半导体指纹传感器比较.

半导体指纹传感器比较.
半导体指纹传感器比较.

半导体TCS2指纹模组产品规格介绍

文档编号: 方程式 TCS2指纹模组产品规格书 2012.07

修改记录 版本号修改日期修改内容修改人V1.0 2013.7.15 初始版本

1产品概述 (1) 1.1产品外观 (1) 1.2产品安装结构特征 (2) 1.3接口定义 (2) 1.3.1与上位机通讯接口 (2) 1.3.2连接线缆类型 (2) 1.3.3J4引脚说明 (3) 1.3.4J4接口描述 (3) 2技术指标 (4) 3功能介绍 (5) 4协议描述 (6) 4.1指令包格式 (6) 4.2数据包格式 (6) 4.3应答信息描述 (7) 5实例描述 (8) 5.1中断指令 (8) 5.2查询指纹数 (8) 5.3采集图像 (9) 5.4注册指纹 (10) 5.5匹配指纹 (11) 5.6删除指纹 (11) 5.7模板传输 (12)

TCS2指纹模组产品规格书 1产品概述 TCS2面阵指纹处理模块是一种接触式单指纹识别设备,由TCS2面阵传感器和指纹处理模块构成。TCS2指纹采集模块是TCS2真皮原理的敏感器(面积型),高性能指纹对比算法等软硬件组成的联机或脱机产品,硬件部分的工作是采集指纹并将其通过USB接口传输到主机中,指纹识别任务是由安装到主机中的软件部分来完成指纹识别。该指纹仪采用最先进活体真皮指纹采集技术,精确可靠,经久耐用,性价比高、识别率高、超小体积;同时对各种类型手指适应性强,尤其对于干手指识别率高,在北方冬天有明显的优势。 产品特点 对各种困难手指指纹类型适应性强:能够灵活适应当时的手指条件,无论是干手指、湿手指、浅纹理指纹、老年手指等等都有很高的识别率,彻底解决了不理想手指指纹识别率低的问题; 对干手指指纹识别率高:特别适用与北方冬天的干手指; 登录指纹成功率高:在作登录指纹时,成功率达到99.9%; 抗静电能力强:在干燥容易起静电地区很适合 1.1产品外观

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

压力传感器的分类及应用原理

压力传感器的分类及应用原理 教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3、扩散硅压力传感器原理及应用 工作原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一

半导体传感器发展现状及其检测的重要性

8、半导体传感器发展现状及其检测的重要性 1、展望未来,传感技术的发展趋势将是:①敏感材料;半导体硅仍是半导体传感器的最重要材料-其他半导体材料将作为特殊补充材料而得到发展、②新技术、新工艺;许多新技术、新工艺如直接键合技术、牺牲层技术、多晶硅制备技术、微机械加工技术等将被J “泛应用,并将开发出多种新型传感器:③新型传感器。新型传感器将向固态化、集成化、多功能化和智能化方向发展,从而新产品不断出现,性能和质量不断提高,性能价格比大大改进.④应用、传感器与计算机相结合既能够改进传感器的测。 2、半导体传感器市场从1998年的126亿美元增长到2008年的218亿美元+MEMS传感器将成为全世界增K最快的产品之一,其可靠性、技术附加值高,市场回报率大干传统产业:传感器传感器产业是国内外公认的具有发展前途的高技术产业,它以技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。其应用领域涉及机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等。世界上传感器品种达到3万余种,美、日,英、法、德和独联体等国都把传感器技术列为国家重点开发的关键技术之一;1.发展现状和趋势目前,全世界约有40个国家从事传感器的研制、生产和应用开发,研发机构6000余家?其中以美、日、俄等国实力较强。 3、目前国际上各类半导体力敏传感器中,高精度仅占1---2%,一般精度占30%,廉价实用的低档产品占60---70%,就精度和可靠性而言,目前半导体传感器尚不及结构型传感器。半导体力敏传感器已广泛应用于工业自动化控制系统、交通运输、医疗仪表、航天、航空及家用电器领域,如美国仅1989年已有3000万只以上的半导体压力传感器用于汽车上。据初步统计,国内有数十个单位从事研制、生产各类半导体力敏传感器,分布在全国十余个省市,生产的品种有半导体应变片及各类压阻式力敏传感器两大类,产品多至几千只,少则几百只。.近年来,力敏传感器研究主要集中在微机械加工和封装技术等方面,其主要内容有:1)控制终端的腐蚀技术。国外先进的工厂能做到4英寸硅片。 4、现代工业中自动化装置的品种、类型繁多.但一般来说,它由信息获得、信息转换、信息处理、信息传送及信息执行等环节组成。在实现自动化过程中,信息的获得是极其重要的组成环节,只有精确、及时地将被控对象的各项参数检测出来,并转换成为容易传送和处理的信号,整个系统才能正常地工作。因此工程检测又是自动化技术必不可少的内容之一。

压力传感器工作原理

压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 1、应变片压力传感器原理与应用: 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 1.1、金属电阻应变片的内部结构:它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 1.2、电阻应变片的工作原理:金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

指纹识别系统

指纹识别系统 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

指纹识别系统 指纹识别系统原理 指纹识别系统的组成原理。如图1-1所示。图中的学习模块负责采集用户指纹数据,对 指纹图像进行预处理,提取这些指纹的特征,作为将来的比对模板存人数据库。而识别模块则负责采集和处理指纹图像,在提取特征后与数据库中的指纹模板进行比对,然后判断是否匹配.得出结论。整个系统的核心就是图像处理、特征提取以及指纹比对。 图1-1 指纹采集与指纹图像处理方法 目前,主要的指纹采集方法有两种:一种是光学采集器;另一种是用半导体传感器。光学采集器采集指纹是通过把手指沾上油墨后按在白纸上,然后用摄像机把图像转换为电信号。光学采集受外界干扰小、采集精度较高,但是数据量较大,因此处理时问较长。而对于半导体传感器来说,手指的温度、湿度对其测量结果有影响,但是数据量不大,处理比较方便。随着半导体技术的发展,半导体传感器的成本低、体积小、方便集成等优点逐步体现,它已逐步代替光学采集器。指纹鉴定过程的第一个阶段是指纹图像的采集阶段,也就是指纹模板的录A阶段。为了初步确定图像预处理方法,我们必须首先了解指纹传感器获得的图像的尺寸和质量。根据不同的指纹传感器,我们设计不同的方案进行图像采集,并将从各个图中提出特征点储存到数据库中,来产生“活模板”,为后面的指纹鉴定做准备。 指纹图像处理是整个指纹识别过程的核心。常见的指纹图像处理包括滤波增强、二值化、细化、提取特征点四个步骤。在采集指纹图像的过程中,由于采集环境,皮肤表面的性质,采集设备的差异等各种因素的影响,采集的图像会不同程度的受到各种噪声的干扰,从而影响了采集图像的质量。所以实际的指纹图像首先通过一个滤波增强来改善图像的质量,恢复脊线原来的结构。特征提取算法的性能和其它指纹识别技术的好坏取决于输入指纹图像质量的好坏。本系统采用一种用Gabor滤波与方向滤波结合对图像进行增强的方法该方

压力传感器原理

压力传感器 医用压力传感器 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用。另有医用压力传感器。 简介 压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以 已经得到了广泛的应用。 在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况

TFS-K34半导体指纹门锁应用模块手册

深圳市十指科技有限公司
TFS-K34 指纹门锁专用模块

明 1.未经本公司许可,本手册的任何部分不得以任何方式复制。 2.为了您能正确使用本公司产品,并得到最佳性能和保证长久使用,请详细阅读本手册。 3.因技术发展的需要,本公司保留未经通告而变更本手册及产品性能指标的权利。 4.注意爱护是延长产品寿命的最好方法。



感谢您选择我公司出品的指纹锁应用模块! 指纹识别技术是依靠人体指纹特征进行身份验证的生物识别技术。作为当今世界上 最先进可靠的指纹识别技术的结晶,指纹识别通过精准的光电成像系统对开启者指纹图 像进行采集,运用复杂的模式匹配算法,与原注册指纹进行比对,判断开启者身份,合 法身份确认后即可输出开锁信号。 本模块适用于开发指纹锁具、开发指纹柜体及开发指纹门禁系统等各类需要身份认证的 各类产品。 本用户手册适用于深圳市十指科技的 TFS-K34 型号的指纹识别模块。 我们深圳市十指科技公司是一家立足于指纹识别技术和应用模块的研发、 生产的专业公 司,我公司为了推动指纹锁具行业的发展,立足于自己指纹识别技术而推出的新一代高 性能、高速度、最优性价比的指纹锁具专用模块,型号:TFS-K34。 此模块由瑞典进口 FPC1011F 传感器、 高性能 DSP 处理器、 大容量 FLASH 和 CMOS 等芯 片构成,只要配合电子锁具外壳和锁芯,不需懂得指纹识别技术、不需要再次开发,只 要接上模块上的标准插头,就可以应用、集成成为高科技的指纹锁!实现产品价值快速 提升
如有任何问题请按如下信息联系十指科技或与当地代理商!
公司名称:深圳市十指科技有限公司 地址: 深圳市南山区西丽镇白芒区南 123 栋五楼 邮编:518055 联系人:陈先生 电话:0755-******** 手机:158******** 邮箱:tenfinger@https://www.360docs.net/doc/0412125946.html,
QQ:513516415 MSN:szkj2008@https://www.360docs.net/doc/0412125946.html,
贸易通:FY612 网址:https://www.360docs.net/doc/0412125946.html,

(完整版)压力传感器原理

目录 1 概述 2 工作原理 1. 2.1 电阻应变片 2. 2.2 陶瓷型 3 选型要点 4 常见故障 5 四个无法避免的误差 6 抗干扰措施 7 八大发展趋势 将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件或应变计转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体。压力传感器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,但常用的压力传感器有电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器,光纤压力传感器等。应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。 压力传感器是使用最为广泛的一种传感器。传统的压力传感器以机械结构型的器件为主,以弹性元件的形变指示压力,但这种结构尺寸大、质量轻,不能提供电学输出。随着半导体技术的发展,半导体压力传感器也应运而生。其特点是体积小、质量轻、准确度高、温度特性好。特别是随着MEMS技术的发展,半导体传感器向着微型化发展,而且其功耗小、可靠性高。 压阻式应变压力传感器的主要由电阻应变片按照惠斯通电桥原理组成。 电阻应变片

一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变 电阻应变片内部结构 片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变, 使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 惠斯通原理

压阻式压力传感器原理及其应用

压阻式压力传感器原理 及其应用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

压阻式压力传感器 利用单晶硅材料的压阻效应和集成电路技术制成的传感器。单晶硅材料在受到力的作用后,电阻率发生变化,通过测量电路就可得到正比于力变化的电信号输出。压阻式传感器用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制)。 压阻效应当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计(见电阻应变计),前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍。 压阻式压力传感器的结构这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压力的。硅膜片的一面是与被测压力连通的高压腔,另一面是与大气连通的低压腔。硅膜片一般设计成周边固支的圆形,直径与厚度比约为20~60。在圆形硅膜片(N型)定域扩散4条P杂质电阻条,并接成全桥,其中两条位于压应力区,另两条处于拉应力区,相对于膜片中心对称。硅柱形敏感元件也是在硅柱面某一晶面的一定方向上扩散制作电阻条,两条受拉应力的电阻条与另两条受压应力的电阻条构成全桥。

压力传感器研究现状及发展趋势

压力传感器研究现状及发展趋势 传感器技术是现代测量和自动化系统的重要技术之一,从宇宙开发到海底探秘,从生产的过程控制到现代文明生活,几乎每一项技术都离不开传感器,因此, 许多国家对传感器技术的发展十分重视,如日本把传感器技术列为六大核心技术(计算机、通信、激光、半导体、超导体和传感器) 之一。在各类传感器中压力传感器具有体积小、重量轻、灵敏度高、稳定可靠、成本低、便于集成化的优点,可广泛用于压力、高度、加速度、液体的流量、流速、液位、压强的测量与控制。除此以外,还广泛应用于水利、地质、气象、化工、医疗卫生等方面。由于该技术是平面工艺与立体加工相结合,又便于集成化,所以可用来制成血压计、风速计、水速计、压力表、电子称以及自动报警装置等。压力传感器已成为各类传感器中技术最成熟、性能最稳定、性价比最高的一类传感器。因此对于从事现代测量与自动控制专业的技术人员必须了解和熟识国内外压力传感器的研究现状和 发展趋势。 1 压力传感器的发展历程 现代压力传感器以半导体传感器的发明为标志,而半导体传感器的发展可以分为四个阶段[1 ] : (1) 发明阶段(1945 - 1960 年) :这个阶段主要是以1947 年双极性晶体 管的发明为标志。此后,半导体材料的这一特性得到较广泛应用。史密斯(C.S. Smith) 与1945 发现了硅与锗的压阻效应[2 ] ,即当有外力作用于半导体材料时,其电阻将明显发生变化。依据此原理制成的压力传感器是把应变电阻片粘在金属薄膜上,即将力信号转化为电信号进行测量。此阶段最小尺寸大约为1cm。 (2) 技术发展阶段(1960 - 1970 年) :随着硅扩散技术的发展,技术人员在硅的(001) 或(110) 晶面选择合适的晶向直接把应变电阻扩散在晶面上,然后在背面加工成凹形,形成较薄的硅弹性膜片,称为硅杯[3 ] 。这种形式的硅杯传感器具有体积小、重量轻、灵敏度高、稳定性好、成本低、便于集成化的优点,实现了金属- 硅共晶体,为商业化发展提供了可能。 (3) 商业化集成加工阶段(1970 - 1980 年) :在硅杯扩散理论的基础上应 用了硅的各向异性的腐蚀技术,扩散硅传感器其加工工艺以硅的各项异性腐蚀技术为主,发展成为可以自动控制硅膜厚度的硅各向异性加工技术[4 ] ,主要有V 形槽法、浓硼自动中止法、阳极氧化法自动中止法和微机控制自动中止法。由于可以在多个表面同时进行腐蚀,数千个硅压力膜可以同时生产,实现了集成化 的工厂加工模式,成本进一步降低。

指纹采集技术及其产品发展趋势

指纹采集技术及其产品发展趋势 摘要:随着各类电子设备不断进入人们的日常工作和生活,以及电子商务越来越广泛的推广应用,需要有一个更可靠的系统来进行身份认证。生物识别技术已成为一种公认的最为方便和安全的身份认证技术。生物识别技术中的指纹识别技术发展最成熟、应用也最广泛。指纹图像的采集技术是指纹识别中的关键技术之一。本文分析比较了不同种类的指纹采集技术及其性能,并介绍了指纹采集技术的应用情况及其产品发展趋势。 关键词:生物识别指纹采集指纹传感器U.are.U2000 FPS200 近年来,越来越多的个人、消费者、公司和政府机关都认为现有的基于智能卡、身份证号码和密码的身份识别系统很繁琐而且并 不十分可靠。生物识别技术为此提供了一个安全可靠的解决方案。生物识别技术根据人体自身的生理特征来识别个人的身份,这种

技术是目前最为方便与安全的识别系统,它不需要你记住象身份证号码和密码,也不需随身携带像智能卡之类的东西。 生物识别技术包括虹膜识别技术、视网膜识别技术、面部识别技术、声音识别技术、指纹识别技术。其中指纹识别技术是目前最为成熟的、应用也最为广泛的生物识别技术。每个人的包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,也就是说,这些指纹特征是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。 指纹识别系统是通过指纹采集、分析和对比指纹特征来实现快速准确的身份认证。指纹识别系统框图如图1所示。 指纹采集器采集到指纹图像后,才能被计算机进行识别、处理。指纹图像的质量会直接影响到识别的精度以及指纹识别系统的处 理速度,因此指纹采集技术是指纹识别系统的关键技术之一。本文着重分析比较不同的

半导体指纹传感器比较

半导体指纹传感器比较 一、指纹识别传感器的类型 指纹识别传感器根据采集原理的不同可分为如下几种: 第一代:光学传感器。光学传感技术可以说是扫描仪的缩小版。使用时,用户将手指按在扫面设备的玻璃表面,光源光线照射到压有指纹的玻璃表面形成反射光线,反射光线再经过凸镜聚焦后由光电图像传感器去捕获成像,并对比资料库看是否一致。由于指纹的凹凸不同,形成的反射光的量也就不同。光学扫描技术发展成熟、成本低廉,耐用性也不错,因而成为早期指纹识别技术的主流。但也存在较多缺陷:光学识别只能达到皮肤表皮层,受手指表面灰尘和油脂影响,精心复制的指模也可将系统轻松欺骗;此外光学扫描设备体积庞大、耗电量高、图像获取时间较长,无法应用于笔记本电脑,移动电话等便携式电子产品中。 第二代:电容式指纹识别传感器。得益于硅晶体电容传感器诞生,电容式指纹识别技术才出现。如图所示电容传感器包含数万个金属导体阵列,外部一层绝缘保护层。手指放上面时,金属导体阵列/绝缘层/皮肤构成相应的小电容器阵列。利用指纹的凹凸,通过对每个像素点上充放电,便可检测到指纹的纹路情况,要求绝缘保护层很薄。电容式指纹识别技术才使指纹识别真正普及开来,进入每一个电子设备。然而,它也有一定的不足,比如稳定性不如光学传感技术,另外硅晶体电容传感器很容易受到静电影响,轻则影响图像取样,重则直接损坏传感器。 第三代:生物射频式指纹识别传感器。射频传感器在电容式传感器的基础上扩展的,通过发射微量的射频信号,穿透手指的表皮层获取里层的纹路以获取信息。相比之下,射频传感技术可以排除手指表面的污垢、油脂干扰,精确度很高。 二、指纹识别传感器根据信号的采集方式又可分为划擦式和接触式(面阵式): 划擦式(又称滑动式或刮擦式)指纹识别传感器。将手指从传感器上划过,系统就能获得整个手指的指纹。其宽度只有5mm左右,面积只有手指的1/5,手指按压上去时,无法一次性采集到完整图像。在采集时需要手指划过采集表面,对手指划过时采集到的每一块指纹图像进行快照,这些快照再进行拼接,才能形成完整的指纹图像。下图为划擦式指纹采集的过程图。这种方式使得传感器可以做小,一方面控制体积,另一方方面降低成本;但是在识别过程中手指滑动的快慢,偏左偏右等都会影响采集到指纹图象的完整性,对最终识别造成困难。在2013年10月发布的HTC ONE MAX也是一款指纹识别手机,指纹识别功能区位于手机背面摄像头下方,属于划擦式指纹识别采集方式。 接触式(一般称为面阵式)指纹识别传感器。手指平放在设备上以便获取指纹图像。一般为了获得整个手指的指纹,必须使用比手指更大的传感器,整个手指同时按压在传感器之上。

半导体传感器的原理应用及发展

半导体传感器的原理、应用及发展摘要:本文主要评述半导体传感器例如磁敏,色敏,离子敏,气敏,湿敏的传感器的原理,各行业的应用及目前的发展前景。 关键词:半导体传感器,磁敏、色敏、离子敏、气敏、湿敏、工作原理、现状、发展趋势、应用 一、概述 由于电子技术的飞速发展,以半导体传感器为代表的各种固态传感器相继问世,半导体传感器以其易于实现集成化,微型化,灵敏度高等诸多优点,一直引起世界各国科学家的重视和兴趣,并且越来越多的应用于各个行业。 半导体传感器利用半导体材料易受外界条件影响的物理特性制成的传感器,器种类繁多,它利用近百种物理效应和材料的特性,具有类似于人眼、耳、鼻、舌、皮肤等多种感觉功能。 半导体传感器的优点是灵敏度高、响应速度快、体积小、重量轻、便于集成化、智能化,能使检测转换一体化。半导体传感器的主要应用领域是工业自动化、遥测、工业机器人、家用电器、环境污染监测、医疗保健、医药工程和生物工程。 二、分类 1、磁敏传感器 磁敏传感器的工作原理

磁敏传感器是利用半导体材料中的自由电子或者空穴随磁场改变其运动方向这一特性而制成的,总的来说磁敏传感器就是基于磁电转换原理的传感器。磁敏传感器主要有磁敏电阻、磁敏二极管、磁敏三极管和霍尔式磁敏传感器。 1.磁敏电阻器 磁阻效应将一载流导体置于外磁场中,除了产生霍尔效应外,其电阻也会随磁场而变化,这种效应成为磁电阻效应,简称磁阻效应。磁敏电阻器就是利用磁阻效应制成的一种磁敏元件。 当温度恒定时,在弱磁场范围内,磁阻与磁感应强度B的平方成正比。对于只有电子参与导电的最简单的情况,理论推出磁阻效应的表达式为ρB=ρ0(1+0.273μ2B2) 式中 B---磁感应强度; μ---载流子迁移率; ρ0--- 零磁场下的电阻率; ρB---磁感应强度为B时的电阻率。 设电阻率的变化为△ρ=ρB-ρ0,则电阻率的相对变化率为 △ρ/ρ0=0.273μ2B2=K﹙μB﹚2 由上式可知,磁场一定时,迁移率高的材料磁阻效应明显。磁敏电阻的应用一般用于磁场强度、漏磁、制磁的检测;在交流变换器、频率变换器、功率电压变换器、位移电压变换器、等电路中作控制元件;还可用于接近开关、磁卡文字识别、磁电编码器、电动机测速等方面或制作磁敏传感器用。

指纹传感器

指纹传感器(又称指纹Sensor)是实现指纹自动采集的关键器件。指纹传感器按传感原理,即指纹成像原理和技术,分为光学指纹传感器、半导体电容传感器、半导体热敏传感器、半导体压感传感器、超声波传感器和射频RF传感器等。指纹传感器的制造技术是一项综合性强、技术复杂度高、制造工艺难的高新技术。 半导体指纹传感器因其制造工艺复杂,单位面积上传感单元多,包含高端的IC设计技术、大规模集成电路制造技术、IC芯片封装技术等,所以半导体指纹传感器几乎全部是由IC 技术发达的国家或地区,如美国、欧洲、台湾等地设计、制造的。一颗不足0.5平方厘米的晶片表面集成了10000个以上的半导体传感单元。内部还包括了自动增益电路和逻辑控制芯片,以及串行、并行、USB等接口电路。目前半导体指纹传感器的灵敏度高,分辨率也达到了500dpi或以上。其功能已经突破了单一的传感能力,加上软件配合,可以用做全向导航器。半导体指纹传感器目前朝小型化方向发展。2004年以前以1平方厘米见方的方型为主,目前多为滑动式SWIPE芯片。全球最小的滑动式采集芯片只有12x5 mm,是由Authentec最近推出的1610。光学传感器中存在棱镜,其体积较大,一般为半导体的几倍甚至10倍大小,所以限制了其在小型设备上的应用。在类似考勤机、门禁等大设备上使用没有体积限制的问题,但在U盘、移动硬盘、手持设备上使用,体积成了最大的障碍,所以光学指纹传感器也出现了滑动式的。 分类: 指纹传感器目前主要分为两类,光学指纹传感器和半导体指纹传感器。 光学指纹传感器: 主要是利用光的折摄和反射原理,光从底部射向三棱镜,并经棱镜射出,射出的光线在手指表面指纹凹凸不平的线纹上折射的角度及反射回去的光线明暗就会不一样。CMOS或者CCD的光学器件就会收集到不同明暗程度的图片信息,就完成指纹的采集。 半导体指纹传感器: 这类传感器,无论是电容式或是电感式,其原理类似,在一块集成有成千上万半导体器件的“平板”上,手指贴在其上与其构成了电容(电感)的另一面,由于手指平面凸凹不平,凸点处和凹点处接触平板的实际距离大小就不一样,形成的电容/电感数值也就不一样,设备根 据这个原理将采集到的不同的数值汇总,也就完成了指纹的采集。 热敏式指纹传感器: 根据皮肤纹理与传感器接触部分的温度差异来检测指纹。 超声波指纹传感器: 基于皮肤、指纹面和空气对超声波产生的不同声反射阻抗来检测指纹。 红外指纹传感器:

指纹识别四大技术解析

指纹识别四大技术解析 指纹图像的获取技术主要有4种类型:光学扫描设备(例如微型三棱镜矩阵)、温差感应式指纹传感器、半导体指纹传感器、超声波指纹扫描。 一、光学识别技术 借助光学技术采集指纹是历史最久远、使用最广泛的技术。将手指放在光学镜片上,手指在内置光源照射下,用棱镜将其投射在电荷耦合器件(CCD)上,进而形成脊线(指纹图像中具有一定宽度和走向的纹线)呈黑色、谷线(纹线之间的凹陷部分)呈白色的数字化的、可被指纹设备算法处理的多灰度指纹图像。 光学的指纹采集技术有明显的优点:它已经过较长时间的应用考验,一定程度上适应温度的变异,可达到500DPI的较高分辨率等,最主要是价格低廉。也有明显的缺点:由于要求足够长的光程,因此要求足够大的尺寸,而且过分干燥和过分油腻的手指也将使光学指纹产品的效果变坏。 光学指纹传感局限性体现于潜在指印方面(潜在指印是手指在台板上按完后留下的),不但会降低指纹图像的质量,严重时还可能导致2个指印重叠,显然,难以满足实际应用需要。此外,台板涂层及CCD阵列会随时间推移产生损耗,可能导致采集的指纹图像质量下降。但是具有无法进行活体指纹鉴别、对干湿手指的适用性差等缺点。 光学指纹识别系统由于光不能穿透皮肤表层(死性皮肤层),所以只能够扫描手指皮肤的表面,或者扫描到死性皮肤层,但不能深入真皮层。在这种情况下,手指表面的干净程度,直接影响到识别的效果。如果,用户手指上粘了较多的灰尘,可能就会出现识别出错的情况。并且,如果人们按照手指,做一个指纹手模,也可能通过识别系统,对于用户而言,使用起来不是很安全和稳定。 二、温差感应式识别技术 温差感应式识别技术是基于温度感应的原理而制成的,每个像素都相当于一个微型化的电荷传感器,用来感应手指与芯片映像区域之间某点的温度差,产生一个代表图像信息的电信号。 它的优点是可在0.1s内获取指纹图像,而且传感器体积和面积最小,即目前通常所说的滑动式指纹识别仪就是采用该技术。缺点是:受制于温度局限,时间一长,手指和芯片就处于相同的温度了。 三、半导体硅感技术(电容式技术) 20世纪90年代后期,基于半导体硅电容效应的技术趋于成熟。硅传感器成为电容的一个极板,手指则是另一极板,利用手指纹线的嵴和峪相对于平滑的硅传感器之间的电容差,形成8bit的灰度图像。电容传感器发出电子信号,电子信号将穿过手指的表面和死性皮肤层,直达手指皮肤的活体层(真皮层),直接读取指纹图案。由于深入真皮层,传感器能够捕获更多真实数据,不易受手指表面尘污的影响,提高辨识准确率,有效防止辨识错误。 半导体指纹传感器包括半导体压感式传感器、半导体温度感应传感器等,其中,应用最广泛的是半导体电容式指纹传感器。 半导体电容传感器根据指纹的嵴和峪与半导体电容感应颗粒形成的电容值

半导体指纹传感器

半导体指纹传感器 半导体指纹传感器的基本原理 这类传感器,无论是电容式或是电感式,其原理类似,在一块集成有成千上万半导体器件的“平板”上,手指贴在其上与其构成了电容(电感)的另一面,由于手指平面凸凹不平,凸点处和凹点处接触平板的实际距离大小就不一样,形成的电容/电感数值也就不一样,设备根据这个原理将采集到的不同的数值汇总,就完成了指纹的采集。 半导体指纹传感器的分类 (1)温差感应式指纹传感器 它是基于温度感应的原理而制成的,每个单元传感器就代表一个像素,而整个集成指纹传感器又置于恒温控制下(该温度比体温略低些)。当手指放在指纹传感器上时,由于指纹传感器的温度被控制在+33℃以下,而指纹上脊点的温度就代表体温,指纹上谷点的温度就是周围的环境温度,因此脊点与传感器之间的温度差不等于谷点与传感器之间的温度差,通过扫描方式即可获取指纹图像。 这种传感器的扫描速率非常快,必须在很短时间(一般应小于0.1s)内获 取指纹图像。因为时间一长,手指和芯片就处于相同的温度了。 (2)电容感应式指纹传感器 它是由电容阵列构成的,内部大约包含1万只微型化的电容器。当用户将手指放在正面时,皮肤就组成了电容阵列的一个极板,电容阵列的背面是绝缘极板。由于不同区域指纹的脊和谷之间的距离也不相等,使每个单元的电容量随之而变,由此可获得指纹图像。 半导体指纹传感器的优缺点 半导体指纹传感器具有价格低、体积小、识别率高等优点,这些特有的优点吸引了Sony,Infineon等知名公司,并开发出各具特色的产品。当然,作为极具潜力、代表未来发展方向的指纹传感器也存在一定局限性,表现为易受静电影响, 严重时,传感器可能采集不到图像,甚至本身也会被损坏;手指汗液盐分或其他污物,以及手指磨损等均会造成图像采集困难,其耐磨性亦不及玻璃;大面积制造成

电容感应式指纹传感器工作原理和性能分析

电容感应式指纹传感器工作原理和性能分析 交通运输1101 陈强 3110405027 摘要:本文首先通过查找相关传感器历史资料,回顾了指纹传感器技术的发展历史。从发展早期,现如今和未来三个角度分别介绍了指纹传感器技术的原理,发展过程和未来前景。与此同时通过查阅相关文献资料和技术论文,详细解释了指纹传感器的工作原理,并着重介绍了目前几种现实生活中常见的传感器,如光学指纹传感器和半导体指纹传感器,在对两种传感器进行原理性剖析的基础上,通过列举现实生活中同型号不同产品的半导体指纹传感器,对传感器的主要性能参数进行对比研究,指出了它们的优缺点和应用情况。最后,通过了解苹果公司最新发布的iPhone5s产品中新加入的指纹解锁技术,在阅读其专利图和技术使用说明的基础上,研究分析了实现该项功能所使用传感器的原理和技术细节,并对这一新鲜技术的未来产品中的运用做评估和预测。 1.引言: 指纹是手指表面皮肤凸凹不平形成的纹路,由多种嵴状图形构成。指纹特征即手指表面嵴和沟组成平滑纹理模式,其随机性很强。研究表明:指纹特征具有唯一性、稳定性特点,据此可实现身份识别。 指纹表面积较小,且存在磨损,获取优质指纹图像较困难。指纹传感器是获取指纹图像的专用器件,在自动指纹识别系统中起着关键作用。 本文回顾了指纹传感器技术的发展历史,并介绍了目前几种常见的传感器,在进行原理性剖析的基础上,指出了它们的优缺点和应用情况。 1.1. 早期: 早期的指纹图像采集主要运用油墨按印等物理方式,如果油墨及纸张质量有问题,或按压压力不均,或按压位置、方向差异,或手指损伤、变形等,都会导致采集的指纹图像质量不理想,进而影响该技术应用。为克服物理方式的缺点,发展光学传感器、半导体传感器、超声波传感器等对获取高质量指纹图像提供了良好的技术保障,具有很好实用价值。同时,更先进的指纹图像传感器亦在研发,目的是获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指纹识别准确性、可靠性。 指纹传感器按传感原理,即指纹成像原理和技术,分为光学指纹传感器、半导体电容传感器、半导体热敏传感器、半导体压感传感器、超声波传感器和射频RF传感器等。 1.2. 现在: 指纹识别技术虽然已日渐成熟,图像处理及模式识别技术已经得到很好的解决,但实际上,作为指纹识别的核心技术仍然存在许多尚未解决的难题,尤其是残缺、污损的指纹图像的识别的鲁棒性、适应性方面不能令人满意,指纹识别系统将随着更小更廉价的指纹输入设

相关文档
最新文档