰撞和完全非弹性碰撞的特点。 二、 内容提要 (一) 冲量

上海交通大学版《大学物理学》习题答案

习 题1 1-1. 解:1) 由)sin (cos j i ωt ωt R +=r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωωω+-==i t R dt d R ωt ωR ωt ωR ωv =+-=2 122])c o s ()s i n [( 1-2. 解:1)由j i r )23(42 t t ++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 28d +==t dt j i j i v r 24)dt 28(dt 10 10 +=+==???t 3) j v 2(0)= j i v 28(1)+= 1-3. 解:1)j i r v 22d +==t dt i v a 2dt d == 2)21 22 12 )1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2 012 1at t v y + = (1) 2 022 1gt t v h y -+= (2) 21y y = (3) 解之 t = 图 1-4 1-5. 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2)

j i r )2 1-h ((t)20gt t v += (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3)j i r gt -d d 0v t = 而 落地所用时间 g h 2t = 所以j gh i v dt r d 20-= j v g t -=d d 2202y 2x )gt (v v v v -+= += 212220[()]g t dv dt v gt ==+ 1-6. 证明:设人从O 点开始行走,t 时刻人影中足的坐标为1x ,人影中头的坐标为2x ,由几何关系可得 2 1122h h x x x =- 而 t v x 01= 所以,人影中头的运动方程为 02 1121112v h h t h h h x h x -=-= 人影中头的速度 02 11 22v h h h dt dx v -== 图 1-6 1-7.解:t dt dx v 44-== 若0=v 解的 s t 1= m x x x 22)242(011=--+=-=? m x x x 8)242()32342(2133-=-+-?-?+=-=? m x x x 1021=?+?=? 1-8. 解: 建立直角坐标系,以小球第一次落地点为坐标原点如图 小球落地时速度为gh v 20= 0060cos v v x = 200 060cos 2 1 60cos t g t v x + = (1) 图 1-8 00060sin v v y = 200060sin 2 1 60sin t g t v y - = (2) 第二次落地时 0=y g v t 0 2=

清华大学大学物理习题库量子物理

清华大学大学物理习题库:量子物理 一、选择题 1.4185:已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金属片,其红限波长为??。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0λhc m eRB 2)(2+ (C) 0λhc m eRB + (D) 0λhc eRB 2+ [ ] 3.4383:用频率为??的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用 频率为2??的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ??- E K (C) h ??- E K (D) h ??+ E K [ ] 4.4737: 在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量?与反冲电子动能E K 之比??/ E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [ ] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 [ ] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [ ] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和 1.9 eV (D) 12.1 eV ,10.2 eV 和 3.4 eV [ ] 9.4241: 若?粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则?粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh [ ] 10.4770:如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 [ ]

交大大物第三章习题答案

习题 3-1. 如图,一质点在几个力作用下沿半径为R =20m 的圆周运动,其中有一 恒力F =0.6iN ,求质点从A 开始沿逆时针方向经3/4圆周到达B 的过程中,力F 所做的功。 解:j i 2020+-=-=?A B r r r 由做功的定义可知:J W 12)2020(6.0-=+-?=??=j i i r F 3-2. 质量为m=0.5kg 的质点,在x O y 坐标平面内运动,其运动方程为 x=5t 2,y=0.5(SI),从t =2s 到t =4s 这段时间内,外力对质点的功为多少? i j i j i 60)5.020()5.080(=+-+=-=?24r r r 22//10d dt d dt ===i a v r 105m m ==?=i i F a 由做功的定义可知:560300W J =??=?=i i F r 3-3.劲度系数为k 的轻巧弹簧竖直放置,下端悬一小球,球的质量为m ,开 始时弹簧为原长而小球恰好与地接触。今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。 根据小球是被缓慢提起的,刚脱离地面时所受的力为F=mg ,mg x k =? 可得此时弹簧的伸长量为:k mg x = ? 由做功的定义可知:k g m kx kxdx W k mg x 22122020===?? 3-4.如图,一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自 边缘上的A 点滑下,到达最低点B 时,它对容器的正压力数值为N ,求质点自A 滑到B 的过程中,摩擦力对其做的功。 分析:W f 直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。

初中物理新课程基本理念完整版

初中物理新课程基本理 念 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

初中物理新课程基本理念 一、基本理念: (一)面向全体学生,提高学生科学素养 以学生终身发展为本,以提高全体学生科学素养为目标,为每个学生的学习与发展提供平等机会,关注学生的个体差异,使每个学生学习科学的潜能得到发展。 (二)从生活走向物理,从物理走向社会 贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,让学生通过学习和探索掌握物理学的基础知识与基本技能,并能将其运用于实践,为以后的学习、生活和工作打下基础。 (三)注意学科渗透,关心科技发展 让学生了解自然界事物的相互联系,注意学科间的联系与渗透,关心科学技术的新进展,关注科技发展给社会进步带来的影响,逐步树立科学的世界观。(四)提倡教学方式多样化,注重科学探究 在教学中,根据教学目标、教学内容及教学对象灵活采用教学方式,提倡教学方式多样化。注重采用探究式的教学方法,让学生经历科学探究过程,学习科学研究方法,培养其创新精神和实践能力。鼓励在物理教学中合理运用信息技术。 (五)注重评价改革导向,促进学生发展 在新的评价观念指导下,构建多元化、发展性的评价体系,注重形成性评价与终结性评价结合,发展性评价与甄别性评价结合,以促进学生科学素养的提高、教师专业素质的发展和物理教学的改进。 二、课程设计思路 义务教育物理课程以提高学生科学素养为宗旨,从课程基础性、实践性、时代性等方面提出了课程基本理念,从“知识与技能”、“过程与方法”和“情感态度价值观”三方面提出了课程目标。 科学探究学习方式是提高学生科学素养的一种重要而有效的途径,在设置义务教育物理课程的内容时,将科学探究纳人“课程内容”。本标准中的“科学探究”包含提出问题、猜想与假设、设计实验与制订计划、进行实验与收集证据、分析与论证、评估、交流与合作等要索。本标准对这些要素分别提出了“科学探究能力的基本要求”。 根据物理学的内涵,本标准以“物质”、“运动和相互作用”、“能量”为“课程内容”中“科学内容”的一级主题,对全体初中学生应掌握的物理内容提出了要求。每个一级主题含有若干二级主题,每个二级主题又含有若干三级主题。这些三级主题综合融进了“知识与技能”、“过程与方法”和“情感态度价值观”三个方面的课程目标。 为进一步将义务教育物理课程的基本理念和课程目标渗透到课程内容中,在科学内容中增设了样例和活动建议,它们不是硬性要求的内容,而是为了帮助教师理解科学内容中三级主题的具体含义。本标准还提出了实施建议,以便教师进一步参考。

清华大学《大学物理》习题库试题及答案--08-电学习题答案

清华大学《大学物理》习题库试题及答案--08-电学习 题答案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

一、选择题 1.1003:下列几个说法中哪一个是正确的? (A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向 (B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同 (C) 场强可由定出,其中q 为试验电荷,q 可正、可负,为试验电荷所受的电场力 (D) 以上说法都不正确 [ ] 2.1405:设有一“无限大”均匀带正电荷的平面。取x 轴垂直带电平面, 坐标原点在带电平面上,则其周围空间各点的电场强度随距离平面的位置坐 标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负): [ ] 3.1551:关于电场强度定义式,下列说法中哪个是正确的? (A) 场强的大小与试探电荷q 0的大小成反比 (B) 对场中某点,试探电荷受力与q 0的比值不因q 0而变 (C) 试探电荷受力的方向就是场强的方向 (D) 若场中某点不放试探电荷q 0,则=0,从而=0 [ ] 4.1558:下面列出的真空中静电场的场强公式,其中哪个是正确的? [ ] q F E / =F E /q F E =E F F E F E ( x

(A)点电荷q 的电场:(r 为点电荷到场点的距离) (B)“无限长”均匀带电直线(电荷线密度)的电场:(为带电直线到场点的垂直于直线的矢量) (C)“无限大”均匀带电平面(电荷面密度)的电场: (D) 半径为R 的均匀带电球面(电荷面密度)外的电场:(为球心到场点的矢量) 5.1035:有一边长为 a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A) (B) (C) (D) [ ] 6.1056:点电荷 Q 被曲面S 所包围,从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变 (B) 曲面S 的电场强度通量变化,曲面上各点场强不变 (C) 曲面S 的电场强度通量变化,曲面上各点场强变化 (D) 曲面S 的电场强度通量不变,曲面上各点场强变化 [ ] 7.1255:图示为一具有球对称性分布的静电场的E ~r 关系曲线。请指出该静电场是由下列哪种带电体产生的 (A) 半径为R 的均匀带电球面 (B) 半径为R 的均匀带电球体 (C) 半径为R 的、电荷体密度为的非均匀带电球体 2 04r q E επ= λr r E 302ελπ= r σ02εσ = E σr r R E 3 02εσ=r 0 3εq 4επq 0 3επq 0 6εq Ar =ρ q 1035图 q

大学物理概念

1.元电荷——电子(质子)所带的电量(e=1.60×10-19C)为所有电量中的最小值,叫做元电荷。 2.库伦定律:处在静止状态的两个点电荷,在真空(空气)中的相互作用力,与两个点电荷的电量成正比,与两个点电荷间距离的平方成反比,作用的方向沿着两个点电荷的连线 (其中k为比例系数,)静电力 (其中为电容率,为人的单位矢量。 3.电场中某点的电场强度E的大小等于单位电荷在该点受力的大小,其方向为正电荷在该点受力的方向:,在已知静电场中各点电场强度的条件下电荷q的静电力。 4.点电荷系在某点P产生的电场强度等于各点电荷单独在该点产生的电场强度的矢量和,这称为电场的叠加原理。 5.电偶极子:两个大小相等的异号点电荷+q和-q,相距为 ,如果要计算电场强度的各场点相对这一对电荷的距离r要比大的多,这样一对点电荷称为电偶极子。,p为点偶极子电偶极距,的方向规定为由负电荷指向正电荷。 6.静电场中的电场线有两条重要的性质:(1)电场线总是起自正电荷,终止于负电荷(或从正电荷伸向无限远,或来自无限远到负电荷止);(2)电场线不会自成闭合线,任意两条电场线也不会相交。 7.电通量:在电场中穿过任意曲面S的电场线条数称为穿过该面的电通量,用表示。 8.高斯定理:真空中的任何静电场中,穿过任一闭合曲面的电通量,在数值上等于该闭合曲面内包围的电量的代数和乘以即(不连续分布的源电荷) (连续分布)。 9.高斯定理的重要意义:把电场与产生电场的源电荷联系起来了,它反映了静电场是有源电场这一基本的性质。凡是有正电荷的地方,必有电场线发出;凡是有负电荷的地方,必有电场线汇聚;正电荷是电场线的源头,负电荷是电场线的尾闾. 10.一个实验电荷静止在点电荷q产生的电场中,有点a经过某一路径L移动到b点,则静电力对的做功为:,静电力对实验电荷所做的功只取决于移动路径的起点和准点的位置,而与移动的路径无关。 11.静电场的环路定理:在静电场中电场强度沿任一闭合路径的线积分(称为电场强度的环流)恒为零。这一定理表明静电场的电场线不可能是闭合的。 12.电荷在电场中某点的电势能,在数值上等于把电荷从该点移动到电势能零参考点时,静电力所做的功

初中物理概念题大全(含答案)

初中物理概念八年级(上) 1.在国际单位制中,长度的单位是米。测量长度的工具是刻度尺。 游标卡尺和螺旋测微器是测量的工具。测量结果由数值和单位组成。 2.使用刻度尺前,首先要观察零刻度线、量程、分度值。 3.使用刻度尺时,要把刻度尺与被测物体平行,读数时视线要正对刻度线,读数时要读到分度值下一位。 4.在国际单位制中,时间的基本单位是秒,测量时间的工具是停表/秒表。5.测量值和真实值的差异叫误差。误差可以减小,但不能消除 .。 6.在物理学中把物体位置随时间的变化叫机械运动,判断一个物体是运动还是静止,取决于所选的参照物,这是运动和静止的相对性。比较物体运动快慢的方法有:相同时间比较路程、相同路程比较时间、比较速度的大小。 7.在物理学中,把路程与时间之比叫速度。 8.速度是表示物体运动快慢的物理量;它等于运动物体在单位时间内通过的路程。.在匀速直线运动中,速度公式为v=S/t ,在国际单位制中,速度单位是m/s 。1m/s= 3.6 km/h。 9.我们把物体沿着直线且速度不变的运动叫匀速运动。 10.测量平均速度的原理是v=S/t ;需要的测量工具是刻度尺和秒表。11.声音由物体振动产生,正在发声的物体叫声源;声音的传播需要介质;声能在气体、液体、固体传播,在不同介质声速不同,常温下空气中声速为340 m/s。 12.回声是声音的反射现象,声音的三要素是音调、响度、音色。13.发声体振动的快慢叫音调,音调与频率有关; 声音的强弱叫响度,响度与振幅 和距离有关。不同的物体发出声音的音色不同,我们能闻其声知其人是根据声音的音

色来辨别。 14.物理学中把每秒振动的次数叫频率,频率的单位Hz 。 15.人的听觉范围是20 Hz至20000 Hz。高于20000Hz的声叫超声波;低于20Hz 的声叫次声波。 16.从物理学的角度看,噪声来源于发声体做无规则振动。人们以分贝为单位来表示声音的强弱。减弱噪声可以从以下三条途径进行:一是防止噪声产生;二是阻断噪声传播;三是防止噪声进入耳朵。 17.声音可以传递信息和能量。 18.我们把物体的冷热程度叫温度,测量温度的工具是温度计。 19.温度计是根据液体热胀冷缩的规律做成的。温度计的℃表示采用的是摄氏温度,它把一个大气压下冰水混合物的温度规定为0℃,把沸水规定为100℃.。 20.温度计的使用:温度计的玻璃泡应该全部浸入被测液体中,不要碰到容器底或容器壁。读数时等示数稳定再读数。 21.物质从固态变成液态叫熔化,熔化要吸热;物质从液态变成固态叫凝固,凝固要放热。晶体熔化时的温度 .叫熔点。 22.固体分晶体和非晶体两种。晶体和非晶体的区别是:晶体有固定熔点,在熔化过程中温度不变;非晶体无固定熔点,在熔化过程中温度改变。 23.物质从液态变为气态叫汽化,汽化有沸腾和蒸发两种方式,汽化要吸热。24.蒸发是液体在任何温度都能发生、并且只在液体表面发生的汽化现象。沸腾是液体在确定温度、发生在液体内部和表面同时发生的剧烈的汽化现象。电冰箱是利用制冷剂在冰箱的冷藏室里汽化、吸热,在冷凝室里液化、放热的原理工作的。 25.物质从气态变为液态叫液化,液化有降低温度和压缩体积两种方式,液化要放

大学物理上下册常用公式

大学物理上下册常用公式 Prepared on 22 November 2020

大学物理第一学期公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置: θ 2. 速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a = 或2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2= (=r 2 ω) 4. 力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A= ∫PdV ) 7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用 力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容 量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?42 0πε(静电力) →r Qq 04πε

大学物理 上海交通大学 16章 课后习题答案

习题16 16-1.如图所示,金属圆环半径为R,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端 a、b间的电势差。 解:(1)由法拉第电磁感应定律 i d dt ε Φ =- ,考虑到圆环内的磁通量不变,所以,环中的感应电动势 i ε=; (2)利用: () a ab b v B dl ε=?? ? ,有: 22 ab Bv R Bv R ε=?= 。 【注:相同电动势的两个电源并联,并联后等效电源电动势不变】 16-2.如图所示,长直导线中通有电流A I0.5 =,在与其相距cm 5.0 = d 处放有一矩形线圈,共1000匝,设线圈长cm 0.4 = l,宽cm 0.2 = a。 不计线圈自感,若线圈以速度cm/s 0.3 = v沿垂直于长导线的方向向右运动,线圈中的感生电动势多大? 解法一:利用法拉第电磁感应定律解决。 首先用0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 则矩形线圈内的磁通量为: 00ln 22 x a x I I l x a l dr r x μμ ππ ++ Φ=?= ? , 由 i d N d t ε Φ =- ,有: 11 () 2 i N I l d x x a x dt μ ε π =--? + ∴当x d =时,有: 04 1.9210 2() i N I l a v V d a μ ε π - ==? +。 解法二:利用动生电动势公式解决。 由0 l B dl I μ ?=∑ ? 求出电场分布,易得:02 I B r μ π = , 考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11 NB l v ε= , 远端部分:22 NB lv ε= , 则:12 εεε =-= 004 11 () 1.9210 22() N I N I al v l v V d d a d d a μμ ππ- -==? ++。 16-3.如图所示,长直导线中通有电流强度为I的电流,长为l的金属棒ab与长直导线共面且垂直于导线放置,其a端离导线为d,并以速度v 平行于长直导线作匀速运动,求金属棒中的感应电动势ε并比较U a、U b的电势大小。 解法一:利用动生电动势公式解决: () d v B dl ε=?? 2 I v d r r μ π =? ,

初中物理概念汇总资料

初中物理概念汇总 物理量名称物理量符号单位名称单位符号公式 质量m 千克kg m=ρv 温度t 摄氏度°C 速度v 米/秒m/s v=s/t 密度p 千克/米3 kg/m3 p=m/v 力(重力)F 牛顿(牛)N G=mg 压强P 帕斯卡(帕)Pa P=F/S 功W 焦耳(焦)J W=Fs 功率P 瓦特(瓦)w P=W/t 电流I 安培(安) A I=U/R 电压U 伏特(伏)V U=IR 电阻R 欧姆(欧)Ω R=U/I 电功W 焦耳(焦)J W=UI t 电功率P 瓦特(瓦)w P=W/t=UI 热量Q 焦耳(焦)J Q=cm△t 比热c 焦每千克摄氏度J/(kg?°C) c=Q/m△t 常用数据: 真空中光速3×10^8米/秒 g 9.8牛顿/千克 15°C空气中声速340米/秒 安全电压不高于36伏 ------------------------------------------- 初中物理基本概念 一、测量 ⒈长度L:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;光年是长度单位。 ⒉时间t:主单位:秒;测量工具:钟表;实验室中用停表。1时=3600秒,1秒=1000毫秒。 ⒊质量m:物体中所含物质的多少叫质量。主单位:千克;测量工具:秤;实验室用托盘天平。 二、机械运动 ⒈机械运动:物体位置发生变化的运动。

参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。 ⒉匀速直线运动: ①比较运动快慢的两种方法:a 比较在相等时间里通过的路程。 b 比较通过相等路程所需的时间。 ②公式:v=s/t ③单位换算:1米/秒=3.6千米/时。 三、力 ⒈力F:力是物体对物体的作用。物体间力的作用总是相互的。 力的单位:牛顿(N)。测量力的仪器:测力器;实验室使用弹簧秤。 力的作用效果:使物体发生形变或使物体的运动状态发生改变。 物体运动状态改变是指物体的速度大小或运动方向改变。 ⒉力的三要素:力的大小、方向、作用点叫做力的三要素。 力的图示,要作标度;力的示意图,不作标度。 ⒊重力G:由于地球吸引而使物体受到的力。方向:竖直向下。 重力和质量关系:G=mg m=G/g g=9.8N/kg。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。 ⒋二力平衡条件:作用在同一物体;两力大小相等;方向相反。 物体在二力平衡下,可以静止,也可以作匀速直线运动。 物体的平衡状态是指物体处于静止或匀速直线运动状态。处于平衡状态的物体所受外力的合力为零。 ⒌同一直线二力合成:方向相同:合力F=F1+F2;合力方向与F1、F2方向相同;方向相反:合力F=F1-F2;合力方向与大的力方向相同。 ⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。 滑动摩擦力与正压力,接触面材料性质和粗糙程度有关。【滑动摩擦、滚动摩擦、静摩擦】 7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。 惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。 四、密度 ⒈密度ρ:某种物质单位体积的质量,密度是物质的一种特性。 公式:m=ρV 国际单位:千克/米3,常用单位:克/厘米3, 单位换算:1克/厘米3=1×103千克/米3;ρ水=1×103千克/米3; 读法:103千克每立方米,表示1立方米水的质量为103千克。 ⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。 面积单位换算:

大学物理课程教学基本要求

大学物理课程教学基本 要求 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

非物理类理工学科大学物理课程教学基本要求(正式报告稿)物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它 的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他 自然科学和工程技术的基础。 在人类追求真理、探索未知世界的过程中,物理学展现了一系列科学的世 界观和方法论,深刻影响着人类对物质世界的基本认识、人类的思维方式和社 会生活,是人类文明发展的基石,在人才的科学素质培养中具有重要的地位。 一、课程的地位、作用和任务 以物理学基础为内容的大学物理课程,是高等学校理工科各专业学生一门 重要的通识性必修基础课。该课程所教授的基本概念、基本理论和基本方法是 构成学生科学素养的重要组成部分,是一个科学工作者和工程技术人员所必备 的。 大学物理课程在为学生系统地打好必要的物理基础,培养学生树立科学的 世界观,增强学生分析问题和解决问题的能力,培养学生的探索精神和创新意 识等方面,具有其他课程不能替代的重要作用。 通过大学物理课程的教学,应使学生对物理学的基本概念、基本理论和基 本方法有比较系统的认识和正确的理解,为进一步学习打下坚实的基础。在大 学物理课程的各个教学环节中,都应在传授知识的同时,注重学生分析问题和 解决问题能力的培养,注重学生探索精神和创新意识的培养,努力实现学生知 识、能力、素质的协调发展。 二、教学内容基本要求(详见附表)

大学物理课程的教学内容分为A、B两类。其中:A为核心内容,共74条,建议学时数不少于126学时,各校可在此基础上根据实际教学情况对A类内容各部分的学时分配进行调整;B为扩展内容,共51条。 1.力学 (A:7条,建议学时数14学时;B:5条) 2.振动和波 (A:9条,建议学时数14学时;B:4条) 3.热学 (A:10条,建议学时数14学时;B:4条) 4.电磁学 (A:20条,建议学时数40学时;B:8条) 5.光学 (A:14条,建议学时数18学时;B:9条) 6.狭义相对论力学基础 (A:4条,建议学时数6学时;B:3条) 7.量子物理基础 (A:10条,建议学时数20学时;B:4条) 8.分子与固体 (B:5条) 9.核物理与粒子物理 (B:6条)

相关文档
最新文档