实验1进程的控制与描述资料

实验1进程的控制与描述资料
实验1进程的控制与描述资料

实验1 进程的控制与描述

1.1 Windows任务管理器的进程管理

1.1.1 背景知识

Windows 的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位。使用任务管理器.可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序。也可以使用多个参数评估正在运行的进程的活动,以及查看CPU和内存使用情况的图形和数据。其中:

(1)“应用程序”选项卡显示正在运行程序的状态,用户能够结束、切换或者启动程序。(2)“进程”选项卡显示正在运行的进程信息。例如,可以显示关于CPU和内存使用情况、页面错误、句柄计数以及许多其他参数的信息。

(3)“性能”选项卡显示计算机动态性能,包括CPU和内存使用情况的图表,正在运行的句柄、线程和进程的总数、物理、核心和认可的内存总数(KB)等。

1.1.2 实验目的

通过在windows任务管理器中对程序进程进行响应的管理操作系统进程管理的概念,学习观察操作系统运行的动态性能。

1.1.3工具/准备工作

在开始本实验之前,请回顾教科书的相关内容。

需要准备一台运行windows 7操作系统的计算机。

1.1.4 实验内容与步骤

启动并进入Windows环境,按Ctrl+A1t+DeL键,或者右键单击任务栏,快捷菜单中单击“任务管理器”,打开“任务管理器”窗口。

在本次实验中,你使用的操作系统版本是:

在当前机器中,由你打开、正在运行的应用程序有:

Windows“任务管理器”的窗口由个选项卡组成,分别是:

当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察):

(1)使用任务管理器终止进程

步骤1:单击“进程”选项卡,一共显示个进程。请试着区分一下,其中:系统(system)进程有个,填入表2-1中。

表2-1 实验记录

服务(Service)进程有个,填入表2-2中。

表2-2 实验记录

用户进程有个,填入表2-3中。

表2-3 实验记录

提示:在Windows 7的“任务管理器”中,“进程”选项卡增加了一个“用户名”栏,其中区分了SYSTEM、NETWORK SERVICE、LOCAL SERVICE和用户的不同进程类别。

步骤2:单击要终止的进程,然后单击“结束进程”按钮。

提示:终止进程时要小心。终止进程有可能导致不希望发生的结果,包括数据丢失和系统不稳定等,因为在被终止前,进程将没有机会保存其状态和数据。如果结束应用程序,您将丢失来保存的数据。如果结束系统服务,系统的某些部分可能无法正常工作。

终止进程,将结束它直接或间接创建的所有子进程。

请将终止某进程后的操作结果与原记录数据对比,发生了什么?

(2)显示其他进程计数器

在“进程”选项卡上单击“查看”菜单,然后单击“选择列”命令。单击要增加显示为列标题的项目,然后单击“确定”。

为对进程列表进行排序,可在“进程”选项卡上单击要根据其进行排序的列标题。而为了要反转排序顺序,可再次单击列标题。

经过调整,“进程”选项卡现在显示的项目分别是:

通过对“查看”菜单的选择操作,可以在“任务管理器”中更改显示选项:

?在“应用程序”选项卡上,可以按详细信息、大图标或小图标查看。

?在“性能”选项卡上.可以更改CPU记录图,并显示内核时间。“显示内核时间”选项在“CPU使用”和“CPU使用记录”图表上添加红线。红线指示内核操作占用的

CPU资源数量。

(3)更改正在运行的程序的优先级

要查看正在运行的程序的优先级.可单击“进程”选项卡,单击“查看”菜单,单击“选择列”、“基本优先级”,然后单击“确定”按钮。

为更改正在运行的程序的优先级,可在“进程”选项卡上右键单击您要更改的程序,指向“设置优先级”,然后单击所需的选项。

更改进程的优先级可以便其运行更快或更慢(取决于是提升还是降低了优先级),但也可能对其他进程的性能有相反的影响。

记录操作后所体会的结果:

在多处理器计算机上,用户还可以给处理器指派进程,将程序或进程的执行限制在选定的处理器上,但这有可能导致总体性能的下降。

实验总结

1.2 Windows 编程

1.2.2 背景知识

Windows XP是以NT技术构建的,它提供了创建控制台应用程序的能力,使用户可以利用标准的C++工具,如iostream库中的cout和cin对象,来创建小型应用程序。当系统运行时,Windows 的服务通常要向系统用户提供所需功能。

当C++编译器创建可执行程序时,编译器将源代码编译成OBJ文件,然后将其与标准库相链接。产生的EXE文件是装载器指令、机器指令和应用程序的数据的集合。装载器指令告诉系统从哪里装载机器代码。另一个装载器指令告诉系统从哪里开始执行进程的主线程。在进行某些设置后,进入开发者提供的main()、ServiceMain()或WinMain()函数的低级入口点。机器代码中包括控制逻辑,它所做的事包括跳转到Windows API函数,进行计算或向磁盘写入数据等。

2.2.2 实验目的

通过对Windows 编程,进一步熟悉操作系统的基本概念,较好地理解Windows 的结构。

2.2.3 工具/准备工作

在开始本实验之前.请回顾教科书的相关内容。

您需要做以下准备;

?一台运行Windows 7操作系统的计算机

?计算机中需安装Visual C++ 6.0专业版或企业版

2.2.4 实验内容与步骤

(1)控制台程序

先来创建一个名为“Hello,world”的应用程序。

步骤1:登录进入Windows 7;

步骤2:打开VC++环境,输入相应代码段:

程序2-1 个简单的Windows 控制台应用程序

// hello项目

# include

void main()

{

std::cout << "Hello,Windows 7" << std :: endl;

}

步骤3:保存,编译,链接,正常后运行

操作能否正常进行?如果不行,原因是什么?

linux进程控制 实验报告

长安大学 操作系统实验报告 实验课程:操作系统 实验名称:linux进程控制 学院:信息学院 专业:软件工程 学号:2406090106 姓名:刘建 日期:2012-5-09

一、实验目的 熟悉进程的创建过程,了解系统调用函数fork() 和execl()。 二、实验内容 1、阅读实例代码fork1,并编辑、编译、运行,记录程序的运行结果,尝试给出合理的解释,查阅有关资料,掌握系统调用fork( )的用法,返回值的意义。 2、阅读实例代码fork2,并编辑、编译、运行,记录程序的运行结果,尝试给出合理的解释,查阅有关资料,掌握在程序中运行一个操作系统命令和运行一个程序的方法。 3、修改fork2,使之能把运行的命令和程序作为参数传给fork2。 三、设计思想 1、程序框架

pid = -1 pid = 0pid> 0 2、用到的文件系统调用函数 fork() 和execl() 四、调试过程 1、测试数据设计 (1)fork1 命名程序1: 编写程序1:

编译程序1: 运行程序1: (2)fork2

编写程序2: 运行程序2:

(3)修改fork2 编写修改程序2: 修改后的运行结果: 2、测试结果分析 (1)对于程序1:因为系统调用fork()函数是一次调用两次返回值,而且先生成子进程还是父进程是不确定的,所以第一次执行生成子进程的时候返回的pid = 0,判断pid!=-1,所以输出了I’m the child. I’m the parent. 第二次,执行父进程的时候,返回的是子进程的进程号pid> 0,即pid的值仍然不为-1,所以又输出了一次I’m the child. I’m the parent。 (2)对于程序2:第一次调用fork()函数时,由于执行的是子进程还是父进程是随机的,所以第一次对父进程返回的是子进程的进程号(大于0),即pid> 0,所以输出I’m the parent. Program end.当第二次执行子进程时返回值是0,即pid = 0,所以输出I’m the child. 并调用了execl()函数,查看了指定路径中的文件。

实验一 进程管理

实验一进程管理 【实验目的】 1)加深对进程概念及进程管理各部分内容的理解。 2)熟悉进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。 【实验要求】 调试并运行一个允许n 个进程并发运行的进程管理模拟系统。了解该系统的进程控制、同步及通讯机构,每个进程如何用一个PCB 表示、其内容的设置;各进程间的同步关系;系统在运行过程中显示各进程的状态和有关参数变化情况的意义。 【实验环境】 具备Windows或MS-DOS操作系统、带有Turbo C 集成环境的PC机。 【实验重点及难点】 重点:理解进程的概念,进程管理中主要数据结构的设计和进程调度算法、进程控制机构、同步机构、通讯机构的实施。 难点:实验程序的问题描述、实现算法、数据结构。 【实验内容】 一.阅读实验程序 程序代码见【实验例程】。 二.编译实验例程 用Turbo C 编译实验例程。 三.运行程序并对照实验源程序阅读理解实验输出结果的意义。 【实验例程】 #include #define TRUE 1 #define FALSE 0 #define MAXPRI 100 #define NIL -1 struct { int id; char status; int nextwr; int priority; } pcb [3]; struct { int value; int firstwr; } sem[2]; char savearea[3][4],addr; int i,s1,s2,seed, exe=NIL;

init() { int j; for (j=0;j<3;j++) { pcb[j].id=j; pcb[j].status='r'; pcb[j].nextwr=NIL; printf("\n process%d priority?",j+1); scanf("%d",&i); pcb[j].priority=i; } sem[0].value=1; sem[0].firstwr=NIL; sem[1].value=1; sem[1].firstwr=NIL; for(i=1;i<3;i++) for(j=0;j<4;j++) savearea[i] [j]='0'; } float random() { int m; if (seed<0) m=-seed; else m=seed; seed=(25173*seed+13849)%65536; return(m/32767.0); } timeint(ad) char ad; { float x; x=random(); if((x<0.33)&&(exe==0))return(FALSE); if((x<0.66)&&(exe==1))return(FALSE); if((x<1.0)&&(exe==2))return(FALSE); savearea[exe][0]=i; savearea[exe][1]=ad; pcb[exe].status='t'; printf("times silce interrupt'\n process%d enter into ready.\n",exe+1); exe=NIL; return(TRUE); } scheduler()

操作系统实验-进程控制

实验一、进程控制实验 1.1 实验目的 加深对于进程并发执行概念的理解。实践并发进程的创建和控制方法。观察和体验进程的动态特性。进一步理解进程生命期期间创建、变换、撤销状态变换的过程。掌握进程控制的方法,了解父子进程间的控制和协作关系。练习Linux 系统中进程创建与控制有关的系统调用的编程和调试技术。 1.2 实验说明 1)与进程创建、执行有关的系统调用说明进程可以通过系统调用fork()创建子进程并和其子进程并发执行.子进程初始的执行映像是父进程的一个复本.子进程可以通过exec()系统调用族装入一个新的执行程序。父进程可以使用wait()或waitpid()系统调用等待子进程的结束并负责收集和清理子进程的退出状态。 fork()系统调用语法: #include pid_t fork(void); fork 成功创建子进程后将返回子进程的进程号,不成功会返回-1. exec 系统调用有一组6 个函数,其中示例实验中引用了execve 系统调用语法: #include int execve(const char *path, const char *argv[], const char * envp[]); path 要装入 的新的执行文件的绝对路径名字符串. argv[] 要传递给新执行程序的完整的命令参数列表(可以为空). envp[] 要传递给新执行程序的完整的环境变量参数列表(可以为空).

Exec 执行成功后将用一个新的程序代替原进程,但进程号不变,它绝不会再返回到调用进程了。如果exec 调用失败,它会返回-1。 wait() 系统调用语法: #include #include pid_t wait(int *status); pid_t waitpid(pid_t pid,int *status,int option); status 用 于保留子进程的退出状态 pid 可以为以下可能值: -1 等待所有PGID 等于PID 的绝对值的子进程 1 等待所有子进程 0 等待所有PGID 等于调用进程的子进程 >0 等待PID 等于pid 的子进程option 规 定了调用waitpid 进程的行为: WNOHANG 没有子进程时立即返回 WUNTRACED 没有报告状态的进程时返回 wait 和waitpid 执行成功将返回终止的子进程的进程号,不成功返回-1。 getpid()系统调用语法: #include #include pid_t getpid(void); pid_t getppid(void); getpid 返回当前进程的进程号,getppid 返回当前进程父进程的进程号 2)与进程控制有关的系统调用说明可以通过信号向一个进程发送消息以控制进程的 行为。信号是由中断或异常事件引发的,如:键盘中断、定时器中断、非法内存引

windows进程管理实验报告

实验报告 课程名称:操作系统 实验项目:windows进程管理 姓名: 专业:计算机科学与技术 班级: 学号:

计算机科学与技术学院 计算机系 2019 年 4 月 23 日

实验项目名称: windows进程管理 一、实验目的 1. 学习windows系统提供的线程创建、线程撤销、线程同步等系统调用; 2. 利用C++实现线程创建、线程撤销、线程同步程序; 3. 完成思考、设计与练习。 二、实验用设备仪器及材料 1. Windows 7或10, VS2010及以上版本。 三、实验内容 1 线程创建与撤销 写一个windows控制台程序(需要MFC),创建子线程,显示Hello, This is a Thread. 然后撤销该线程。 相关系统调用: 线程创建: CreateThread() 线程撤销: ExitThread() 线程终止: ExitThread(0) 线程挂起: Sleep() 关闭句柄: CloseHandle() 参考代码: ; } 运行结果如图所示。 完成以下设计题目: 1. 向线程对应的函数传递参数,如字符串“hello world!”,在线程中显示。 2. 如何创建3个线程A, B, C,并建立先后序执行关系A→B→C。

实验内容2 线程同步 完成父线程和子线程的同步。父线程创建子线程后进入阻塞状态,子线程运行完毕后再唤醒。 相关系统调用: 等待对象 WaitForSingleObject(), WaitForMultipleObjects(); 信号量对象 CreateSemaphore(), OpenSemaphore(), ReleaseSemaphore(); HANDLE WINAPI CreateSemaphore( _In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreAttributes _In_ LONG lInitialCount, _In_ LONG lMaximumCount, _In_opt_ LPCTSTR lpName ); 第一个参数:安全属性,如果为NULL则是默认安全属性 第二个参数:信号量的初始值,要>=0且<=第三个参数 第三个参数:信号量的最大值 第四个参数:信号量的名称 返回值:指向信号量的句柄,如果创建的信号量和已有的信号量重名,那么返回已经存在的信号量句柄参考代码: n"); rc=ReleaseSemaphore(hHandle1,1,NULL); err=GetLastError(); printf("Release Semaphore err=%d\n",err); if(rc==0) printf("Semaphore Release Fail.\n"); else printf("Semaphore Release Success. rc=%d\n",rc); } 编译运行,结果如图所示。

进程管理实验报告

实验2过程管理实验报告学生号姓名班级电气工程系过程、过程控制块等基本原理过程的含义:过程是程序运行过程中对数据集的处理,以及由独立单元对系统资源的分配和调度。在不同的数据集上运行程序,甚至在同一数据集上运行多个程序,是一个不同的过程。(2)程序状态:一般来说,一个程序必须有三种基本状态:就绪、执行和阻塞。然而,在许多系统中,过程的状态变化可以更好地描述,并且增加了两种状态:新状态和终端状态。1)就绪状态,当一个进程被分配了除处理器(CPU)以外的所有必要资源时,只要获得了处理器,进程就可以立即执行。此时,进程状态称为就绪状态。在系统中,多个进程可以同时处于就绪状态。通常,这些就绪进程被安排在一个或多个队列中,这些队列称为就绪队列。2)一旦处于就绪状态的进程得到处理器,它就可以运行了。进程的状态称为执行状态。在单处理器系统中,只有一个进程在执行。在多处理器系统中,可能有多个进程在执行中。3)阻塞状态由于某些事件(如请求输入和输出、额外空间等),执行进程被挂起。这称为阻塞状态,也称为等待状态。通常,处于阻塞状态的进程被调度为-?这个队列称为阻塞队列。4)新状态当一个新进程刚刚建立并且还没有放入就绪队列中时,它被称为新状态。5)终止状态是

什么时候-?进程已正常或异常终止,操作系统已将其从系统队列中删除,但尚未取消。这就是所谓的终结状态。(3)过程控制块是过程实体的重要组成部分,是操作系统中最重要的记录数据。控制块PCB记录操作系统描述过程和控制过程操作所需的所有信息。通过PCB,一个不能独立运行的程序可以成为一个可以独立运行的基本单元,并且可以同时执行一个进程。换句话说,在进程的整个生命周期中,操作系统通过进程PCB管理和控制并发进程。过程控制块是系统用于过程控制的数据结构。系统根据进程的PCB来检测进程是否存在。因此,进程控制块是进程存在的唯一标志。当系统创建一个进程时,它需要为它创建一个PCB;当进程结束时,系统回收其PCB,进程结束。过程控制块的内容过程控制块主要包括以下四个方面的信息。过程标识信息过程标识用于对过程进行标识,通常有外部标识和内部标识。外部标识符由流程的创建者命名。通常是一串字母和数字。当用户访问进程时使用。外部标识符很容易记住。内部标识符是为了方便系统而设置的。操作系统为每个进程分配一个唯一的整数作为内部标识符。通常是进程的序列号。描述性信息(process scheduling message)描述性信息是与流程调度相关的一些有关流程状态的信息,包括以下几个方面。流程状态:表

实验一 进程管理

实验一进程管理 1. 实验目的 ⑴加深对进程概念的理解,明确进程和程序的区别; ⑵进一步认识并发执行的实质; ⑶分析进程争用资源的现象,学习解决进程互斥的方法; ⑷了解Linux系统中进程通信的基本原理。 2. 实验准备 ⑴阅读Linux的sched.h源码文件,加深对进程管理的理解。 ⑵阅读Linux的fork.h源码文件,分析进程的创建过程。 3. 实验内容 ⑴进程的创建 编写一段程序,使用系统调用fork ( )创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。 ⑵进程的控制 修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。 如果在程序中使用系统调用lockf ( )来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。 ⑶软中断通信 编制一段程序实现进程的软中断通信。要求:使用系统调用fork ( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上发来的中断信号(既按Del键);当捕捉到中断信号后,父进程系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent process is killed! 在上面的程序中增加语句signal (SIGINT, SIG_IGN) 和signal (SIGQUIT, SIG_IGN),观察执行结果,并分析原因。 4. 实验指导

操作系统实验报告--实验一--进程管理

实验一进程管理 一、目的 进程调度是处理机管理的核心内容。本实验要求编写和调试一个简单的进程调度程序。通过本实验加深理解有关进程控制块、进程队列的概念,并体会和了解进程调度算法的具体实施办法。 二、实验内容及要求 1、设计进程控制块PCB的结构(PCB结构通常包括以下信息:进程名(进程ID)、进程优先数、轮转时间片、进程所占用的CPU时间、进程的状态、当前队列指针等。可根据实验的不同,PCB结构的内容可以作适当的增删)。为了便于处理,程序中的某进程运行时间以时间片为单位计算。各进程的轮转时间数以及进程需运行的时间片数的初始值均由用户给定。 2、系统资源(r1…r w),共有w类,每类数目为r1…r w。随机产生n进程P i(id,s(j,k),t),0<=i<=n,0<=j<=m,0<=k<=dt为总运行时间,在运行过程中,会随机申请新的资源。 3、每个进程可有三个状态(即就绪状态W、运行状态R、等待或阻塞状态B),并假设初始状态为就绪状态。建立进程就绪队列。 4、编制进程调度算法:时间片轮转调度算法 本程序用该算法对n个进程进行调度,进程每执行一次,CPU时间片数加1,进程还需要的时间片数减1。在调度算法中,采用固定时间片(即:每执行一次进程,该进程的执行时间片数为已执行了1个单位),这时,CPU时间片数加1,进程还需要的时间片数减1,并排列到就绪队列的尾上。 三、实验环境 操作系统环境:Windows系统。 编程语言:C#。 四、实验思路和设计 1、程序流程图

2、主要程序代码 //PCB结构体 struct pcb { public int id; //进程ID public int ra; //所需资源A的数量 public int rb; //所需资源B的数量 public int rc; //所需资源C的数量 public int ntime; //所需的时间片个数 public int rtime; //已经运行的时间片个数 public char state; //进程状态,W(等待)、R(运行)、B(阻塞) //public int next; } ArrayList hready = new ArrayList(); ArrayList hblock = new ArrayList(); Random random = new Random(); //ArrayList p = new ArrayList(); int m, n, r, a,a1, b,b1, c,c1, h = 0, i = 1, time1Inteval;//m为要模拟的进程个数,n为初始化进程个数 //r为可随机产生的进程数(r=m-n) //a,b,c分别为A,B,C三类资源的总量 //i为进城计数,i=1…n //h为运行的时间片次数,time1Inteval为时间片大小(毫秒) //对进程进行初始化,建立就绪数组、阻塞数组。 public void input()//对进程进行初始化,建立就绪队列、阻塞队列 { m = int.Parse(textBox4.Text); n = int.Parse(textBox5.Text); a = int.Parse(textBox6.Text); b = int.Parse(textBox7.Text); c = int.Parse(textBox8.Text); a1 = a; b1 = b; c1 = c; r = m - n; time1Inteval = int.Parse(textBox9.Text); timer1.Interval = time1Inteval; for (i = 1; i <= n; i++) { pcb jincheng = new pcb(); jincheng.id = i; jincheng.ra = (random.Next(a) + 1); jincheng.rb = (random.Next(b) + 1); jincheng.rc = (random.Next(c) + 1); jincheng.ntime = (random.Next(1, 5)); jincheng.rtime = 0;

进程管理实验报告

进程的控制 1 .实验目的 通过进程的创建、撤消和运行加深对进程概念和进程并发执行的理解,明确进程与程序之间的区别。 【答:进程概念和程序概念最大的不同之处在于: (1)进程是动态的,而程序是静态的。 (2)进程有一定的生命期,而程序是指令的集合,本身无“运动”的含义。没有建立进程的程序不能作为1个独立单位得到操作系统的认可。 (3)1个程序可以对应多个进程,但1个进程只能对应1个程序。进程和程序的关系犹如演出和剧本的关系。 (4)进程和程序的组成不同。从静态角度看,进程由程序、数据和进程控制块(PCB)三部分组成。而程序是一组有序的指令集合。】2 .实验内容 (1) 了解系统调用fork()、execvp()和wait()的功能和实现过程。 (2) 编写一段程序,使用系统调用fork()来创建两个子进程,并由父进程重复显示字符串“parent:”和自己的标识数,而子进程则重复显示字符串“child:”和自己的标识数。 (3) 编写一段程序,使用系统调用fork()来创建一个子进程。子进程通过系统调用execvp()更换自己的执行代码,新的代码显示“new

program.”。而父进程则调用wait()等待子进程结束,并在子进程结束后显示子进程的标识符,然后正常结束。 3 .实验步骤 (1)gedit创建进程1.c (2)使用gcc 1.c -o 1编译并./1运行程序1.c #include #include #include #include void mian(){ int id; if(fork()==0) {printf(“child id is %d\n”,getpid()); } else if(fork()==0) {printf(“child2 id %d\n”,getpid()); } else {id=wait(); printf(“parent id is %d\n”,getpid()); }

实验一进程管理实验

实验一linux进程的创建与控制 【实验目的】 1、加深对进程概念的理解,明确进程和程序的区别; 2、进一步认识并发执行的实质; 3、分析进程争用资源的现象,学习解决进程互斥的方法; 【实验环境】 编程环境:TC或者VC 操作系统软件:linux 【准备知识】 一.基本概念 1、进程的概念;进程与程序的区别。 2、并发执行的概念。 3、进程互斥的概念。 二.系统调用 系统调用是一种进入系统空间的办法。通常,在OS的核心中都设置了一组用于实现各 种系统功能的子程序,并将它们提供给程序员调用。程序员在需要OS提供某种服务的时候,便可以调用一条系统调用命令,去实现希望的功能,这就是系统调用。因此,系统调用就像 一个黑箱子一样,对用户屏蔽了操作系统的具体动作而只是控制程序的执行速度等。各个不同的操作系统有各自的系统调用,女口windows API,便是windows的系统调用,Linux的系 统调用与之不同的是Linux由于内核代码完全公开,所以可以细致的分析出其系统调用的机制。 三.相关函数。 1 fork()函数 fork()函数创建一个新进程。 其调用格式为:int fork(); 其中返回int取值意义如下: 正确返回:等于0 :创建子进程,从子进程返回的ID值; 大于0 :从父进程返回的子进程的进程ID值。

错误返回:等于一1创建失败。 2 wait()函数 wait()函数常用来控制父进程与子进程的同步。在父进程中调用wait()函数,则父进程被阻塞,进入等待队列,等待子进程结束。当子进程结束时,会产生一个终止状态字,系统会向父进程发出SIGCHLD言号。当接到信号后,父进程提取子进程的终 止状态字,从wait()函数返回继续执行原程序。 其调用格式为:#i nclude #i nclude / (pid_t) wait(i nt *statloc) ; 正确返回:大于0:子进程的进程ID值; / 等于0:其它。 错误返回:等于一1调用失败。 3 exit()函数 exit() 函数是进程结束最常调用的函数,在main()函数中调用return,最终也是调用exit()函数。这些都是进程的正常终止。在正常终止时,exit()函数返回进程 结束状态。 其调用格式为:#in elude <> void exit(i nt status) ; 其中status为进程结束状态。 4 kill()函数 \ kill()函数用于删除执行中的程序或者任务。 其调用格式为:kill(i nt PID,i nt IID) ; 其中:PID是要被杀死的进程号,IID为向将被杀死的进程发送的中断号。 关于Linux下的C语言编程 1 )编辑器可使用vi 2 )编译器使用gee 格式:gee optio n file name 例如:gee -o main 主要的option -o指定输出文件名(不指定则生成默认文件) 其它的参数见帮助(man gee)

实验一-进程控制实验

实验一进程控制 一、实验目的: 加深对进程概念的理解,明确进程和程序的区别;掌握Linux操作系统的进程创建和终止操作,体会父进程和子进程的关系及进程状态的变化;进一步认识并发执行的实质,编写并发程序。 二、实验平台: 虚拟机:VMWare9以上 操作系统:Ubuntu12.04以上 编辑器:Gedit | Vim 编译器:Gcc 三、实验内容: (1)编写一段程序,使用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示“身份信息”:父进程显示“Parent process! PID=xxx1 PPID=xxx2”;子进程显示“Childx process! PID=xxx PPID=xxx”。多运行几次,观察记录屏幕上的显示结果,并分析原因。 说明: xxx1为进程号,用getpid()函数可获取进程号; xxx2为父进程号,用getppid()函数可获取父进程号; Childx中x为1和2,用来区别两个子进程; wait()函数用来避免父进程在子进程终止之前终止。 程序源码: #include #include #include #define NUM 2 int main(void) {

pid_t pid1,pid2; if((pid1=fork())<0){ printf("创建进程1失败"); }else{ if(pid1==0){ //子进程1执行 printf("Child1 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); sleep(2); }else{ if((pid2=fork())<0){ printf("创建进程2失败"); }else{ if(pid2==0){ //子进程2执行 printf("Child2 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); } else{ //父进程执行 wait(); wait(); printf("Parent process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); exit(0); } } } } }

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

实验1进程的控制与描述资料

实验1 进程的控制与描述 1.1 Windows任务管理器的进程管理 1.1.1 背景知识 Windows 的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位。使用任务管理器.可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序。也可以使用多个参数评估正在运行的进程的活动,以及查看CPU和内存使用情况的图形和数据。其中: (1)“应用程序”选项卡显示正在运行程序的状态,用户能够结束、切换或者启动程序。(2)“进程”选项卡显示正在运行的进程信息。例如,可以显示关于CPU和内存使用情况、页面错误、句柄计数以及许多其他参数的信息。 (3)“性能”选项卡显示计算机动态性能,包括CPU和内存使用情况的图表,正在运行的句柄、线程和进程的总数、物理、核心和认可的内存总数(KB)等。 1.1.2 实验目的 通过在windows任务管理器中对程序进程进行响应的管理操作系统进程管理的概念,学习观察操作系统运行的动态性能。 1.1.3工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 需要准备一台运行windows 7操作系统的计算机。 1.1.4 实验内容与步骤 启动并进入Windows环境,按Ctrl+A1t+DeL键,或者右键单击任务栏,快捷菜单中单击“任务管理器”,打开“任务管理器”窗口。 在本次实验中,你使用的操作系统版本是: 在当前机器中,由你打开、正在运行的应用程序有:

Windows“任务管理器”的窗口由个选项卡组成,分别是: 当前“进程”选项卡显示的栏目分别是(可移动窗口下方的游标/箭头,或使窗口最大化进行观察): (1)使用任务管理器终止进程 步骤1:单击“进程”选项卡,一共显示个进程。请试着区分一下,其中:系统(system)进程有个,填入表2-1中。 表2-1 实验记录

过程控制实验报告

《过程控制实验》 实验报告

第一章、过程控制实验装置的认识 一、过程控制实验的基本内容及概述 本次过程控制实验主要是对实验室的水箱水位进行控制。水箱液位控制系统是一个简单控制系统,所谓简单液位控制系统通常是指由一个被控对象、一个检测变送单元(检测元件及变送器)、以个控制器和一个执行器(控制阀)所组成的单闭环负反馈控制系统,也称为单回路控制系统。 简单控制系统有着共同的特征,它们均有四个基本环节组成,即被控对象、测量变送装置、控制器和执行器。 图1-1 水箱液位控制系统的原理框图 这是单回路水箱液位控制系统,单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的恒定参数是液位的给定高度,即控制的任务是控制水箱液位等于给定值所要求的高度。 二、主要设备 1)水路装置的认识 过程控制实验用的水路装置图如下

图1-2 水路图 由水路装置图我们看到,装置主要有水箱,交流电动泵,热炉,管道,电动阀,电磁阀,流量计,液位传感器,温度传感器组成,可以构成一个完整的过程控制实验平台。从上图我们可以看出,装置主要分为两大部分,第一水路,管道,热炉,水箱等等物理对象,第二是传感器,执行机构等等的控制部分的装置。 实验装置具体介绍如下:

b)电气连接图 由电气装置的图我们可以看到,所有的电器连接都在这里,主要是一些传感器信号,电动驱动信号,用于电动装置的驱动。 见附件 c)操作面板图: 从操作面板上我们可以看到主要是由四个表,由P909构成,用于测量控制压力、流量、液位、温度的测量以及控制,PV代表反馈测量,外给定可以用于串级控制,OUT用于输出信号,以上接口均使用4-20mA标准 见附件 第二、三章、实验系统的认知(包括力控软件,P909,实验装置) a)力控软件的安装 首先使用光盘里的Setup.exe安装力控软件的主题部分,然后将IO Servers文件夹拷到力控软件的安装目录下,安装IO Servers驱动 然后打开力控软件,寻找到力控软件的目录,点击开发模式,然后找到COM设置的部分,如图

实验1 Windows进程管理编程

实验一Windows进程管理和进程编程 实验内容1.1 Windows 任务管理器的进程管理 1、背景知识简介 Windows的任务管理器提供了用户计算机上正在运行的程序和进程的相关信息,也显示了最常用的度量进程性能的单位 使用任务管理器 ?可以打开监视计算机性能的关键指示器,快速查看正在运行的程序的状态,或者终止已停止响应的程序 ?也可以使用多个参数评估正在运行的进程的活动,以及查看CPU 和内存使用情况的图形和数据 任务管理器中 ?“应用程序”选项卡:显示正在运行程序的状态,用户能够结束、切换或者启动程序?“进程”选项卡:显示正在运行的进程信息。例如,可以显示关于CPU 和内存使用情况、页面错误、句柄计数以及许多其他参数的信息 ?“性能”选项卡:显示计算机动态性能,包括CPU 和内存使用情况的图表,正在运行的句柄、线程和进程的总数,物理、核心和认可的内存总数(KB) 等 2、实验目的和要求 通过在Windows 任务管理器中对程序进程进行响应的管理操作 熟悉操作系统进程管理的概念 学习观察操作系统运行的动态性能 3、实验环境 需要准备一台运行Windows XP Professional操作系统的计算机 4、实验内容与步骤 1.启动任务管理器。按Alt+Ctrl+Delete,或右键单击任务栏,选择任务管理器。

在Windows XP的任务管理器中,“进程”选项卡增加了一个“用户名”栏目,其中区分了SYSTEM、NETWORK SERVICE、LOCAL SERVICE和用户的不同进程类别。 2.使用任务管理器终止进程。选择进程名,点击右下角的“结束进程”。终止进程时要小 心,有可能导致不希望发生的结果,包括数据丢失和系统不稳定等。点击进程,右键选择“终止进程树”,会结束该进程以及它直接或间接创建的所有子进程。

操作系统-进程管理实验报告

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的sched.h源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码如下: #include #include #include #include #include int main(int argc,char* argv[]) { pid_t pid1,pid2; pid1 = fork(); if(pid1<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid1 == 0){ printf("b\n"); } 1/11

else{ pid2 = fork(); if(pid2<0){ fprintf(stderr,"childprocess1 failed"); exit(-1); } else if(pid2 == 0){ printf("c\n"); } else{ printf("a\n"); sleep(2); exit(0); } } return 0; } 结果如下: 分析原因: pid=fork(); 操作系统创建一个新的进程(子进程),并且在进程表中相应为它建立一个新的表项。新进程和原有进程的可执行程序是同一个程序;上下文和数据,绝大部分就是原进程(父进程)的拷贝,但它们是两个相互独立的进程!因此,这三个进程哪个先执行,哪个后执行,完全取决于操作系统的调度,没有固定的顺序。 (2)进程的控制 修改已经编写的程序,将每个进程输出一个字符改为每个进程输出一句话,再观察程序执行时屏幕上出现的现象,并分析原因。 将父进程的输出改为father process completed 2/11

实验一-进程控制实验

实验一-进程控制实验

实验一进程控制 一、实验目的: 加深对进程概念的理解,明确进程和程序的区别;掌握Linux操作系统的进程创建和终止操作,体会父进程和子进程的关系及进程状态的变化;进一步认识并发执行的实质,编写并发程序。 二、实验平台: 虚拟机:VMWare9以上 操作系统:Ubuntu12.04以上 编辑器:Gedit | Vim 编译器:Gcc 三、实验内容: (1)编写一段程序,使用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示“身份信息”:父进程显示“Parent process! PID=xxx1 PPID=xxx2”;子进程显示“Childx process! PID=xxx PPID=xxx”。多运行几次,观察记录屏幕上的显示结果,并分析原因。

说明: xxx1为进程号,用getpid()函数可获取进程号; xxx2为父进程号,用getppid()函数可获取父进程号; Childx中x为1和2,用来区别两个子进程; wait()函数用来避免父进程在子进程终止之前终止。 程序源码: #include #include #include #define NUM 2 int main(void) { pid_t pid1,pid2; if((pid1=fork())<0){ printf("创建进程1失败"); }else{

if(pid1==0){ //子进程1执行 printf("Child1 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); sleep(2); }else{ if((pid2=fork())<0){ printf("创建进程2失败"); }else{ if(pid2==0){ //子进程2执行 printf("Child2 process: "); printf("PID=%d PPID=%d \n",getpid(),getppid()); } else{ //父进程执行 wait();

Linux 进程管理实验

Linux 进程管理实验 一、实验内容: 1. 利用bochs观测linux0.11下的PCB进程控制结构。 2. 利用bochs观测linux0.11下的fork.c源代码文件,简单分析其中的重要函数。 3. 在fork.c适当位置添加代码,以验证fork函数的工作原理。 二、Linux进程管理机制分析 Linux有两类进程:一类是普通用户进程,一类是系统进程,它既可以在用户空间运行,又可以通过系统调用进入内核空间,并在内核空间运行;另一类叫做内核进程,这种进程只能在内核空间运行。在以i386为平台的Linux系统中,进程由进程控制块,系统堆栈,用户堆栈,程序代码及数据段组成。Linux系统中的每一个用户进程有两个堆栈:一个叫做用户堆栈,它是进程运行在用户空间时使用的堆栈;另一个叫做系统堆栈,它是用户进程运行在系统空间时使用的堆栈。 1.Linux进程的状态: Linux进程用进程控制块的state域记录了进程的当前状态,一个Linux 进程在它的生存期中,可以有下面6种状态。 1.就绪状态(TASK_RUNNING):在此状态下,进程已挂入就绪队列,进入准备运行状态。 2.运行状态(TASK_RUNNING):当进程正在运行时,它的state域中的值不改变。但是Linux会用一个专门指针(current)指向当前运行的

任务。 3.可中断等待状态(TASK_INTERRUPTIBLE):进程由于未获得它所申请的资源而处在等待状态。不管是资源有效或者中断唤醒信号都能使等待的进程脱离等待而进入就绪状态。即”浅睡眠状态”。 4.不可中断等待状态(TASK_UNINTERRUPTIBLE):这个等待状态与上面等待状态的区别在于只有当它申请的资源有效时才能被唤醒,而其它信号不能。即“深睡眠状态”。 5.停止状态(TASK_STOPPED):当进程收到一个SIGSTOP信号后就由运行状态进入停止状态,当收到一个SINCONT信号时,又会恢复运行状态。挂起状态。 6.终止状态(TASK_ZOMBIE):进程因某种原因终止运行,但进程控制块尚未注销。即“僵死状态”。 状态图如下所示: 2.Linux进程控制块:

相关文档
最新文档