结构有限元

结构有限元
结构有限元

ANSYS结构有限元分析流程

有限元法的基本思想是将连续的结构离散成有限个单元,并在每一个单元中设定有限个节点,将连续体看做是只在节点处相连接的一组单元的集合体;同时选定场函数的节点值作为基本未知量,并在每一个单元中假设一个近似插值函数表示单元中场函数的分布规律;然后利用力学中的变分原理建立求解节点未知量的有限元方程,这样就将一个连续域中的无限自由度的问题转化为离散域的自由度问题。求解后可以利用已知的节点值和插值函数确定单元以及整个集合体上场函数。 ANSYS结构有限元分析流程 1.前处理 前处理的目的是建立一个符合实际情况的结构有限元模型。在Preprocessor 处理器中进行。包括:分析环境设置(指定分析工作名称、分析标题)、定义单元类型、定义实常数、定义材料属性(如线弹性材料的弹性模量、泊松比、密度)、建立几何模型(一般用自底向上建模:先定义关键点,由这些点连成线,由线组成面,再由线形成体)、对几何模型进行网格划分(分为三个步骤:赋予单元属性、指定网格划分密度、网格划分) 2.施加载荷、设置求解选项并求解 这些工作通过SOLUTION 处理器实现。 指定分析类型(静力分析、模态分析、谐响应分析、瞬态动力分析、谱分析等)、设置分析选项(不同分析类型设置不同选项,有非线性选项设置、线性设置和求解器设置)、设置载荷步选项(包括时间、

子步数、载荷步、平衡迭代次数和输出控制)、加载(ANSYS结构分析的载荷包括位移约束、集中力、面载荷、体载荷、惯性力、耦合场载荷,将其施加于几何模型的关键点、线、面、体上)然后求解。3.后处理 当完成计算以后,通过后处理模块查看结果。ANSYS软件的后处理模块包括通用后处理模块(POST1)和时间历程后处理模块(POST26)。可以轻松获得求解计算结果,包括位移、温度、应变、热流等,还可以对结果进行数学运算,然后以图形或者数据列表的形式输出。结构的变形图、内力图(轴力图、弯矩图、剪力图),各节点的位移、应力、应变,还有位移应力应变云图都可以得出,为我们分析问题提供重要依据。 ANSYS软件提供了100种以上的单元类型,用来模拟工程中的各种材料和结构,各种不同单元组合在一起,成为具体物理问题的抽象模型。如在隧道工程中衬砌用beam3梁单元模拟,弹簧单元COMBIN14模拟围岩与结构的相互作用。边坡工程中边坡土体用平面单元来模拟。水利工程中对大坝进行三维模拟分析时用实体单元,二维分析时用平面单元;水库闸门用壳单元模拟。桥梁结构模拟分析中,用梁单元模拟不同截面的钢梁、混凝土梁,壳单元模拟桥面板箱梁等薄壁结构,杆单元可以模拟预应力钢筋和桁架。房屋建筑结构中,梁单元模拟框架柱,壳单元模拟屋面板,实体单元模拟大体积混凝土,杆单元模拟预应力钢筋等。 一般都要对结构进行静力分析,结果必须满足设计要求。当动荷

有限元单元介绍

第二章单元 在显式动态分析中可以使用下列单元: ·LINK160杆 ·BEAM161梁 ·PLANE162平面 ·SHELL163壳 ·SOLID164实体 ·COMBI165弹簧阻尼 ·MASS166质量 ·LINK167仅拉伸杆 本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。 除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。因此,实体单元和壳体单元的缺省算法采用单点积分。当然,这两种单元也可以采用全积分算法。详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。 这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。 值得注意的是,显单元不直接和材料性能相联系。例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。 2.1实体单元和壳单元 2.1.1 SOLID164 SOLID164单元是一种8节点实体单元。缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。单点积分的优点是省时,并且适用于大变形的情况下。当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于

板结构有限元分析实例详解

板结构有限元分析实例详解1:带孔平板结构静力分析本节介绍带孔平板结构静力分析问题,同时介绍布尔操作的基本用法。 8.3.1 问题描述与分析 有孔的矩形平板,左侧边缘固定,长400mm,宽200 mm,厚度为10 mm,圆孔在板的正中心,半径为40 mm,左侧全约束,右侧边缘均布应力1MPa,如图8.7所示。求板的变形、位移及应力变化情况。(材料的材料属性为:弹性模量为300000 MPa,剪切模量为0.31。) 图8.7 带孔的矩形平板 由于小孔处边缘不规则,本文采用PLANE82高阶平面单元进行分析。 8.3.2 求解过程 8.3.2.1 定义工作目录及文件名 启动ANSYS Mechanical APDL Product Launcher窗口,如图8.8所示。在License下 拉选框中选择ANSYS Multiphysics产品,在Working Directory输入栏中输入工作目 录:C:\ANSYS12.0 Structural Finite Elements Analysis and Practice\Chapter 8\8-1,在Job Name一栏中输入工作文件名:Chapter8-1。以上参数设置完毕后,单 击Run按钮运行ANSYS。

图8.8 ANSYS设置窗口菜单 可以先在目标文件位置建立工作目录,然后单击Browse按钮选择工作目录;也 可以通过单击Browse按钮选择工作文件名。 8.3.2.2 定义单元类型和材料属性 选择Main Menu>Preferences命令,出现Preferences for GUI Filtering对话框, 如图8.9所示,在Individual discipline(s) to show in the GUI中勾选Structural,过滤掉ANSYS GUI菜单中与结构分析无关的选项,单击OK按钮关闭该对话框。 图8.9 Preferences for GUI Filtering对话框

结构分析及有限元分析基础知识

第一章结构分析及有限元分析基础知识 注:摘自《NX知识工程应用技术——CAD/CAE篇》 洪如瑾编译 清华大学出版社 [目标] 本章将简述结构分析及有限元分析的基础知识,为学习与应用结构分析做好准备,包括: ※ 结构与结构分析定义 ※ 结构的线性静态分析 ※ 材料行为与故障 ※ 有限元分析的基本概念 ※ 有限元模型 1.1结构分析基础知识 1.1.1结构基本概念 1.结构定义 结构可以定义为一个正承受作用的载荷处于平衡中的系统。平衡条件意味着结构是不移动的。一个自由的支架不是一个结构,它未被连接到任一物体上并无载荷作用与它。仅当它附着到外部世界,并且有作用力、压力或力矩时,支架成为一个结构。 例如横跨江面的大桥就是一个普通的结构,一个支架通过它的支撑连接到地面上,桥的重量是在结构上的一种载荷(力)。当汽车通过桥时,附加的力作用于桥的不同位置。 一个好的结构必须满足以下标准: (1) 当预期的载荷作用时,结构必须不出现故障。这个似乎是显而易见的,并意味着结构必须是“强度足够的”。故障意味着结构破裂、分离、弯曲,以及支撑作用载荷失败。 注意:考虑到意外的载荷,通常在设计中提供安全余量。余量常常利用安全因素来描述。例如,如果在结构上期待载荷是10 000磅,规定安全因素是2.0,则结构将设计成能经受住20 000磅载荷。 (2) 当载荷作用时,结构必须不产生过分变形。这意味着结构必须“刚度足够”。 变形可接受的极限(弯曲度、挠度、拉伸等)取决于特定情况。例如,在通常住宅中的地板由足够的吊带支撑,以防止当人在地板岸上行走时有“柔软”的感觉。 (3) 在它的服务生命周期,结构的行为应不会恶化。这意味着结构必须“足够耐用”,必须考虑环境影响和“磨损与破裂”。如果一座桥假定维持50年,则桥的设计必须提供整个50年寿命的结构完整性与充分的安全余量。2.结构分析 结构分析是用于决定一个结构是否将正确完成任务的工程分析过程。结构将在某些方式中进行模拟和求解描述它的行为的数学方程。分析可以人工方法或用计算机方法来完成。 结构分析的结果(答案)用于评估性能,摘要如下: (1)“强度足够吗?”:应力必须是在一可接受的范围内。 (2)“刚度足够吗?”:位移必须是在一可接受的范围内。 (3)“耐用度足够?”:对一个长的疲劳周期应力必须足够低。

平面三角形单元有限元程序的设计说明

. . P 9 m 9 m 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m,E=200GPa,=0.25,t=0.1m,忽略自重。试计算薄板的位移及应力分布。 要求: 1.编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2.采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3.提交程序编写过程的详细报告及计算机程序; 4.所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P 节点编号 单元编号

对称结构有限元分析

对称结构有限元分析 ----3节点三角形单元的分析 一问题分析(对称框架线弹性实体的静力平衡问题) 图是一个方形弹性实体,单位边长、单位厚度、承受等效竖向压力2 1m,其中边界条 KN 件暗示着存在两组相对称的平面,因此现考虑的仅是问题的。每个节点上的自由度号码代表了各自在x和y方向上可能的位移。 结构和单元信息NELS NCE NN NIP 8 2 9 1 AA BB E V

.5 .55 1.E6 .3 约束节点自由度信息NR 5 K , NF(:,K), I=1,NR 10 1 4 0 1 7 0 0 8 1 9 1 0 载荷信息LOADED_NODES 3 (K, LOADS(NF(:,K)), I=1 , LOADED_NODES) 1 .0 -.25 2 .0 -.5 3 .0 -.25 333 3节点三角形单元网络的总体节点和单元编号 3节三角形单元局部坐标系中节点和自由度编号

二理论基础(有限元方法原理) 通过弹性力学变分原理建立弹性力学问题有限元方法表达格式的基本步骤。最小位能原理的未知场变量是位移,以结点位移为基本未知量,并以最小位能原理为基础建立的有限元为位移元。它是有限元方法中应用最为普遍的单元,也是本书主要讨论的单元。 对于一个力学或无力问题,在建立其数学模型以后,用有限元方法对它进行分析的首要步骤是选择单元形式。平面问题3结点三角形单元是有限元方法最早采用,而且至今仍经常采用的单元形式。我们将以它作为典型,讨论如何应用广义坐标建立单元位移模式与位移插值函数,以及如何根据最小位能原理建立有限元求解方程的原理、方法与步骤,并进而引出弹性力学问题有限元方法的一般表达格式。对于前一问题,着重讨论选择广义坐标和有限元位移模式的一般原则和建立其位移插值函数的一般步骤。对于后一问题,着重讨论单元刚度矩阵和单元载荷向量的形式,总体刚度矩阵和总体载荷向量集成的原理和方法,以及它们各自的特性。 作为一种数值方法,有限元解的收敛性无疑是十分重要的问题,以后将讨论解的收敛准则及其物理意义,所阐明的原则在以后还将得到进一步的应用和具体化。 在建立了有限元的一般表达格式以后,原则上可以将它推广到平面问题以外的其他弹性力学问题和采用任何形式的单元。轴对称问题具有很广泛的应用领域,轴对称问题3结点三角形 单元的表达格式可以看作是平面问题此种单元表达格式的直接推广。 一)弹性力学平面问题的有限元格式 结点三角形单元是有限元方法中最早提出,并且至今仍广泛应用的单元,由于三角形单元对复杂边界有较强的适应能力,因此很容易将一个二维离散成有限个三角形单元,如图1所示。在边界上以若干段直线近似原来的曲线边界,随着单元增多,这种拟合将趋于精确。我们在讨论如何应用有限元方法分析各类具体问题的开始,将以平面问题3结点三角形单元 为例来阐明弹性力学问题有限元分析的表达格式和一般步 1.1)单元位移模式及插值函数的构造 典型的3节点三角形单元节点编码i,j,m ,以逆时针方向编码为正向。每个节点有位移分量如图所示。 ?? ? ???=i i v u i a (i,j,m) 每个单元有6个节点位移即6个节点自由度,亦即 [ ] T m m j j i i m j i e v u v u v u a a a =??? ? ??????=a 1.2) 单元的位移模式和广义坐标 在有限元方法中单元的位移模式或称位移函数一般采用多项式作为近似函数,因为 多项式运算简便,并且随着项数的增多,可以逼近任何一段光滑的函数曲线。多项式的选取由低次到高次。

有限元d 分析与介绍

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

钢结构的有限元分析报告

2 受料仓与给料机的钢结构有限元分析 2.1建立有限元模型 如图2.1破碎站主视图和图2.2破碎机布置图,它的工作过程是:卸料卡车间歇把最大入料粒度为1500mm的煤块倒入受料仓,受料仓存储大粒度煤块。刮板给料机把受料仓的大粒度的煤块连续的刮给破碎平台的破碎机。破碎机把最大入料粒度为1500mm的煤块破碎成最大排料粒度为300mm的煤块,煤块由底部的传送带传出。 图2.1 破碎站主视图

图2.2 破碎机布置图 破碎站钢结构的弹性模量E=200000MPa,泊松比,质量密度 ×10-3kg/cm3。破碎站由支撑件型钢和斜支撑角钢组成。在结构离散化时,由于角钢和其它部位铰接,铰接是具有相同的线位移,而其角位移不同。承受轴向力,不承受在其它方向的弯矩,相当于二力杆,所以型钢用梁单元模拟,角钢用杆单元模拟。破碎站是由受料仓与给料机和破碎平台与控制室两部分组成,故计算时是分别对这两部分进行的。离散后,受料仓和给料机共个单元,其中梁单元个,杆单元个,节点总数为个,有限元模型如图和图所示。

图2.3 受料仓与给料机有限元模型 图2.4 受料仓与给料机有限元模型俯视图 2.2载荷等效计算 2.2.1主要结构截面几何参数 破碎站主要结构采用H型钢梁,截面尺寸如图2.5所示,各截面横截面积A,截面惯性矩I y,I z和极惯性矩I如下。

图2.5 截面尺寸 料仓及给料机支撑结构 料仓及给料机六根支撑立柱(H500×400×12×20) A= 215.2mm2,I y=101947×104mm4,I z=21340×104mm4,I=240×104mm4料仓B-B面横梁和给料机E-E、F-F面横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4料仓C-C面和D-D面横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4给料机两根纵梁(H550×400×12×20) A=22120mm2,I y=125678×104mm4,I z=21341×104mm4,I=243×104mm4给料机六根横梁(H400×400×12×20) A=20320mm2,I y=62479×104mm4,I z=21339×104mm4,I=234×104mm4其它横梁(H400×300×12×20) A=16320mm2,I y=48026×104mm4,I z=9005×104mm4,I=181×104mm4 斜支撑的横截面积 ∠125×12:A=2856mm2 ∠75×6:A=864mm2 2.2.1实际载荷情况

机械结构有限元分析

机械结构有限元分析 有限元分析软件ANSYS在机械设计中的应用 摘要:在机械设计中运用ANSYS软件进行有限元分析是今后机械设计发展的必然趋势,将有限元方法引入到机械设计课程教学中,让学生参与如何用有限元法来求解一些典型零件的应力,并将有限元结果与教材上的理论结果进行对照。这种新的教学方法可以大大提高学生的学习兴趣,增强学生对专业知识的理解和掌握,同时还可以培养学生的动手能力。在机械设计课程教学中具有很强的实用价值。 关键词:机械设计有限元 Ansys 前言:机械设计课程是一门专业基础课,其中很多教学内容都涉及到如何求取零件的应力问题,比如齿轮、v带、螺栓等零件。在传统的教学过程中,都是根据零件的具体受力情况按材料力学中相应的计算公式来求解。比如,在求解齿轮的接触应力时,是把齿轮啮合转化为两圆柱体的接触,再用公式求解。这些公式本身就比较复杂,还要引入各种修正参数,因此我们在学习这些内容时普遍反映公式难记,学习起来枯燥乏味,而且很吃力。 近年来有限元法在结构分析中应用越来越广泛,因此如果能将这种方法运用到机械设计课程中,求解一些典型零件的应力应变,并将分析结果和教材上的理论结果进行对比,那么无论是对于提高学生学习的热情和积极性,增强对重点、难点知识的理解程度,还是加强学生的计算机水平都是一件非常有益的事情。 由于直齿圆柱齿轮的接触强度计算是机械设计课程中的一个重要内容,齿轮强度的计算也是课程中工作量最繁琐的部分。下面就以渐开线直齿圆柱齿轮的齿根弯曲疲劳强度的计算为例,探讨在机械设计课程中用ANSYS软件进行计算机辅助教学的步骤和方法,简述如何将有限元方法应用到这门课程的教学中。 1.传统的直齿圆柱齿轮齿根弯曲疲劳强度的计算 传统方法把轮齿看作宽度为b的矩形截面的悬臂梁。因此齿根处为危险剖面,它可用30。切线法确定。如图l所示。 作与轮齿对称中心线成30。角并与齿根过渡曲线相切的切线,通过两切点作平行与齿轮轴线 的剖面,即齿根危险剖面。理论上载荷应由同时啮合的多对齿分担,但为简化计算,通常假设全部载荷作用于齿顶来进行分析,另用重合度系数E对齿根弯曲应力予以修正。 由材料力学弯曲应力计算方法求得齿根最大弯曲应力为:

结构有限元及其应用软件

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述(中英文): 本课程是一门重要的结构计算分析课程,通过多媒体教学和上机练习,系统学习结构有限元FEM的基本原理和方法,熟悉掌握通用有限元应用软件ANSYS进行结构静力和动力分析的方法和步骤,并初步掌握使用ANSYS进行海工典型结构强度计算的方法。 Structural finite element method and its application software is an important course of structural calculation and analysis. Through multimedia teaching and computer practice, the basic principles and methods of Finite Element Method (FEM) are learned systematically. The general finite element application software ANSYS for the methods and procedures of structural static and dynamic analysis are mastered.At the same time, the strength calculation method of typical ocean engineering structures using ANSYS is preliminarily mastered. 2.设计思路: 有限元方法是一种现代设计方法,应用于结构设计中,是一种具有重要经济意义和巨大潜力的先进结构设计技术。因此选择该课程作为结构设计方面的一门必修课程,主要介绍结构有限元的基本原理和方法,还选择了通用的有限元软件ANSYS进行示例分析。包括要求掌握有限元法的基本思想和基本原理、平面刚架结构的有限元法、弹

有限元分析

摘要:本文中要利用有限元分析进行结构优化设计的零件是联轴部件中的连接杆。连杆始终与轴中间不规则截面部分保持接触,连接杆和轴之间是过盈配合,使得连接杆上承受外力,从而连接杆发生形变、进行结构应力分析。Abstract:In this paper to use finite element analysis for structure optimization design of the parts are coupling parts of the connecting rod. Connecting rod always and shaft intermediate irregular section keep contact, connecting rod and shaft are interference fit, making the connecting rod under forces, thus connecting rod occur deformation and structure stress analysis. 关键字:连接杆、有限元分析、结构应力分析 Keywords:connecting rod,finite element analysis,the structural stress analysis 前言连接杆为联接轴部件中传递外力的主要零件,材料为钢,这是本文利用有限元分析进行连接杆的结构优化设计的重要部分,准确地说,能否肯定新的结构,有限元分析在零件的优化设计中起到了至关重要的作用。 有限元法的基本概念 有限元法(Finite Element Method,简称FEM)是一种数值离散化方法,根据变分原理求其数值解。因此适合于求解结构形状及边界条件比较复杂、材料特性不均匀等力学问题能够解决几乎所有工程领域中各种边值问题。 有限元法的基本思想是:在对整体结构进行结构分析和受力分析的基础上,对结构加以简化,利用离散化方法把简化后的边界结构看成是由许多有限大小、彼此只在有限个节点处相连接的有限单元的组合体。然后,从单元分析人手,先建立每个单元的刚度方程,再用计算机对平衡方程组求解,便可得到问题的数值近似解。用有限元法进行结构分析步骤是:结构和受力分析一离散化处理一单元分析一整体分析一引人边界条件求解。 有限元分析的前置处理 建立有限分析模型的过程,即前置处理是有限元分析的关键环节。前置处理的功能主要包括:离散化网格模型的自动生成、网格的修改、拼接和节点编号的优化、载荷及材料数据的建立、边界条件的定义(零位移、已知位移、接触、磨擦等约束条件的处理)、模型数据检查与编辑修改、模型的图形显示等。在对机械结构

有限元基本概念理解

有限元基本概念理解-摘自自编的【sd3应用全攻略】 标签:节点单元边界约束分类:有限元分析相关2010-03-08 16:52 1.1. 基本概念 1.1.1. 结构 有着完整的几何拓扑信息并能抵抗或承受外界施压的能力的实际物体。 1.1. 2. 模型 这里面提到两种模型,即几何模型和有限元分析模型。 (1)几何模型:仅表达实际结构空间位置、空间方位和外部轮廓的模型,即仅是实际结构的拓扑信息,具体包含线(直线、曲线)、面(平面、曲面)、体。(2)有限元分析模型:在充分表达实际结构的几何拓扑关系后,赋予各几何对象以相应特质和处理各几何对象间相互关系,并表达各几何对象在空间中的限定的模型。具体与几何对象相应的是一维线单元(杆、梁等)、二维面单元(2-D 等)、三维面单元(板等)和三维体单元(实体等)。如果把几何模型看作是骨架的话,那么有限元分析模型是带有肌肉、筋骨和血脉的骨架;几何模型表达的

是结构的框架,有限元分析模型表达的是结构本身抵御外界的能力和内部之间、内部与外界之间的复杂联系。 1.1.3. 几何对象 点、线、面、体是对实际结构外形的抽象表达。 (1)点:不计实际结构的大小和形状; (2)线:与细长结构相应(即一个方向的尺寸远远大于其他两个方向尺寸);(3)面:与扁状结构相应(即一个方向尺寸远远小于其他两个方向尺寸);(4)体:与块状结构相应(即三个方向尺寸差不多)。 1.1.4. 有限元分析对象 节点、单元、边界是对实际结构本身及内在关系的抽象表达。 (1)节点:表达实际结构几何对象之间相互连接方式的概念,一般有六个自由度,即沿三个坐标轴方向的平动和绕三个坐标轴方向的转动。在进行应力分析的时候,应该消除节点的刚体自由度。 (2)单元:表达实际结构几何对象本身承受能力的概念,为节点提供刚度,保证节点具有抵御外界的能力,同时限定不同节点间的传力内容和确保不同节点间传力路线的畅通。 (3)边界:区分为外边界和内边界。在一个具体的有限元分析模型中,可以这样理解边界:外边界体现的是整体结构与周围环境之间的关系;内边界体现的是各结构部件之间的相互限制。不管通过什么方式处理边界,最终的目的就是消除有限元分析模型中的所有节点的刚体位移,为下一步的应力分析做准备。 1.1.5. 单元类型 为了模拟实际结构的物理行为而抽象出的基本元件。不同的单元类型体现不同的位移假定和传力假定,通过有机组合不同的单元类型,可以模拟实际结构在外载作用下的承载和传力行为,从而求出与实际结构行为相一致的变形和应力。

有限元八种三维单元介绍

有限元八种三维单元介绍 有限元三维体单元常见单元有四面体4、10节点单元、六面体8、20、27节点单元、三棱柱6、15节点单元。我们在2000年新问世的四面体20节点单元。下面分别介绍如下: 1 四面体4节点单元(常应变单元、一次单元),见图一。 单元内部的位移插值函数为一次多项式,即只含常数项和Z Y X ,,四项。应变是位移的偏导数,故在单元内部,应力和应变为常数,位移和应力收敛速度都很慢,是非常落后的单元。 图一 四面体4节点单元(常应变单元) 2 四面体10节点单元(二次单元),见图二。 用体积坐标定义的单元:单元内位移插值函数为二次完全多项式,即含常数项和Z Y X ,,,YZ XZ XY Z Y X ,,,,,222十项,在单元内部,应力和应变为一次完全多项式,位移收敛速度很快,但应力收敛速度仍较慢。由于整体加密使用的节点数太多,而局部加密生成的单元奇异,刚度阵病态,故应力集中问题中很难得到精度较高的解,在不考虑应力集中、疲劳寿命的问题中,由于该单元使用节点较少、几何适应性强,被人们经常使用。 用直角坐标定义的单元:由六面体20节点单元通过节点重合退化得到。这种单元误差较大,无法求节点应力,只能求出 GAUSS 积分点的应力值,不推荐使用。 3 四面体20节点单元(三次单元),见图三。 用体积坐标定义的单元,单元内位移插值函数为完全三次多项式,即含常数项和Z Y X ,,, YZ XZ XY Z Y X ,,,,,222,XYZ Y Z X Z Z Y X Y Z X Y X Z Y X ,,,,,,,,,222222333二十项, 在单元内部,应力和应变为完全二次多项式,位移和应力收敛速度都很快,精度最高、几何适应性强,在应力集中、疲劳寿命分析问题中使用是非常有用和令人放心的单元。 4 三棱柱6节点单元(一次单元),见图四。 与四面体4 节点单元类似。

1有限元法简介

1有限元法简介 1.1有限单法的形成 在工程技术领域内,经常会遇到两类典型的问题。其中的第一类问题,可以归结为有限个已知单元体的组合。例如,材料力学中的连续梁、建筑结构框架和桁架结构。我们把这类问题,称为离散系统。如图1-1所示平面桁架结构,是由6个承受轴向力的“杆单元”组成。尽管离散系统是可解的,但是求解图1-2所示这类复杂的离散系统,要依靠计算机技术。 图1-1 平面桁架系统

图1-2 大型编钟“中华和钟”的振动分析及优化设计(曾攀教授) 第二类问题,通常可以建立它们应遵循的基本方程,即微分方程和相应的边界条件。例如弹性力学问题,热传导问题,电磁场问题等。由于建立基本方程所研究的对象通常是无限小的单元,这类问题称为连续系统。 图1-3 V6引擎的局部 下面是热传导问题的控制方程与换热边界条件: t T c Q z T z y T y x T x ??=+??? ??????+??? ? ??????+??? ??????ρλλλ (1- 1) 初始温度场也可以是不均匀的,但各点温度值是已知的: () 00 x,y,z T T t == (1- 2) 通常的热边界有三种,第三类边界条件如下形式: ()f T-T h n T λ=??- (1- 3) 尽管我们已经建立了连续系统的基本方程,由于边界条件的限制,通常只能得到少数简单问题的精确解答。对于许多实际的工程问题,还无法给出精确的解答,例如,图1-3所示V6引擎在工作中的温度分布。这为解决这个困难,工程师们和数学家们提出了许多近似方法。 在寻找连续系统求解方法的过程中,工程师和数学家从两个不同的路线得到了相同的结果,即有限元法。有限元法的形成可以回顾到二十世纪50年代,来源于固体力学中矩阵结构法的发展和工程师对结构相似性的直觉判断。从固体力学的角度来看,桁架结构等标准离散系统与人为地分割成有限个分区后的连续系统在结构上存在相似性。 1956年M..J.Turner, R.W.Clough, H.C.Martin, L.J.Topp 在纽约举行的航空学会年会上介

西工大结构有限元习题库

有限元法基础及应用 习题集 一、填空 1.有限元法是求解连续场力学和物理问题的一种方法。用有限元法求解连续体或结构的力学问题的三个主要步骤是:①;②; ③。 2.离散化就是把连续体或结构分割成若干个在处相互连接,尺寸有限的结合体来代替原来的连续结构。 3.单元分析阶段导出的单元刚度方程建立了和之间的关系。单元刚度方程的核心是矩阵。该矩阵具有性和性,且主对角元 素。 4.建立实体单元(一维杆单元、三节点三角形平面单元等)的刚度方程时,须应用作为平衡条件。 5.弹性力学几何方程反映弹性体变形时和之间的关系。u??????e???N?义含程的矩阵。该中方称为 6.单元位移模式N??v?? 是。 7.单元某节点i的形函数N在该点的值为,在其它节点的值均为。一个单元所有节点i形函数之和等于。 8.作用在单元上的载荷须按的原则移置到节点上,因 为。

9.单元刚度矩阵奇异性的力学意义 是:。 ???????Q?K建立了有限元离散结构中节点的和结构有限元平衡方程之间的关10.系。该方程的力学意义是有限元离散结构中节点的和之间的平衡。 11.整体刚度矩阵具有如下性质:①②③ ④。 12.对一定的有限元网格,整体刚度矩阵的半带宽与有关。半带宽越小,求解时占用计算机资源。 13.为保证有限元解的收敛性,单元位移模式应满足和。 14.建立任意形状和方位平面四边形单元和空间六面体单元时,需要采用与单元位移模式中相同的用局部坐标表示的节点形函数对节点坐标进行插值以获得一种坐标变换,这种变换称 为,采用等参变换的单元称为。 15.节点数越多的单元,其位移模式多项式,单元的能力越强,所以精度。 16.弹性力学几何方程反映弹性体变形时和之间的关系。 17.弹性力学边界条件包括和。 18.弹性体的虚位移是假想在弹性体上发生的满足条件的微小位移场。弹性体的虚功原理可以概括为等于。 19.弹性力学物理方程反映弹性体变形时和之间的关系。 20.平面应力问题的典型例子是、平面应变问题的典型例子 是。 21.建立平面问题或空间问题的单元特性方程(单元分析)阶段,需要用到弹性力学的方程和 方程。 二、简答题 1.简述弹性力学平面问题有限元法中单元特性分析的过程。 2.简述建立整体有限元平衡方程的过程。 3.平面三节点三角形单元中位移、应变和应力具有什么特征?有何优缺点? 4.四节点矩形单元中位移、应变和应力具有什么特征?有何优缺点? 5.简单三角形单元刚度矩阵元素的大小与哪些因素有关?与哪些因素无关? 6.画出三节点三角形单元形函数的图形,并分析其在边界上的分布特点。 7.对一个给定的弹性力学问题,有那些途径可以提高有限元法求解精度? 8.按位移求解的有限元法中:(1)应用了哪些弹性力学的基本方程?(2)应力边界条件及位移边界条件是如何反映的?(3)力的平衡条件是如何满足的?(4)变形协调条件是如何满足的?9.有限元的收敛条件是什么?证明三节点三角形单元满足收敛条件。 10.平面应力三角形单元和空间轴对称三角形单元分别代表物理空间中什么样的物体?

有限元分析试题

1. 数学:偏微分方程变换成代数方程进行求解 2. 力学:连续体划分成小单元体,各单元节点间相连接并建立力平衡关系. 3. 有限元模型:有限元模型是真实系统理想化的数学抽象.由一些简 单形状的单元组成,单元之间通过节点连接,并承受一定载荷. 4. 有限元法:是以力学理论为基础,随着力学\数学和计算机科学相结 合而发展起来的一种数值计算方法. 5. 传统结构设计流程:设计----建模----测试---再设计.(1)作很大简化,计 算精度差;(2)结构尺寸与重量偏大;(3)结构局部强度或刚度不足;(4) 设计周期长,试制费用高 6. 现代产品设计: Design(CAD)----Virtual Test(CAE)---Build---Test---Redesign。有限元法是CAE 的核心部 分 7. 汽车结构有限元分析的内容:(1)零部件及整车的疲劳分析,估 计产品的寿命,分析部件损坏的原因;(2)结构件、零部件的强 度、刚度和稳定性分析(3)结构件模态分析、瞬态分析、谐响应 分析和响应谱分析;(4)车身内的声学设计,车身结构模态与车 身内声模态耦合;(5)汽车碰撞历程仿真和乘员安全保护分析(被 动安全性);(6)结构件、零部件的优化设计(质量或体积为目标 函数);(7)车身空气动力学计算,解决高速行驶中的升力、阻力 和湍流问题8. 汽车结构有限元分析的流程:(1)制定方案;(2)建立结构模型; (3)划分有限元模型;(4)有限元模型检查;(5)加载和增加约 束条件;(6)求解计算;(7)结果分析。P9 9. 模态分析:固有频率和振型,从数学上讲,固有频率就是系统矩 阵的特征值,振型就是该特征值所对应的特征向量。 10.谐响应分析:确定结构对已知幅值和频率的正弦载荷的响应。 11.瞬态动力学分析:确定结构对随时间变化载荷的响应。 12.单元:用于离散结构的杆、梁、三角形、四边形、四面体、六面 体等。节点:单元与单元之间的连接点。具有一定自由度和存在 相互物理作用。 (1)每个单元的特性是通过一些线性方程式来描述的;(2)作为 一个整体,单元形成了整体结构的数学模型。(3)信息是通过单 元之间的公共节点传递的。 13.有限元模型由一些简单形状的单元组成,单元之间通过节点连接, 并承受一定载荷。 14.自由度:确定物体(或结构)运动时所必须给定的独立运动方程 数目。 15.节点载荷:作用在节点上的外载荷。 16.节点力:单元间的作用力。 17.一维结构单元:杆单元、梁单元;二维单元:三角形单元、四边 形单元;三维结构单元:四面体单元、六面体单元等 18.模型集合的拓扑显示:(1)自由边:自由边只属于一个曲面,默认颜色为红色,在一个经过几何清理的模型中,自由边通常只存在于部件 的外周或者环绕在内部孔洞的周围.(2)共享边:共享边被两个相邻 曲面所共有,默认颜色为绿色.(3)压缩边:压缩边为两个相邻曲面所 共有,但在划分网格时被忽略被压缩边,不会生成节点,默认为蓝 色.(4)T型连接边:表示曲面的边界被三个或三个以上的曲面所共享, 默认颜色为黄色. 19.静态应力分析流程:(1)建立材料属性(2)建立单元属性(3)将单元属 性赋予相应的单元(4)建立约束条件(5)将约束条件赋予相应的节点(6)建立边界条件(7)将边界条件赋予相 应的节点(8)建立分析工况(9) 提交计算(10)观看结果. 20.V字形开发流程:产品策划定义—概 念设计—工程设计—CAE分析—样车试 制 有限元分析 21.有限元法可分为两类:线弹性有限元 法和非线性有限元法,其中线弹性有限 元法是非线性有限元法的基础,二者不 但在分析方法和研究步骤上有类似之处, 而且后者常常要引用欠着的某些结果 计算题: 1. 数学:偏微分方程变换成代数方程进 行求解 2. 力学:连续体划分成小单元体,各单元 节点间相连接并建立力平衡关系. 3. 有限元模型:有限元模型是真实系统 理想化的数学抽象.由一些简 单形状的单元组成,单元之间通过节点 连接,并承受一定载荷. 4. 有限元法:是以力学理论为基础,随着 力学\数学和计算机科学相结 合而发展起来的一种数值计算方法. 5. 传统结构设计流程:设计----建模----测 试---再设计.(1)作很大简化,计 算精度差;(2)结构尺寸与重量偏大;(3)结 构局部强度或刚度不足;(4) 设计周期长,试制费用高 6. 现代产品设计: Design(CAD)----Virtual Test(CAE)---Build---Test---Redesign。有限 元法是CAE 的核心部 分 7. 汽车结构有限元分析的内容:(1)零 部件及整车的疲劳分析,估 计产品的寿命,分析部件损坏的原因; (2)结构件、零部件的强 度、刚度和稳定性分析(3)结构件模态 分析、瞬态分析、谐响应 分析和响应谱分析;(4)车身内的声学 设计,车身结构模态与车 身内声模态耦合;(5)汽车碰撞历程仿 真和乘员安全保护分析(被 动安全性);(6)结构件、零部件的优化 设计(质量或体积为目标 函数);(7)车身空气动力学计算,解决 高速行驶中的升力、阻力 和湍流问题8. 汽车结构有限元分析的 流程:(1)制定方案;(2)建立结构模 型; (3)划分有限元模型;(4)有限元模型 检查;(5)加载和增加约 束条件;(6)求解计算;(7)结果分析。 P9 9. 模态分析:固有频率和振型,从数学 上讲,固有频率就是系统矩 阵的特征值,振型就是该特征值所对应 的特征向量。 10.谐响应分析:确定结构对已知幅值和 频率的正弦载荷的响应。 11.瞬态动力学分析:确定结构对随时间 变化载荷的响应。 12.单元:用于离散结构的杆、梁、三角 形、四边形、四面体、六面 体等。节点:单元与单元之间的连接点。 具有一定自由度和存在 相互物理作用。 (1)每个单元的特性是通过一些线性方 程式来描述的;(2)作为 一个整体,单元形成了整体结构的数学 模型。(3)信息是通过单 元之间的公共节点传递的。 13.有限元模型由一些简单形状的单元 组成,单元之间通过节点连接, 并承受一定载荷。 14.自由度:确定物体(或结构)运动时 所必须给定的独立运动方程 数目。 15.节点载荷:作用在节点上的外载荷。 16.节点力:单元间的作用力。 17.一维结构单元:杆单元、梁单元;二 维单元:三角形单元、四边 形单元;三维结构单元:四面体单元、 六面体单元等 18.模型集合的拓扑显示:(1)自由边:自由 边只属于一个曲面,默认颜色为红色,在 一个经过几何清理的模型中,自由边通 常只存在于部件 的外周或者环绕在内部孔洞的周围.(2) 共享边:共享边被两个相邻 曲面所共有,默认颜色为绿色.(3)压缩边: 压缩边为两个相邻曲面所 共有,但在划分网格时被忽略被压缩边, 不会生成节点,默认为蓝 色.(4)T型连接边:表示曲面的边界被三 个或三个以上的曲面所共享, 默认颜色为黄色. 19.静态应力分析流程:(1)建立材料属性 (2)建立单元属性(3)将单元属 性赋予相应的单元(4)建立约束条件(5) 将约束条件赋予相应的节点 (6)建立边界条件(7)将边界条件赋予相 应的节点(8)建立分析工况(9) 提交计算(10)观看结果. 20. V字形开发流程:产品策划定义—概 念设计—工程设计—CAE分析—样车试 制 有限元分析 21.有限元法可分为两类:线弹性有限元 法和非线性有限元法,其中线弹性有限 元法是非线性有限元法的基础,二者不 但在分析方法和研究步骤上有类似之处, 而且后者常常要引用欠着的某些结果 计算题:

相关文档
最新文档