生活中的力学现象

生活中的力学现象
生活中的力学现象

生活中的力学现象(教案)

力学是与日常生活关系最密切的物理学科之一,可以说在我们日常生活中,力学几乎无处不在。人们的衣食住行处处都与力学有着紧密的联系。本章通过日常生活中一些事例说明物理教学与实践的关系,使力学教学贴近生活,走进生活。

1.1静脉输液时的力学现象

静脉输液时,要求在输液过程中,保持滴点的速度几乎不变。通过观察封闭式静脉输液用的部分装置,结合气体压强、液体压强的知识我们不难说明其道理。

输液时,医生先将葡萄糖液瓶倒挂,然后将通气管上的通气针插入,这时通气管与葡萄糖液瓶内部连通,葡萄糖液有一部分进入通气管内。但我们注意到进入的量并不多,通气管内的液面远比葡萄糖液瓶内的液面要低。接着医生就把点滴玻璃管和输液管连好,然后将输液管通过针头与葡萄糖液瓶内部相连。调节橡皮管上的夹子,葡萄糖水就开始均匀地一滴一滴在点滴玻璃管内下落了。

首先,当插入通气管后,为什么通气管内的液面远低于葡萄糖液瓶内的液面。由于葡萄糖液瓶内的空气是密闭的。当通气管和葡萄糖液瓶内接通时,部分葡萄糖液已进入通气管,这样葡萄糖液瓶内部的液面就有所下降,瓶内空气的体积就会增大,压强就要减小。正是由于瓶内空气压强减小,小于外界大气压,所以导致了通气管内的液面与葡萄糖液瓶内液面之间出现了上述的高度差。

其次,我们来分析输液时葡萄糖液瓶内的压强情况:我们知道,

液体压强是随深度增加而增大的。液体越深压强越大,这样液流速度就越快。在输液开始后,葡萄糖液瓶内的液面持续下降,瓶内空气压强减小,因而通气管内的液体由于受到外界稳定的大气压强的作用,很快被压回到葡萄糖液瓶内。当通气管(包括针头)内没有了葡萄糖液后,其针头顶端开口处的小液片就刚好在上下都是一个大气压强的作用下平衡。小液片的上部受到向下的压强是瓶内空气压强以及葡萄糖液产生的压强。小液片的下部受到向上的压强是外界大气压强。当瓶内液面继续下降而导致瓶内空气压强略有下降时,小液片就不再平衡,它让开一个“缺口”,气泡就冒上了瓶内空气之中。瓶内空气量增多,压强就稍有增大,通气管针头顶端开口处的小液片又在上下都是一个压强的作用下重新平衡。这样,在整个输液过程中,通气管针头顶端开口处的小液片受到的向下的压强基本保持在一个大气压强

的水平,不会因瓶内液面的下降而变化。由于通气管针头顶端所处水平面液体的压强基本保持不变,因而在它下面一定距离的点滴玻璃管上端口液体的压强也基本保持不变。这样,就对稳定滴点速度起到了积极作用。

1.2平衡中的力学现象

书桌上放着一个不倒翁,浑圆的身体,一张笑咪的脸,书读累了,你会去逗它一下,把它推倒了,可它马上又笑嘻嘻地站起来,好倔强的脾气。不倒翁告诉我们一个非常有用的物理知识,就是物体怎样才能平衡。放在地上的凳子,摆在桌面上的台灯都处于静止状态,在物理学上就叫做平衡,但是同学们是否注意到,同样是处于平衡状态的

物体:一本书竖在桌子上,轻轻地用手一推,啪地一声便倒在桌子上,而不倒翁推倒了却一下又能站起来。这就是说,平衡里也有不同:一件东西立在那儿,轻轻地推一下,它晃了几晃又重新立稳,这种平衡叫稳定平衡;如果轻轻地一碰就倒,叫做不稳定平衡,不倒翁是稳定平衡,立在桌面上的书本、铅笔等是不稳定平衡。

不倒翁不倒的秘密在于它肚子底下的那个大泥坨,使不倒翁和桌子之间有一个很大的支持面,泥坨还使它的重心降得很低,所以特别稳定,倒了还能自己再站起来,站立在桌面上的书则不同,它的支持面非常狭窄,重心又很高,所以一碰就倒,因此,看一个物体稳定和不稳定有两个条件:一个条件是支持物体的面积的大小,还有一个条件是物体重心的高低。

走钢丝的杂技节目很惊险,是由于观众总害怕演员摔下来。杂技演员始终处于一个不稳定的情况下,演员必须不断小心地调整自己身体的姿势,保持身体的平衡,顺利地通过钢丝。

有一种看上去更加惊险的摩托车走钢丝,摩托车不仅在钢丝上行驶,而且车身的下面还挂着一个沉重的车厢,坐在车厢的演员还做出多种高难度动作,看上支使人觉得更加惊险,其实这个节目倒十分安全,因为挂在下面的车厢使整体的重心下降到钢丝绳的下面,反而成为一种十分稳定的平衡。

悬挂是一种最稳定的平衡。过去汽车大赛的时候,由于赛车车速太快,常常发生车翻人亡的悲惨事故,如今设计出一种新型的"低悬

挂"型赛车,车轱辘很高,车厢很低,使汽车整个重心落在车轴的下面,等于把车身挂在了车轴的下面,所以把这种赛车弄翻很不容易。

你也许没有看到过悬挂在空中的火车,如果有这种火车你敢乘坐吗?目前许多国家在发展这种火车,它的名字叫单轨列车。它只有一条架在空中的铁轨,车厢挂在下面,实际上它比双轨火车还要安全。单轨列车是一个曾经在沙漠工作过的法国工程师拉尔廷纽为了解决

沙土经常掩埋沙漠中的铁轨而设计出来的。据说他受到沙漠之舟--

骆驼背上分挂在两侧的货物的启发,想到可以将车厢横跨在铁轨的两边,使重心低于铁轨,这样列车就不会翻倒,铁轨也不会被沙土掩盖,列车还可以跨过河流、沼泽地区,又不占农田,从空中通过,因此这个设计受到了人们的欢迎。

1.3 小鸟撞飞机中的力学现象

我们知道,运动是相对的。当鸟儿与飞机相对而行时,虽然鸟儿的速度不是很大,但是飞机的飞行速度很大,这样对于飞机来说,鸟儿的速度就很大。速度越大,撞击的力量就越大。

比如一只0.45千克的鸟,撞在速度为每小时80千米的飞机上时,就会产生1500牛顿的力,要是撞在速度为每小时960千米的飞机上,那就要产生21.6万牛顿的力。如果是一只1.8千克的鸟撞在速度为每小时 700千米的飞机上,产生的冲击力比炮弹的冲击力还要大。所以浑身是肉的鸟儿也能变成击落飞机的“炮弹”。

1962年11月,赫赫有名的“子爵号”飞机正在美国马里兰州伊利奥特市上空平稳地飞行,突然一声巨响,飞机从高空栽了下来。事

后发现酿成这场空中悲剧的罪魁就是一只在空中慢慢翱翔的天鹅。

在我国也发生过类似的事情。1991年10月6日,海南海口市乐东机场,海军航空兵的一架“014号”飞机刚腾空而起,突然,“砰”的一声巨响,机体猛然一颤,飞行员发现左前三角挡风玻璃完全破碎,令人庆幸的是,飞行员凭着顽强的意志和娴熟的技术终于使飞机降落在跑道上,追究原因还是一只迎面飞来的小鸟。

瞬间的碰撞会产生巨大冲击力的事例,不只发生在鸟与飞机之间,也可以发生在鸡与汽车之间。

如果一只 1.5千克的鸡与速度为每小时54千米的汽车相撞时产生的力有2800多牛顿。一次,一位汽车司机开车行使在乡间公路上,突然,一只母鸡受惊,猛然在车前跳起,结果冲破汽车前窗,一头撞进驾驶室,并使司机受了伤,可以说,汽车司机没被母鸡撞死真算幸运。

生活中的力学现象

生活中的力学现象(教案) 力学是与日常生活关系最密切的物理学科之一,可以说在我们日常生活中,力学几乎无处不在。人们的衣食住行处处都与力学有着紧密的联系。本章通过日常生活中一些事例说明物理教学与实践的关系,使力学教学贴近生活,走进生活。 1.1静脉输液时的力学现象 静脉输液时,要求在输液过程中,保持滴点的速度几乎不变。通过观察封闭式静脉输液用的部分装置,结合气体压强、液体压强的知识我们不难说明其道理。 输液时,医生先将葡萄糖液瓶倒挂,然后将通气管上的通气针插入,这时通气管与葡萄糖液瓶内部连通,葡萄糖液有一部分进入通气管内。但我们注意到进入的量并不多,通气管内的液面远比葡萄糖液瓶内的液面要低。接着医生就把点滴玻璃管和输液管连好,然后将输液管通过针头与葡萄糖液瓶内部相连。调节橡皮管上的夹子,葡萄糖水就开始均匀地一滴一滴在点滴玻璃管内下落了。 首先,当插入通气管后,为什么通气管内的液面远低于葡萄糖液瓶内的液面。由于葡萄糖液瓶内的空气是密闭的。当通气管和葡萄糖液瓶内接通时,部分葡萄糖液已进入通气管,这样葡萄糖液瓶内部的液面就有所下降,瓶内空气的体积就会增大,压强就要减小。正是由于瓶内空气压强减小,小于外界大气压,所以导致了通气管内的液面与葡萄糖液瓶内液面之间出现了上述的高度差。 其次,我们来分析输液时葡萄糖液瓶内的压强情况:我们知道,

液体压强是随深度增加而增大的。液体越深压强越大,这样液流速度就越快。在输液开始后,葡萄糖液瓶内的液面持续下降,瓶内空气压强减小,因而通气管内的液体由于受到外界稳定的大气压强的作用,很快被压回到葡萄糖液瓶内。当通气管(包括针头)内没有了葡萄糖液后,其针头顶端开口处的小液片就刚好在上下都是一个大气压强的作用下平衡。小液片的上部受到向下的压强是瓶内空气压强以及葡萄糖液产生的压强。小液片的下部受到向上的压强是外界大气压强。当瓶内液面继续下降而导致瓶内空气压强略有下降时,小液片就不再平衡,它让开一个“缺口”,气泡就冒上了瓶内空气之中。瓶内空气量增多,压强就稍有增大,通气管针头顶端开口处的小液片又在上下都是一个压强的作用下重新平衡。这样,在整个输液过程中,通气管针头顶端开口处的小液片受到的向下的压强基本保持在一个大气压强 的水平,不会因瓶内液面的下降而变化。由于通气管针头顶端所处水平面液体的压强基本保持不变,因而在它下面一定距离的点滴玻璃管上端口液体的压强也基本保持不变。这样,就对稳定滴点速度起到了积极作用。 1.2平衡中的力学现象 书桌上放着一个不倒翁,浑圆的身体,一张笑咪的脸,书读累了,你会去逗它一下,把它推倒了,可它马上又笑嘻嘻地站起来,好倔强的脾气。不倒翁告诉我们一个非常有用的物理知识,就是物体怎样才能平衡。放在地上的凳子,摆在桌面上的台灯都处于静止状态,在物理学上就叫做平衡,但是同学们是否注意到,同样是处于平衡状态的

专题一受力分析在解决力学问题中的应用

专题一受力分析在解决力学问题中的应用 三岔中学薛莲 正确对物体受力分析是解决力学题目的关键。在初中阶段主要初步学习了重力、摩擦力(包括滑动摩擦力、静摩擦力、滚动摩擦力)、弹力(包括压力、拉力、支持力、浮力等)。受力分析主要是分析这些力。初中物理要求研究的力学问题基本上是处于平衡状态下的,只有正确的对物体进行受力分析,才能准确合理的结合物理规律和公式来解决问题,所以受力分析是解决动力学问题的重要环节。下面简要分析受力分析在力学中的应用。 一、学习目标: 1、掌握受力分析的方法; 2、学会利用受力分析的方法分析解决问题。 二、知识储备: 1、二力平衡的条件:;;;。二力平衡合力为。 2、重力的方向;作用点。 3、相互接触的物体受力,如图1中A、B两物体;不相互接触的物体受力,如图2中两磁铁。 4、摩擦力产生的条件,,;摩擦力的方向。 三、典例分析: (一)、受力分析: 例1. 如图3所示,小球用线系住挂在天花板上并与墙面接触,画出小球的受力示意图。 分析:1、首先画出小球受到的重力G;2、小球与悬线和墙面接触。若撤去悬线小球下落,故悬线对小球有竖直向上拉力T.若撤去墙面小球维持现状不动,故墙面对小球没有推力;3、若墙面光滑小球维持现状不动,故墙面对小球没有静摩擦力。因此小球受到重力G和拉力T。

例2. 如图4所示,木块放在斜面上静止不动,试画出木块受力示意图。 分析:1、首先画出木块受到的重力G;2、木块与斜面接触,若撤去斜面木块将下落,不能维持现状,故斜面对木块有垂直于斜面向上的支持力N;3、若斜面光滑木块将下滑而不能维持现状,故斜面对木块有沿斜面向上静摩擦力f,因此木块受到重力G、斜面的支持力N和静摩擦力f。 由以上例题,总结对物体受力分析的步骤: (1)首先要确定研究对象(可以把它从周围物体中隔离出来,只分析它所受的力,不考虑研究对象对周围物体的作用力); (2)在分析物体受力时,应先考虑重力,然后是弹性力、摩擦力等,并分析物体在已知力的作用下,将产生怎样的运动或运动趋势; (3)根据物体的运动或运动趋势及物体周围的其它物体的分布情况,确定力,保证力既不能多也不能少;(4)画出研究对象的受力示意图; (5)检验,根据物体的运动状态和平衡力的知识来检验所画出的力是否正确。 跟踪练习1: 1、如图5所示,试分析放在水平面上的物体A作匀速运动时的受力情况。 2、如图6所示,物体放在作匀速直线运动的传送带上,请画出物体所受力的示意图。(如果传送带突然 加速或减速运动,画出物体所受力的示意图。) 3、一小球静止在竖直的墙壁之间,如图7,请画出小球所受力的示意图。 (二)、应用: 例1、一个放在水平桌面上的物体,受到分别为5牛和3牛的两个力F1、F2的作用后仍处于静止状态,如图8所示,则该物体受到的合力为,桌面对此物体的摩擦力大小为,方向为。 分析:该物体处于平动平衡状态,和不受外力作用时等效,所以它所受合力为0;因为F1>F2,所以由同一直线上力的平衡条件不难知道摩擦力方向和F2相同,且有关系式F1=F2+F摩,由该式就可以求得F摩=2N。 跟踪练习2: 1、一物体做匀速直线运动,在所受的多个力中,有一对大小为15N的平衡力,当这对力突然消失后,该

生活中的流体力学

流体力学: 流体力学是在人类同自然界作斗争和在生产实践中逐步发展起 来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3 世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。 对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。 17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 发展 17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间 的距离成反比(即牛顿粘性定律)。 之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间

的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。 从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。 理论基础 将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。 由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。

生活中的材料力学

生活中的材料力学 罗晖淼 摘要:在我们身边的每一个角落都运用到了材料力学的原理。学完材料力学之后,用另一个角度去剖析生活中的材料力学现象,别有一番风味。 关键字:应力集中,动载荷,稳定性 一:应力集中 大家可能都有过类似的体验,那就是有些零食的外包装非常平整美观, 可是却不实用,它们经常因为撕不开而遭到我们的嫌弃。相反,有些小零食的包装袋上会有一排锯齿的形状,而当我们沿着锯齿的凹槽撕的时候,无论这个包装所用的材料多么特殊,都能轻松地撕开一个大口子。这是为什么呢?这其实运用到了圣维南原理。当我们沿着锯齿的凹槽撕的时候,手指所加的力是垂直于包装袋的,因此切应力都集中在了凹槽处,即产生应力集中现象。此时凹槽处的切应力会急剧增大,那么只要手指稍稍用力,就很容易从这个凹槽将包装袋撕开。

这种应用应力集中的现象生活中还有很多。比如掰黄瓜,有时候我们想

把黄瓜掰成两段时,往往会先用指甲在黄瓜中间掐一个小缝,然后双手用力一掰,黄瓜就很容易被掰成两段。同样的,因为在小缝处应力集中,黄瓜上作用的两个力矩使得缝隙处的切应力急剧增大,于是黄瓜中间截面发生脆断。再比如撕布条,如果一块完整的布条要将其撕成两半是很困难的,除非有很大的力把它拉断,而我们一般人是没有那么大的力气的,怎么办呢?通常我们会用剪刀在布条上剪出一个小缺口,然后沿着缺口撕开布条,其原理和食品包装袋是一样的。 既然应力集中给我们的生活带来了这么多的便利,那是不是应力集中越多越好呢?其实并不是,在工程上,基本都需要避免应力集中。像那些大桥,飞机,机床,建筑等大型工业结构,为了保证其坚固耐用寿命长,容易发生应力集中的地方如铆钉连接都需要特别地注意。所以工字钢并不是标准的工字型,在直角处都改造成了弧线形过度,就是为了防止工字钢因应力集中而断裂。 工程上的这些问题可比生活中的小问题严重得多,一个小问题都有可能导致重大的事故。曾经有一起飞行事故:飞机起落架里的一个小零件由于应力集中而发生断裂,卡在那里,导致起落架无法放下。不过还好,凭借飞行员高超的技术最终还是平安降落了。 二:动载荷 生活中其实有一个有趣的小现象:在称体重 时,如果很缓慢地站上去,体重计的示数也将慢慢增 加,直至我们的真实体重,而如果我们一下子跳上去, 体重计会在一瞬间飙到一百多公斤,然后再降回到我们 的

生活或工程中的力学问题

生活或工程中的力学问题 一、篮球架的受力问题 1、篮球架是如何支撑的,以及篮圈,篮板的受力问题。 2、二力杆,约束,平衡力系。 3、静止时,忽略EF、CG的自重,而篮板、BC的自重不可忽略,故受力可简化为:DF、EF为二力杆。FE及CE为零杆,不受力。A为固定端约束,受水平竖直两个力及一个力矩。作用:B处受到AB和BG方向的作用力。F处受沿DF方向的力,D处受到DF方向的弹力,与F处受的力大小相等,方向相反,且作用在同一直线上。C处相当于固定端约束,受到沿BC方向的约束力以及一个力矩的作用。 扣篮时,可以看出除重力及A和G处受力作用外,其余点均为内力作用点。G处承载一个向下的压力F',以整体为研究对象, 固定约束A,水平方向受力为0,竖直方向受力为重力与F'之和,力矩可由∑M=0求得。B处受到AB和BG方向两个作用力,F处一个力,根据任意力系的平衡条件: ∑FX=0 ∑FY=0 ∑M=0 算得这三个力。同理可求出图中任意一个力。 二、汽车刹车的受力问题 1、汽车刹车的受力情况。 2、刚体,质心运动,牛顿第三定律。 3、质量为的汽车在水平路面上急刹车,前、后轮均停止转动,前

后轮相距,与地面的摩擦系数为,汽车质心离地面高度为,与 前抡轴水平距离为,试分析前后轮对地面的压力。 解:把汽车模型化为刚体,以此为隔离体。汽车受力如上图,和、 分别代表重力和地面支持力;因前后轮均停止转动,故和均为滑动摩擦力。根据质心运动定理: 在地面上建立直角坐标系,将上试向轴投影: 因为滑动摩擦力为: , 建立平动的质心系。应用对质心轴的转动定理,得: 由上面方程可解出: 根据牛顿第三定律,前后轮对地面的压力大小分别为、但方向朝下。 讨论:若汽车静止于水平地面上,则地面对前后抡支撑力为: 综上计算结果比较可知,刹车时前轮受到的压力比静止时大,并造成汽车的前倾。汽车加速时则后倾。

生活中的流体力学知识研究报告

工程流体力学三级项目报告multinuclear program design Experiment Report 项目名称: 班级: 姓名: 指导教师: 日期:

摘要 简要介绍了流体力学在生活中的应用,涉及到体育,工业,生活小窍门等。讨论了一些流体力学原理。许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。 关键字:伯努利定律;层流;湍流;空气阻力;雷诺数;高尔夫球

前言 也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。观察生活时我们总可以发现。生活离不开流体,尤其是在社会高速发展的今天。鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。为什么洗衣机老翻衣兜?倒啤酒要注意什么诀窍?高尔夫球为什么是麻脸的?本文将就以上三个问题讨论流体力学中一些简单的原理,如伯努力定律,雷诺数,边界层分离等,展现流体力学的广泛应用,证明流体力学妙趣横生。生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

一、麻脸的高尔夫球(用雷诺数定量解释) 不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球 图1-1光滑面1-2粗糙面 反而打的更远。原来是临界Re数不同的结果。光滑的球由于这种边界层分离得早,形成的前后压差阻力就很大,所以高尔夫球在由皮革改用塑胶后飞行距离便大大缩短了,因此人们不得不把高尔夫球做成麻脸的,即表面布满了圆形的小坑。麻脸的高尔夫球有小坑,飞行时小坑附近产生了一些小漩涡,由于这些小漩涡的吸力,高尔夫球附近的流体分子被漩涡吸引,

生活中关于力学的若干问题

生活中关于力学的若干问题 摘要:本文就物理模型把力学与生活实际联系在一起,通过用材料力学, 结构力学,和弹性力学对生活中的事例加以分析,旨在使人们认识到:生活中处处有力学的存在。以增加人们对力学的兴趣,让人们遇事多思考。 关键词:生活实例材料力学结构力学弹性力学 生活中很多事情都可以用力学的观点去解释,而关于这方面的书却很少,我认为我们学生应该学以致用,多用力学的观点看问题,这样也能使我们的理论知识得以提升,本文从前人的实验数据和生活中的实例进行分析,从而说明只要我们以力学的观点看问题,生活中就处处有力学的存在。 一材料力学在面条中的应用 1.1我么平时吃面条时,有的口感筋道,有的口感松散,那么这些面条与塑性材料和脆性材料之间有哪些关系,与材料那些指数有关? 1.2材料力学(mechanics of materials)是研究材料在各种外力作用下产生的应 变、应力、强度、刚度、稳定和导致各种材料破坏的极限。在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料。在外力作用下,发生微小变形即被破坏的材料,称为脆性材料。 1.3 《用质构仪评价面条质地品质的研究》一文指出: 用不同的材料试样A :100 %的面包粉; 试样B :面包粉和饼干粉的质量比为3/ 1 ; 试样C :面包粉和饼干粉的质量比为1/ 1 ; 试样D :面包粉和饼干粉的质量比为1/ 3 ; 试样E :饼干粉的含量为100% ; 用质构仪对其进行了TPA 实验、剪切实验和拉伸实验,得到: 在材料力学中,我们把拉伸试验共分四个阶段:1弹性阶段2屈服阶段3强化阶段4颈缩阶段。而抗压强度或强度极限是材料的重要指标。 工程上常将延伸率〉5%的材料称为塑性材料,而将延伸率占<5%的材料称为脆性材料。

力学中的多过程问题

热点八 力学中的多过程问题 力学中三种重要的运动形式和两种重要解题方法的综合应用 命题特点:多物体、多过程——三种重要运动形式(直线运动、圆周、平抛)的组合、两大解题方法(动力学和功能关系)的应用 此专题为力学综合问题,涉及知识点多,综合性强,以论述和定量计算为主,一般作为高考卷的第一个计算题。题目情景设置一般是匀变速直线运动、平抛运动和圆周运动的综合,涉及较多的过程;涉及几乎所有的力学主干知识和主要的解题方法;难度较大,区分度较大,是考卷中的高档题。 例1.如图所示、四分之一圆轨道OA 与水平轨道AB 相切,它们与另一水平轨道CD 在同一竖直面内,圆轨道OA 的半径R=0.45m ,水平轨道AB 长S 1=3m ,OA 与AB 均光滑。一滑块从O 点由静止释放,当滑块经过A 点时,静止在CD 上的小车在F=1.6N 的水平恒力作用下启动,运动一段时间后撤去F 。当小车在CD 上运动了S 2=3.28m 时速度v=2.4m/s ,此时滑块恰好落入小车中。已知小车质量M=0.2kg ,与CD 间的动摩擦因数μ=0.4。(取g=10m/2s )求 (1)恒力F 的作用时间t . (2)AB 与CD 的高度差h 。 主要涉及的知识点有:运动的等时性,匀速直线运动,匀变速直线运动,平抛运动,牛顿第二定律,机械能守恒定律等。题目的设计背景学生较熟悉,入手容易,涉及到了两个物体五个运动过程,比较繁琐。 【解析】(1)设小车在恒力F 作用下的位移为l ,由动能定理得2212 Fl Mgs Mv μ-= : 由牛顿第二定律得 F M g M a μ-= 由运动学公式得 212l at = 联立以上三式,带入数据得a = 4m/s 2 , 1t s == (2)滑块由O 滑至A 的过程中机械能守恒,即212A mgR mv = AB 段运动时间为11A s t s v === 故滑块离开B 后平抛时间与小车撤掉恒力F 后运动时间相同。 由牛顿第二定律得μMg =Ma′ 由运动学公式得 v=at -a′t′ 由平抛规律得212 h gt = 带入数据得h=0.8m 考生答题中出现的主要错误有: (1)不能确定两个独立运动的物体的等时关系。 (2)对小车的运动过程分析不清,误认为小车在CD 段上一直做匀加速直线运动,将v =2.4m/s 看做是小车的最大速度,求出了加速的时间t =0.6s 。 (3)本题第(1)问采用动能定理的方法可简化解题过程,但不少考生选用了运动学方法,导致运算过程复杂,失分较多。

生活中有趣现象的物理化学原理

生活中有趣现象的物理化学原理 烧不坏的手帕 用品:手帕、100毫升烧杯、酒精灯、竹夹子。 酒精。 原理:酒精遇火燃烧,放出热量,使酒精和水大量挥发,带走部分热量。左右摇晃手帕时可散去大量热。这样火焰的温度被降低,不能达到手帕的着火点。 操作:在烧杯中倒入20毫升酒精和10毫升水,充分摇匀,将手帕放入溶液中浸透。用竹夹子夹出手帕,轻轻地把酒精挤掉,然后放在燃着的酒精灯上点燃。手帕着火后,火焰很大。这时要左右摇晃手帕,直到熄灭。火熄灭后,手帕完好无损。 用品:手帕、玻棒、酒精灯。 合掌生烟 仪器及药品 聚乙烯或聚氯乙稀透明片,玻璃棒,胶水少许;浓氨水,浓盐酸 实验步骤 (1)用胶水将塑料小片分别贴于两手手心,并请另一人分别用玻璃棒蘸取浓氨水和浓盐酸抹在塑料片上(有一点即可,勿使流动)。 (2)两手微握,各在一方,不要靠拢。 (3)合掌时先要做成捧物状,然后再慢慢打开一条缝,使生成的白烟慢慢冒出。 原理 氨和氯化氢可直接化合生成氯化铵而形成白烟:NH3+HCl=NH4Cl 注意事项 (1)药品要轻拿轻放小心取用,抹于塑料片上的酸、碱要少而匀。 (2)实验后立即洗手。 本次推荐实验名字:制作发光番茄 视频地址:https://www.360docs.net/doc/041207856.html,/v_show/id_XNzI4MjE4NA==.html 视频说明:首先取一盒火柴,(因为火柴头内含有磷)用刀子将火柴头刮下,然后混入漂白剂,充分震荡并且静置之后,取上层清液,注入到番茄内部(从各个方向注入,均匀为主)然后再取双氧水,注入番茄,关灯后可以看见番茄发光了。 此实验会出现的问题是火柴头中含磷量不高或者不纯。本人经查找,得知所用的为不安全火柴,即一种火柴头涂有硫磺,再覆以白磷、树胶、铅丹火二氧化锰的混合物。因为白磷燃点过低,现在已被其他安全火柴(主要为红磷和硫)取代。因此作此实验,建议用纯度中等的白磷进行。同时应注意安全,以防白磷自燃。 3、喷雾作画 实验原理

生活中的力学论文

生活中的力学论文 力学在生活中的应用 ——《生活中的力学》论文 力学在生活中的应用 人走路是利用了鞋与地面的摩擦力,向后蹬是给地施加了一个向后的作用力,然后由于物体间作用力是相互的,所以地也给人一个向前的作用力。 给气球充上密度比空气小的气体,如氢气、一氧化碳,气球就会受到空气对它的向上的大于其本身重力的力,然后我们就看到气球飞向空中。 因为重力,我们无论离地面多远,都不必担心会像太空中在空中飘浮,终有落到地面的时刻。又因为重力,人类想要飞的梦想还没实现,而飞船卫星的起飞是花费的巨大的能量才克服重力的影响。 当别人用手打你肩膀的时候,你受到了他给你的作用力,但是你的肩膀也打了他。两个力是相同的,只不过因为压强的不同,产生的效果也就不一样······

力学知识在日常生产、生活和现代科技中应用非常广泛。下面,我就几个方面谈一谈我对生活中力学的认识吧。 (一)重力的应用 我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下 落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。 (二)摩擦力的应用 摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种

工程力学在生活中的应用

工程力学在生活生产中的应用 摘要:本文从结构力学的发展史和学科体系,来阐述工程力学在生活生产中的应用。 关键词:工程结构受力强度 结构力学主要研究工程结构受力和传力的规律,以及如何进行结构优化的学科。工程结构是能够承受和传递外载荷的系统,包括杆、板、壳以及它们的组合体,如飞机机身和机翼、桥梁、屋架和承力墙等。结构力学的任务是研究工程结构在外载荷作用下的应力、应变和位移等的规律;分析不同形式和不同材料的工程结构,为工程设计提供分析方法和计算公式;确定工程结构承受和传递外力的能力;研究和发展新型工程结构。 观察自然界中的天然结构,如植物的根、茎和叶,动物的骨骼,蛋类的外壳,可以发现它们的强度和刚度不仅与材料有关,而且和它们的造型有密切的关系,很多工程结构就是受到天然结构的启发而创制出来的。结构设计不仅要考虑结构的强度和刚度,还要做到用料省、重量轻.对某些工程来说减轻重量尤为重要,比如飞机重量的减轻就可以使飞机航程远、上升快、速度大、能耗低。 结构力学的发展简史:随着社会的进步,人们对结构设计的规律以及结构的强度和刚度逐渐有了认识,并且积累了宝贵的经验,这表现在古代建筑的辉煌成就中,如埃及的金字塔,中国的万里长城、赵州安济桥、北京故宫等等。尽管在这些结构中隐含

有力学的知识,但并没有形成一门学科。就基本原理和方法而言,结构力学是与理论力学、材料力学同时发展起来的。所以结构力学在发展的初期是与理论力学和材料力学融合在一起的。到19世纪初,由于工业的发展,人们开始设计各种大规模的工程结构,对于这些结构的设计,要作较精确的分析和计算。因此,工程结构的分析理论和分析方法开始独立出来,到19世纪中叶,结构力学开始成为一门独立的学科。19世纪中出现了许多结构力学的计算理论和方法。法国的纳维于1826年提出了求解静不定结构问题的一般方法。从19世纪30年代起,由于要在桥梁上通过火车,不仅需要考虑桥梁承受静载荷的问题,还必须考虑承受动载荷的问题,又由于桥梁跨度的增长,出现了金属桁架结构。从1847年开始的数十年间,学者们应用图解法、解析法等来研究静定桁架结构的受力分析,这奠定了桁架理论的基础。1864年,英国的麦克斯韦创立单位载荷法和位移互等定理,并用单位载荷法求出桁架的位移,由此学者们终于得到了解静不定问题的方法。基本理论建立后,在解决原有结构问题的同时,还不断发展新型结构及其相应的理论。 19世纪末到20世纪初,学者们对船舶结构进行了大量的力学研究,并研究了可动载荷下的粱的动力学理论以及自由振动和受迫振动方面的问题。20世纪初,航空工程的发展促进了对薄壁结构和加劲板壳的应力和变形分析,以及对稳定性问题的研究。同时桥梁和建筑开始大量使用钢筋混凝土材料,这就要求科

生活中的物理力学

生活中的物理力学 姓名张东东指导教师辛平秀 (吕梁高级实验中学理科1415班山西离石033000) 摘要:力学的发展与人类生产、生活密切相关。在古代虽然没有力学理论的指导,但古人在生产、生活实践中却广泛地运用了力学原理。从原始钻木取火,石器的尖劈到“炉体常平”的被中香炉;从汲水的尖底陶罐到大型天文仪器(水运仪象台)。精致小巧的器皿,更有大型复杂的机械。随着社会的发展,伟大的物理学家们建立力学理论知识,于是力学知识在我们生活中的应用就越来越广泛。例如千年不倒的桥梁、古塔,宏伟建筑群的建成。我们人类运用惯性定理来区分生鸡蛋和熟鸡蛋, 利用悬浮条件来将米中混有的糠谷,石子分开,利用大气压的作用将墨水打入我的笔胆里等等, 无不体现力学在我们生活中应用。 关键词:力学; 应用; 生活 1.绪论 1.1 力学国内研究历史与现状 很久以前喻皓建筑师建筑大量的宝塔和楼阁。中国在1880年成功修建第一条标准轨距铁路唐胥铁路。胥各庄修车厂已经开始制造机车。中国在1962年3月成功发射第一颗导弹。,武汉在1955年9月1日长江大桥建设成功。中国在1978年发明并且正式生产家用洗衣机。中国在2006年研制的大型民用客机将进行首飞。中国在2007年可以乘坐“中国造”的舒适客机飞翔在蓝天白云间。从1999年到2012 年9 月25 日神舟一、二、三……九号发射等等都或多或少都应用一些力学知识。近几年一个农民发明空气压缩动力汽车。台湾发明还发明加水就能跑的车。 1.2 力学国外研究与现状 14世纪,西欧出现了人力和畜力驱动的转动臂架型起重机。19世纪初世界上出现了桥式起重机;并且开始采用水力驱动。19世纪末,蒸汽驱动的起重机逐渐取代水力驱动的起重机。20世纪20年代初,由于电气工业和内燃机工业突飞猛进的发展,以及电动机或内燃机为动力装置的各种起重机初步形成。1807年美国发明家富尔顿制成蒸汽汽船。美国人比尔·布莱克斯在1874年发明手摇洗衣机。,,德国工程师在1876年制成第一台四冲程循环的煤气内燃机,使汽车和以后发明飞机的问世成为可能。吉尔·佩尔索纳·德·洛百瓦尔发明磅秤。伊戈尔·伊万诺维奇·西科斯基发明第一架实用直升机。,英国在1884年发明家制成第一台多级反动式汽轮机。本茨发明汽车。美国在1880年发明蒸气洗衣机。美国在1911年发明第一台电动洗衣机。美国在1926年制成世界上没有的第一台机械式电视机。伊戈尔·西科尔斯基在1939年成功建造了第一架直升飞机。1955年,日本人在引进英国喷流式洗衣机的基础之上制造出波轮式洗衣机。美国发明家预言在2045年将会有比人类更聪明的机器出现,他们将给我们生活中的各个领域为人类提供大量的帮助。

生活中的热力学

生活中的热力学 摘要:生活中的热力学现象无处不在,热力学现象的本质和原理亦来自生活。其实我们身边经常可以看到很多和热力学有关的现象。热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律是热力学的基本定律,高压锅、空调、电冰箱是生活中常见的用电器。 关键词:热力学定律 热力学第一定律也叫能量不灭原理,就是能量守恒定律。它指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。表征热力学系统能量的是内能,通过做功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔE应等于在此过程中外界对系统传递的热量Q和系统对外界做功W之差,即 EⅡ-EⅠ=ΔE=Q-W 或 Q=ΔE+W 这就是热力学第一定律的表达式。对于无限小过程,热力学第一定律的微分表达式为 dQ=dE+dW 其中,E是态函数,dE是全微分;Q、W是过程量,dQ和dW只表示微小量并非全微分,用符号d以示区别。又因ΔE或dE只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否是平衡态无关。 热力学第二定律一般有两个表述: 1.开尔文表述:不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。 2.克劳休斯表述:热量不可能自动地从低温物体传到高温物体。 其实这两种表述是等价的,我们知道自然界中的各种不可逆过程都是互相关联的。而这两种表述的区别在,克氏表述指出:热传导过程是不可逆的;开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。两种表述均指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必

生活中的流体力学

生活中的流体力学 你倒啤酒时通常做什么?为什么洗衣机总是翻口袋?为什么高尔夫球会有麻点?本文将论证流体力学、流体力学等的一些简单应用,如流体力学、流体力学等。剩下的不多了。倒啤酒时,泡沫是从瓶子里冒出来的。啤酒倒进了杯子。那个热辣的男人举起酒瓶,把啤酒柱冲到了玻璃杯的底部。它总是充满泡沫。气泡消失后,杯子里几乎没有啤酒了。是什么导致了这么多泡沫?洗衣机总是把口袋翻过来。平时用洗衣机洗衣服的人都有这样一个体会,洗衣机洗完衣服后,衣服口袋经常翻过来。如果口袋里有硬币、钥匙或其他东西,也会被取出。怎么了?为了解释这两种现象,我们必须从流体力学的基本原理,即伯努利定律入手。其规律是:在恒定的流场中,流体颗粒在流线上的速度与此时的压力呈负相关。一般来说,速度越高,压力越低。具体而言,沿着流线,流体颗粒的速度为V,密度为ρ,此时的压力为p。它们之间的关系如下: 1倒啤酒时起泡:啤酒水柱冲向杯底,造成水流不均。伯努利定律知道,每个点的压力不同,较大部分的分压变小,这导致二氧化碳的溶解度降低。也就是说,如果你想让啤酒在

不起泡的情况下充满杯子,就应该在倒酒过程中尽量降低啤酒杯内液体的相对速度,使灌装过程尽可能准静态。熟练的服务员尽可能地倾斜杯子,让啤酒沿着墙壁慢慢地流到杯底,然后慢慢地将杯子的角度调整到竖直的位置,这样就可以在不产生太多啤酒的情况下装满啤酒泡沫。从而减少了啤酒从一只手伸进杯口的动能,从而减少了啤酒杯的滴入。另一方面,通过倾斜杯子,啤酒柱对杯子的正面冲击可以转化为斜碰撞,从而减少啤酒接触瞬间的动量变化。另外,在倾斜过程中,啤酒滑动到杯底的距离增加。在这个过程中,靠近玻璃壁的边界粘性层会对啤酒产生阻力,这也会降低啤酒到达玻璃底部的速度。因此,基本上尽可能满足准静态要求。人们幽默地把倒啤酒的技巧归纳为三个谐音:“弯门斜(邪道)、杯壁(卑鄙)淫秽、斜(恶)变回正常。2现在,让我们来看看洗后的情况。洗衣机旋转时,口袋附近的流体速度较高,而口袋底部的流体速度较低。这是因为裤兜的底部是在裤子的桶里,而夹克口袋的底部是包裹在衣服里的,那里的液体比衣服慢得多。根据伯努利定律,口袋底部的压力大于口袋口附近的压力。这个压差将把水从袋底排到袋口。高尔夫是世界上最古老的流行球类运动,有五六百年的历史。它最早在英国流行是在公元前,事实上,高尔夫球起源于中

力学在生活中的应用

力学在生活中的应用标准化管理部编码-[99968T-6889628-J68568-1689N]

力 学 在 生 活 中 的 应 用 学院:经济管理 专业班级:09-1班 姓名:张争辉 力学在生活中的应用 力学知识在日常生产、生活和现代科技中应用非常广泛,这一学期我们有更加详细的学习了力学与生活生产的关系,主要有体育运动方面:如跳高、跳水、体操、铅球、标枪等;天体物理方面:如天体的运行、一些星体的发现、人类的太空活动等;交通安全方面:汽车制动、安全距离、限速等。 一、首先我将以前所学最基本的力学知识的应用作个总结: 1.重力的应用 我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在

农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。在讲授重力时,要让学生展开热烈的讨论,充分挖掘学生的想象力,知道重力与我们的生产生活实际密切相关。2.摩擦力的应用 摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是靠增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。 3.弹力的应用 利用弹力可进行一系列社会生产生活活动,力有大小、方向、作用点。如高大的建筑需要打牢基础,桥梁设计需要精确计算各部分的受力大小;拔河需要用粗大一些绳子,防止拉力过大导致断裂;高压线的中心要加一根较粗的钢丝,才能支撑较大的架设跨度;运动员在瞬间产生的爆发力等等。而且根据弹簧原理我们也可以制作很多东西…… 可见,物理力学知识生产和生活实际中是很有用的,从宇宙天体到微观的分子、原子处处存在着各种各样的力,老师将课本知识与生产生活实际有机地结合起来,极大地激发我们的学习兴趣,从而培养我们树立崇尚科学、研究科学、应用科学精神。 也许这只是简单的高中知识,但大学里学的“力学在生活中的应用”就更具实际意义,更有实践意义与指导价值了。 二、这一个学期我更深入的学习了力学与生活生产的关系 生活中力学知识无处不在,老师就生活中的安全事故问题给我们作了详细分析,让我们清楚的知道了危险发生的原理,学会了更好的逃生…… 1、火灾发生的力学知识 结合上海火灾事故老师先给我们讲的是楼房的火灾。楼房目前越来越成为居民住宅建筑形式的主体,而楼房的结构形式多是框架结构,在楼房的某一层,或某一个房间一旦发生火灾,不但会在起火层引起很大的内力,而且会在整个结构内部产生可观的内力。 如果是钢结构的话,火灾发生引起结构持续升温一段时间后,梁、柱等结构就会由于高温而损失绝大部分刚度,导致结构在起火层发生很大的变形,这部分变形也会在结构内部引起很大的内力,而且一般是破坏性的。 由温度升高和结构变形的内力叠加起来,结构的变形和内力将会很大,这也是为什么很多结构在火灾发生后发生坍塌的缘故(如衡阳大火事件),下面我们通过建立模型来对这个问题进行分析。 老师给我们展示了图片,一个三层框架结构,开间和层高均为5m,取出一榀框架来考虑,框架结点均简化为刚结点,并将整个框架结构简化为下图所示

流体力学小论文

流体力学导论的小论文 生 活 中 伯 努 利 方 程 的 应 用

生活中伯努利方程的应用 一、现象描述: 生活中有关流体力学方面有趣的事情,还是比较多的,尤其是伯努利方程的应用。如果留心的话,我们会经常发现:在宿舍阳台处的门外有风的前提下,宿舍里的门(在不锁的前提下)会随着阳台处的门的打开,而自动打开,至于什么原因造成此现象,我们可以从流体力学角度思考。 此图描绘的就是上面所阐述的情况(由于在word里不太好画,所以采取了手绘和手机拍摄的操作),左边表示的均是宿舍阳台处的门,右边均是宿舍外出的门。图中上面的两个门的情况是,“阳台门”是处于锁着的状态(阳台外有空气流动),“外出门”是处于关着的状态,但没锁;下面的两个门描述的情况是,当“阳台门”打开时,“外出门”会自动打开。 二、现象中所蕴含的流体力学问题: 这里面所蕴含的流体力学问题,就是伯努利方程的应用,假设流体是无粘不可压缩的理想流体,由“外出门”的内侧到外侧间建立的伯努利方程式如下:

22001122u p u p gz gz ρρ ++=++ 其中,0u :空气流动的速度,0p :大气压,ρ:流体密度 1u : “外出门”外的速度,且10u = ,1p :“外出门”外的压强 且两个门皆处于同一水平线上,所以伯努利方程简化为 20012u p p ρρ += 从式子中,可看出201002u p p ρ-= >,即10p p >,所以“外出门”可以自动打开。 具体的图表示如下: 三、这一问题的解决方案: 1. 可以在门缝处贴上“贴垫”,如下图所示:

据了解,这个方法确实不错,我试验过,如果做得好的话,即使人拉,也要费些力气。 2. 给门安装上弹簧,借助弹簧的力,抵消掉10p p p =- 的作用,使门不至于在 风的作用下,总是自动打开。 四、小结: 生活中有趣的事情不仅仅是这些儿,还有很多,只要你善于观察,流体力学 将会布满于整个世界。试问,流体力学上哪一个伟大的发明和重要理论的产生,不是起源于现实生活中呢?如果牛顿碰不到苹果掉下这一情况,或是苹果不是掉在牛顿头上,那么今天很有可能就没有“万有引力”之说。 通过写这篇小论文,我还是很有收获的,至少学会了要多注意观察身边的事物,多留心生活中有趣的现象,以及应根据现象,认真思考其中所蕴含的原理所在,进而增长和巩固知识。

生活中的材料力学实例分析

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学就是固体力学的一个基础分支。它就是研究结构构件与机械零件承载能力的基础学科。其基本任务就是:将工程结构与机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状与尺寸,以便设计出既安全又经济的结构构件与机械零件。 二对象 材料力学的研究通常包括两大部分:一部分就是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也就是固体力学其她分支的计算中必不可少的依据;另一部分就是对杆件进行力学分析。杆件按受力与变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱与受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩与扭矩。杆的变形可分为伸长、缩短、挠曲与扭转。在处理具体的杆件问题时,根据材料性质与变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥就是一种用来跨越障碍的大型构造物。确切的说就是用来将交通路线 (如道路、铁路、水道等)

或者其她设施 (如管道、电缆等)跨越天然障碍 (如河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的就是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析 如果在安全的前提下,将原来的四个桥墩与三个拱形拉索变为三个桥墩与两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。

材料力学在生活中的应用

材料力学在生活中的应用 摘要: 在高新技术的迅速发展的今天,各种土木建筑工程行业的迅速产生及壮大,使得材料力学知识在生活中得到广泛的运用。尤其在机械器材的装载和运载过程的相关运用,以及在土木建筑工程中材料的强度、刚度、稳定性等知识得到广泛的运用。以及各种机械元件工作许用应力的确定,机械可运载的最大载荷的确定等。 关键词: 材料力学、强度、刚度、稳定性、变形、弯曲、千斤顶 在实际生活中,有许多地方都要用到材料力学。生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。在生活中我们用的很多包装袋上都会剪出一个小口,其原理就用到了材料力学的应力集中,使里面的食品便于撕开。生活中很多结构或构件在工作时,对于弯曲变形都有一定的要求。一类是要求构件的位移不得超过一定的数值。例如行车大量在起吊重物时,若其弯曲变形过大,则小车行驶时就要发生振动;若传动轴的弯曲变形过大,不仅会使齿轮很好地啮合,还会使轴颈与轴承产生不均

匀的磨损;输送管道的弯曲变形过大,会影响管道内物料的正常输送,还会出现积液、沉淀和法兰结合不密等现象;造纸机的轧辊,若弯曲变形过大,会生产出来的纸张薄厚不均匀,称为废品。另一类是要求构件能产生足够大的变形。例如车辆钢板弹簧,变形大可减缓车辆所受到的冲击;又如继电器中的簧片,为了有效地接通和断开电源,在电磁力作用下必须保证触电处有足够大的位移。 1.千斤顶的承载重量是否可以任意大小 下面,就以我们常见的机械式千斤顶为例,利用材料力学的知识,分析它的规格参数与强度要求。 机械式千斤顶(如图一(a)示),设其丝杠长度为l ,有效直径为d ,弹性模量E ,材料抗压强度为,承载力大小为F ,规定稳定安全因数为。 图一(a) 千斤顶示意图 图一(b) 千斤顶丝杠简化图 首先,计算丝杆柔度,判断千斤顶丝杆为短粗杆,中等柔度杆,还是细长杆。 丝杆可以简化为一端固定,另一端自由的压杆(如图一(b)所示),长l F B A B A

相关文档
最新文档