动量定理 及答案

动量定理  及答案
动量定理  及答案

动量定理 赵卫斌

1. 动量

(1)运动物体的质量和速度的乘积叫做动量。即mv p =。

(2)式中的速度是瞬时速度,故动量是一个状态量,动量与动能的关系式k mE p 22=。

(3)动量是矢量:物体动量的方向与物体的瞬时速度方向相同,动量的运算应使用平行四边形定则,如果物体的运动变化前后的动量都在同一直线上,那么选定正方向后,动量的方向可以用正、负号表示,动量的运算就简化为代数运算了。

2. 冲量

(1)力和力的作用时间的乘积Ft (一般用I 表示:Ft I =),叫做该力的冲量。它反映了力对时间的积累过程,是一个过程量。

(2)冲量也是矢量,它的方向由力的方向决定,如果在作用时间内力的方向不变,冲量的方向就是力的方向。

3. 动量定理

物体所受合外力的冲量等于它的动量的变化:p p Ft -'=或mv v m Ft -'=

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。

(2)动量定理的研究对象可以是单个物体,也可以是物体系统,对物体系统,只需分析系统受的外力,不必考虑系统内力,系统内力的作用不改变整个系统的总动量。

(3)用牛顿第二定律和运动学公式能解的恒力作用下的匀变速直线运动的问题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。

但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力,对于变力,动量定理中的力F 应当理解为变力在作用时间内的平均值。

(4)根据ma F =得t

p p t v v m

ma F ?-'=?-'==即t p F ??=,这是牛顿第二定律的另一种表达形式:作用力F 等于物体动量的变化率t p ??。 (5)动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用力(内力)的冲量,这是因为内为总是成对出现的,且大小相等,方向相反,故其内力的总冲量必定为零。

4. 应用动量定理解题的注意事项:

(1)因为动量定理中的冲量为研究对象所受外力的总冲量,所以必须准确地选择研究对象,并进行全面的受力分析,画出受力图,如果在过程中外力有增减,还需进行多次受力分析。

(2)因为动量定理是矢量式,而多数情况下物体的运动是一维的,所以在应用动量定理前必须建立一个一维坐标,确定正方向,并在受力图中标出。在应用动量定理列式时,已知方向的动量、冲量均需带符号(与正方向一致时为正,反之为负),未知方向的动量、冲量通常先假

设为正,解出后再判断其方向。

(3)对过程较复杂的运动,可分段列动量定理,也可整个过程列动量定理。

5. 动量定理的应用技巧

(1)应用p I ?=求变力的冲量

如果物体受到变力的作用,则不直接用Ft I =求变力的冲量,这时可以求出该力作用下物体动量的变化p ?,等效代换变力的冲量I 。

(2)应用Ft p =?求恒力作用下的曲线运动中物体动量的变化。

曲线运动中物体速度方向时刻在改变,求动量变化p p p -'=?需要应用矢量运算方法,比较复杂。如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

6.动量定理的应用

(1) 用动量定理解释现象

用动量定理解释的现象一般可分为两类:

一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小,分析问题时,要把哪个量一定,哪个量变化搞清楚。

(2) 用动量定理求变力的冲量的方法:

如果一个物体受到的力是一个变力,但是该力随时间是均匀变化的,我们可以用求平均值的办法求解.在这种情况下求该力的平均值:F =

12

(F 0+F t ),则该变力的冲量为:I=

12(F 0+F t )t.

注意,只有力和时间的关系是较为简单的一次函数关系,则此变力的平均值才能够用F =12

(F 0+F t )进行计算,进而求出变力的冲量,其他情况下的变力一般不能够用上述办法求变

力的平均值,当然也不能够通过力的平均值求变力的冲量.

7.用动量定理解题的基本步骤

(1)审题,确定对象:对谁、对哪一个过程;

(2)对物体进行受力分析,分析力在过程中的冲量,或合力在过程中的冲量;

(3)抓住过程的初\,末状态,选定参考方向,对初\,末状态的动量大小\,方向进行描述;

(4)根据动量定理,列出动量定理的数学表达式;

(5)写清各物理量之间关系的补充表达式;

(6)求解方程组,并分析作答.

说明:①动量定理中的力必须是物体所受的合外力,这就要求在受力分析时不能出错.既不能\!张冠李戴\"把其他物体所受的力当成是该物体所受的力,也不能\!丢三落四\"把某个力丢掉,更不能\!无中生有\"把原本没有的力给假想出来.

②动量定理是矢量式,求解前必须先选定正方向.无论是力还是动量,\!顺我者正,逆我者负\".

1. 人从高处落地容易造成骨折,一般成人胫骨极限抗压强度约为2

8/105.1m N P ?=,胫骨最小横截面积大约为22.3cm S =,假如一质量为kg m 50=的人从一定高度直膝双足落地,从脚接触地面到最后静止,重心又约下降cm h 1=,则计算这个高度超过 时,就会导致胫骨骨折(2/10s m g =)。

2. 装煤机在2s 内将10t 煤装入水平匀速前进的车厢内,车厢速度为s m /5。若不计阻力,车厢保持原速匀速运动,则需要增加的水平牵引力大小为 N 。

3.用电钻在建筑物表面钻孔时,钻头所受的阻力与深度成正比,若钻头匀速钻进时,第1 s 内阻力的冲量为100 N ·s ,求5 s 内阻力的冲量.

4. A 、B 两物体原来贴在一起且静止在光滑水平面上,它们的质量分别为m A 、m B ,现有一颗水平飞行的子弹质量为m ,以初速度v 射向A ,并穿过A 、B 后速度变为v ',如图所示,若子弹穿过A 时受到的平均阻为f 1,经历的时间为t 1,子弹穿过B 时所经历的时间为t 2,试求:

(1)子弹穿过A 、B 后,A 、B 的速度分别为多大?

(2)子弹穿过B 的过程中受到的平均冲力多大?

m v A B

v'

5.跳水运动员应先将跳板向下压一下,以便让人弹得更高.如图5所示,在北京奥运会3米跳板跳水中,运动员的质量为40 kg,跳板下压的最大距离为0.2 m,跳板储存的弹性势能为160 J.反弹时跳板将弹性势能全部转给运动员,把运动员视为质点,则运动员

入水的速度为多大?弹起时运动员与板作用时间为0.8 s,那么在弹起的过程

中板对运动员的平均作用力为多少?(g取10 m/s2,板的质量忽略不计)

6.如图所示,静止在光滑水平面上的小车质量为M=20 kg.从水枪中喷出的水柱的横截面积为

S=10 cm2,速度为v=10 m/s,水的密度为ρ=1.0×103 kg/m3.若水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.

当有质量为m=5 kg的水进入小车时,试求:

(1)小车的速度大小;

(2)小车的加速度大小.

7、某种气体分子束由质量m=5.4X10-26kg速度V=460m/s的分子组成,各分子都向同一方向运动,垂直地打在某平面上后又以原速率反向弹回,如分子束中每立方米的体积内有n0=1.5X1020个分子,求被分子束撞击的平面所受到的压强.

冲量动量动量定理练习题(带答案)

2016年高三1级部物理第一轮复习-冲量动量动量定理 1.将质量为0.5 kg的小球以20 m/s的初速度竖直向上抛出,不计空气阻力,g取10 m/s2.以下判断正确的是( ) A.小球从抛出至最高点受到的冲量大小为10 N·s B.小球从抛出至落回出发点动量的增量大小为0 C.小球从抛出至落回出发点受到的冲量大小为0 D.小球从抛出至落回出发点受到的冲量大小为20 N·s 解析:小球在最高点速度为零,取向下为正方向,小球从抛出至最高点受到的冲量I=0-(-mv0)=10 N·s,A正确;因不计空气阻力,所以小球落回出发点的速度大小仍等于20 m/s,但其方向变为竖直向下,由动量定理知,小球从抛出至落回出发点受到的冲量为:I=Δp=mv-(-mv0)=20 N·s,D正确,B、C均错误. 答案:AD 2.如图所示,倾斜的传送带保持静止,一木块从顶端以一定的初速度匀加速下滑到底端.如果让传 送带沿图中虚线箭头所示的方向匀速运动,同样的木块从顶端以同样的初速度下滑到底端的过程中,与传送带保持静止时相比( ) A.木块在滑到底端的过程中,摩擦力的冲量变大 B.木块在滑到底端的过程中,摩擦力的冲量不变

C.木块在滑到底端的过程中,木块克服摩擦力所做的功变大 D.木块在滑到底端的过程中,系统产生的内能数值将变大 解析:传送带是静止还是沿题图所示方向匀速运动,对木块来说,所受滑动摩擦力大小不变,方向沿斜面向上;木块做匀加速直线运动的加速度、时间、位移不变,所以选项A错,选项B 正确.木块克服摩擦力做的功也不变,选项C错.传送带转动时,木块与传送带间的相对位移变大,因摩擦而产生的内能将变大,选项D正确. 答案:BD 3.如图所示,竖直环A半径为r,固定在木板B上,木板B放在水平地面上,B 的左右两侧各有一挡板固定在地上,B不能左右运动,在环的最低点静置一小球 C,A、B、C的质量均为m.给小球一水平向右的瞬时冲量I,小球会在环内侧做 圆周运动,为保证小球能通过环的最高点,且不会使环在竖直方向上跳起,瞬时冲量必须满足( ) A.最小值m4gr B.最小值m5gr C.最大值m6gr D.最大值m7gr 解析:在最低点,瞬时冲量I=mv0,在最高点,mg=mv2/r,从最低点到最高点,mv20/2=mg×2r+mv2/2,解出瞬时冲量的最小值为m5gr,故选项B对;若在最高点,2mg=mv2/r,其余不变,则解出瞬时冲量的最大值为m6gr. 答案:BC

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

冲量和动量、动量定理练习题.doc

一、冲量和动量、动量定理练习题 一、选择题 1.在距地面h高处以v0水平抛出质量为m的物体,当物体着地时和地面碰撞时间为Δt,则这段时间内物体受到地面给予竖直方向的冲量为[ ] 2.如图1示,两个质量相等的物体,在同一高度沿倾角不同的两个光滑斜面由静止自由滑下到达斜面底端的过程中,相同的物理量是[ ] A.重力的冲量 B.弹力的冲量 C.合力的冲量 D.刚到达底端的动量 E.刚到达底端时的动量的水平分量 F.以上几个量都不同 3.在以下几种运动中,相等的时间内物体的动量变化相等的是[ ] A.匀速圆周运动 B.自由落体运动 C.平抛运动 D.单摆的摆球沿圆弧摆动 4.质量相等的物体P和Q,并排静止在光滑的水平面上,现用一水平恒力推物体P,同时给Q物体一个与F同方向的瞬时冲量I,使两物体开始运动,当两物体重新相遇时,所经历的时间为[ ] A.I/F B.2I/F C.2F/I D.F/I 5.A、B两个物体都静止在光滑水平面上,当分别受到大小相等的水平力作用,经过相等时间,则下述说法中正确的是[ ] A.A、B所受的冲量相同 B.A、B的动量变化相同

C.A、B的末动量相同 D.A、B的末动量大小相同 6.A、B两球质量相等,A球竖直上抛,B球平抛,两球在运动中空气阻力不计,则下述说法中正确的是[ ] A.相同时间内,动量的变化大小相等,方向相同 B.相同时间内,动量的变化大小相等,方向不同 C.动量的变化率大小相等,方向相同 D.动量的变化率大小相等,方向不同 7.关于冲量、动量与动量变化的下述说法中正确的是[ ] A.物体的动量等于物体所受的冲量 B.物体所受外力的冲量大小等于物体动量的变化大小 C.物体所受外力的冲量方向与物体动量的变化方向相同 D.物体的动量变化方向与物体的动量方向相同 二、填空题 8.将0.5kg小球以10m/s的速度竖直向上抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______;若将它以10m/s的速度水平抛出,在3s内小球的动量变化的大小等于______kg·m/s,方向______。 9.在光滑水平桌面上停放着A、B小车,其质量m A=2m B,两车中间有一根用细线缚住的被压缩弹簧,当烧断细线弹簧弹开时,A车的动量变化量和B车的动量变化量之比为______。 10.以初速度v0竖直上抛一个质量为m的小球,不计空气阻力,则小球上升到最高点的一半时间内的动量变化为______,小球上升到最高点的一半高度内的动量变化为______(选竖直向下为正方向)。 11.车在光滑水平面上以2m/s的速度匀速行驶,煤以100kg/s的速率从上面落入车中,为保持车的速度为2m/s不变,则必须对车施加水平方向拉力______N。 12.在距地面15m高处,以10m/s的初速度竖直上抛出小球a,向下抛出小球b,若a、b 质量相同,运动中空气阻力不计,经过1s,重力对a、b二球的冲量比等于______,从抛出到到达地面,重力对a、b二球的冲量比等于______。 13.重力10N的物体在倾角为37°的斜面上下滑,通过A点后再经2s到斜面底,若物体与斜面间的动摩擦因数为0.2,则从A点到斜面底的过程中,重力的冲量大小______N·s,方向______;弹力的冲量大小______N·S,方向______;摩擦力的冲量大小______N·s。方向______;合外力的冲量大小______N·s,方向______。 14.如图2所示,重为100N的物体,在与水平方向成60°角的拉力F=10N作用下,以2m/s的速度匀速运动,在10s内,拉力F的冲量大小等于______N·S,摩擦力的冲量大小等于______N·s。 15.质量m=3kg的小球,以速率v=2m/s绕圆心O做匀速圆周运动

动量守恒定律经典习题(带答案)

动量守恒定律习题(带答案)(基础、典型) 例1、质量为1kg的物体从距地面5m高处自由下落,正落在以5m/s的速度沿水平方向匀速前进的小车上,车上装有砂子,车与砂的总质量为 4kg,地面光滑,则车后来的速度为多少? 例2、质量为1kg的滑块以4m/s的水平速度滑上静止在光滑水平面上的质量为3kg的小车,最后以共同速度运动,滑块与车的摩擦系数为0.2,则此过程经历的时间为多少? 例3、一颗手榴弹在5m高处以v0=10m/s的速度水平飞行时,炸裂成质量比为3:2的两小块,质量大的以100m/s的速度反向飞行,求两块落地 点的距离。(g取10m/s2) 例4、如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为1.6kg,木块与小车之间的摩擦系数为0.2(g取10m/s2)。设 小车足够长,求: (1)木块和小车相对静止时小车的速度。 (2)从木块滑上小车到它们处于相对静止所经历的时间。 (3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离。 例5、甲、乙两小孩各乘一辆冰车在水平冰面上游戏,甲和他所乘的冰车的质量共为30kg,乙和他所乘的冰车的质量也为30kg。游戏时,甲推着一个质量为15kg的箱子和甲一起以2m/s的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推向乙,箱子滑到乙处,乙迅速将它抓住。若不计冰面的摩擦,甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞? 答案:1.

h b 分析:以物体和车做为研究对象,受力情况如图所示。 在物体落入车的过程中,物体与车接触瞬间竖直方向具有较大的动量,落入车后,竖直方向上的动量减为0,由动量定理可知,车给重物的作用力远大于物体的重力。因此地面给车的支持力远大于车与重物的重力之和。 系统所受合外力不为零,系统总动量不守恒。但在水平方向系统不受外力作用,所以系统水平方向动量守恒。以车的运动方向为正方向,由动量守恒定律可得: 车 重物初:v 0=5m/s 0末:v v ?Mv 0=(M+m)v ?s m v m N M v /454 14 0=?+=+= 即为所求。 2、分析:以滑块和小车为研究对象,系统所受合外力为零,系统总动量守恒。 以滑块的运动方向为正方向,由动量守恒定律可得 滑块 小车初:v 0=4m/s 0末:v v ?mv 0=(M+m)v ?s m v m M M v /143 11 0=?+=+= 再以滑块为研究对象,其受力情况如图所示,由动量定理可得 ΣF=-ft=mv-mv 0 ?s g v v t 5.110 2.0) 41(0=?--=-=μf=μmg 即为所求。 3、分析:手榴弹在高空飞行炸裂成两块,以其为研究对象,系统合外力不为零,总动量不守恒。但手榴弹在爆炸时对两小块的作用力远大于自身的重力,且水平方向不受外力,系统水平方向动量守恒,以初速度方向为正。 由已知条件:m 1:m 2=3:2 m 1 m 2 初:v 0=10m/s v 0=10m/s

高中物理-《动量守恒定律》章末测试题

高中物理-《动量守恒定律》章末测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分110分,时间90分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( ) A.处于匀速运动阶段 B.处于减速运动阶段 C.处于加速运动阶段 D.静止不动 2.如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( ) A .2 1E E = B .01E E = C .2 2E E = D .02 E E = 3.光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( ) A.子弹两次损失的动能相同 B.每个木块增加的动能相同 C.因摩擦而产生的热量相同 D.每个木块移动的距离不相同 4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度v 0,则( ) A .小木块和木箱最终都将静止 B .小木块最终将相对木箱静止,二者一起向右运动 C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 P v Q

动量定理测试题

动量定理测试题 一、高考物理精讲专题动量定理 1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。求: ①A与B撞击结束时的速度大小v; ②在整个过程中,弹簧对A、B系统的冲量大小I。 【答案】①3m/s;②12N?s 【解析】 【详解】 ①A、B碰撞过程系统动量守恒,以向左为正方向 由动量守恒定律得 m1v0=(m1+m2)v 代入数据解得 v=3m/s ②以向左为正方向,A、B与弹簧作用过程 由动量定理得 I=(m1+m2)(-v)-(m1+m2)v 代入数据解得 I=-12N?s 负号表示冲量方向向右。 2.在某次短道速滑接力赛中,质量为50kg的运动员甲以6m/s的速度在前面滑行,质量为60kg的乙以7m/s的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求: ⑴接力后甲的速度大小; ⑵若甲乙运动员的接触时间为0.5s,乙对甲平均作用力的大小. 【答案】(1)9.6m/s;(2)360N; 【解析】 【分析】 【详解】

(1)由动量守恒定律得+=+m v m v m v m v ''甲甲乙乙甲甲 乙乙 =9.6/v m s '甲 ; (2)对甲应用动量定理得-Ft m v m v '=甲甲 甲甲 =360F N 3.动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值. (1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s .分别应用动量定理和动能定理求出平均力F 1和F 2的值. (2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x .分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的. (3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2m t k π =,求此过程中物块所受合力对时间t 的平均值. 【答案】(1)F 1=1.0N ,F 2=0.8N ;(2)当02v v x v t +==时,F 1=F 2;(3)2kA F π =. 【解析】 【详解】 解:(1)物块在加速运动过程中,应用动量定理有:1t F t mv =g 解得:1 1.0 2.0 N 1.0N 2.0 t mv F t ?= == 物块在加速运动过程中,应用动能定理有:221 2 t F x mv = g 解得:22 2 1.0 2.0N 0.8N 22 2.5 t mv F x ?===? (2)物块在运动过程中,应用动量定理有:10Ft mv mv =-

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量定理练习题

【典型例题】 1.关于冲量、动量与动量变化的下述说法中正确的是( ) A .物体的动量等于物体所受的冲量 B .物体所受外力的冲量大小等于物体动量的变化大小 C .物体所受外力的冲量方向与物体动量的变化方向相同 D .物体的动量变化方向与物体的动量方向相同 2.A 、B 两个物体静止在光滑水平面上,当分别受到大小相等的水平力作用,经相等时间,则正确的是( ) A .A 、 B 所受的冲量相同 B .A 、B 的动量变化相同 C .A 、B 的末动量相同 D .A 、B 的末动量大小相同 3.在光滑的水平面上, 两个质量均为m 的完全相同的滑块以大小均为P 的动量相向运动, 发生正碰, 碰后系统的总动能不可能是( ) A .0 B . p 2/m C . p 2/2m D .2p 2/m 4.2005年7月26日,美国“发现号”航天飞机从肯尼迪航天中心发射升空,飞行中一只飞鸟撞上了航天飞机的外挂油箱,幸好当时速度不大,航天飞机有惊无险.假设某航天器的总质量为10 t ,以8 km/s 的速度高速运行时迎面撞上一 只速度为10 m/s 、质量为5 kg 的大鸟,碰撞时间为1.0×10-5 s ,则撞击过程中的平均作用力约为( ) A.4×109 N B .8×109 N C.8×1012 N D.5×106 N 5.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m 的一系列小球,另一质量为m 的小球A 以水平向右的速度v 运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的1/8,则n 为( ) A .5 B .6 C .7 D .8 6.如图所示,质量为m 的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m 的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( ) A .向左的平抛运动; B .向右的平抛运动; C .自由落体运动; D .无法确定. 7.质量M =100 kg 的小船静止在水面上,船首站着质量m 甲=40 kg 的游泳者甲,船尾站着质量m 乙=60 kg 的游泳者乙,船首指向左方,若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s 的速率跃入水中,则( ) A .小船向左运动,速率为1 m/s B .小船向左运动,速率为0.6 m/s C .小船向右运动,速率大于1 m/s D .小船仍静止 8.如图所示,两个质量都为M 的木块A 、B 用轻质弹簧相连放在光滑的水平地面上,一颗质量为m 的子弹以速度v 射向A 块并嵌在其中,求弹簧被压缩后的最大弹性势能。 【针对训练】 1.A 、B 两球质量相等,A 球竖直上抛,B 球平抛,两球在运动中空气阻力不计,则下述说法中正确的是( ) A .相同时间内,动量的变化大小相等,方向相同 B .相同时间内,动量的变化大小相等,方向不同 C .动量的变化率大小相等,方向相同 D .动量的变化率大小相等,方向不同 2.在水平地面上有一木块,质量为m ,它与地面间的滑动摩擦系数为μ。物体在水平恒力F 的作用下由静止开始运动,经过时间t 后撤去力F 物体又前进了时间2t 才停下来。这个力F 的大小为( ) A .μmg B .2μmg C .3μmg D .4μmg 3.甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s ,p 乙=7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则关于甲球动量的大小和方向判断正确的是( ) A .p 甲′=2kg ·m/s ,方向与原来方向相反 B .p 甲′=2kg ·m/s ,方向与原来方向相同 C .p 甲′=4 kg ·m/s ,方向与原来方向相反 D .p 甲′=4 kg ·m/s ,方向与原来方向相同 4.篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球的动量变化率 C .减小球的动量变化量 D .减小球的动能变化量

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

1.2探究动量守恒定律测试

1.2 探究动量守恒定律 测试 1. 如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短。把子弹、木块和弹簧合在一起作为研究对象,则此系统在子弹开始射入木块到弹簧压缩至最短的整个过程中( ) A .动量守恒、机械能守恒 B .动量不守恒、机械能守恒 C .动量守恒、机械能不守恒 D .动量不守恒、机械能不守恒 2. 把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有哪些? ( ) A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .车、枪和子弹组成的系统动量守恒 D .车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有摩擦力.且摩擦力的冲量甚小 3. 木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图1所示,当撤去外力后,下列说法中正确的是 ( ) v A B

A.a尚未离开墙壁前,a和b系统的动量守恒 B.a尚未离开墙壁前,a与b系统的动量不守恒 C.a离开墙后,a、b系统动量守恒 D.a离开墙后,a、b系统动量不守恒 4.分析下列情况中系统的动量是否守恒() A.如图2所示,小车停在光滑水平面上,车上的人在车上走动时,对人与车组成的系统 B.子弹射入放在光滑水平面上的木块中对子弹与木块组成的系统(如图3) C.子弹射入紧靠墙角的木块中,对子弹与木块组成的系统 D.斜向上抛出的手榴弹在空中炸开时 5. 如图4所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是( ) A.两手同时放开后,系统总量始终为零 B.先放开左手,后放开右手后动量不守恒 C.先放开左手,后放开右手,总动量向左 D.无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 6. 一列车沿平直轨道以速度v0匀速前进,途中最后一节质量为m的车厢突然脱钩,若前部列车的质量为M,

2018-2018高考物理动量定理专题练习题(附解析)

2018-2018高考物理动量定理专题练习题(附解 析) 如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。小编准备了动量定理专题练习题,具体请看以下内容。 一、选择题 1、下列说法中正确的是( ) A.物体的动量改变,一定是速度大小改变? B.物体的动量改变,一定是速度方向改变? C.物体的运动状态改变,其动量一定改变? D.物体的速度方向改变,其动量一定改变 2、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有( )

A.匀加速直线运动 B.平抛运动 C.匀减速直线运动 D.匀速圆周运动 3、在物体运动过程中,下列说法不正确的有( ) A.动量不变的运动,一定是匀速运动? B.动量大小不变的运动,可能是变速运动? C.如果在任何相等时间内物体所受的冲量相等(不为零),那么该物体一定做匀变速运动 D.若某一个力对物体做功为零,则这个力对该物体的冲量也一定为零? 4、在距地面高为h,同时以相等初速V0分别平抛,竖直上抛,竖直下抛一质量相等的物体m,当它们从抛出到落地时,比较它们的动量的增量△ P,有 ( ) A.平抛过程较大 B.竖直上抛过程较大 C.竖直下抛过程较大 D.三者一样大

5、对物体所受的合外力与其动量之间的关系,叙述正确的是( ) A.物体所受的合外力与物体的初动量成正比; B.物体所受的合外力与物体的末动量成正比; C.物体所受的合外力与物体动量变化量成正比; D.物体所受的合外力与物体动量对时间的变化率成正比 6、质量为m的物体以v的初速度竖直向上抛出,经时间t,达到最高点,速度变为0,以竖直向上为正方向,在这个过程中,物体的动量变化量和重力的冲量分别是( ) A. -mv和-mgt B. mv和mgt C. mv和-mgt D.-mv和mgt 7、质量为1kg的小球从高20m处自由下落到软垫上,反弹后上升的最大高度为5m,小球接触软垫的时间为1s,在接触时间内,小球受到的合力大小(空气阻力不计 )为( )

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

物理动量守恒定律题20套(带答案)

物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s 的速度向甲车运动,乙车上有接收装置,总质量M 2=2 kg ,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上) 【答案】25m/s 【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M 1、M 2、m 组成的系统为研究对象,水平方向动量守恒: ()20120M v M m M v +=++共,解得5m /s v =共 以小球与乙车组成的系统,水平方向动量守恒: ()202M v mv m M v -=+共,解得 25m /s v = 考点:考查了动量守恒定律的应用 【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求: ?子弹射入木块 时的速度; ?弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2) Mm a M m M m ++b 【解析】 试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得: 解得:

动量守恒定律单元测试题

动量守恒定律单元测试题 一、动量守恒定律 选择题 1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( ) A .全过程中墙对A 的冲量大小为p02A B E m m B .物体B 的最大速度为 p02A E m C .弹簧长度最长时,物体B 的速度大小为 p02B A B B E m m m m + D .弹簧长度最长时,弹簧具有的弹性势能p p0 E E > 2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是 A .A B 组成的系统机械能守恒 B .B 运动的最大速度大于1m/s C .B 物体上升到最高点时与初位置的高度差为0.05m D .AB 在最高点的加速度大小等于10m/s 2 3.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量 2A m kg =,则由图可知下列结论正确的是( )

A .A 、 B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·s C .碰撞前后A 的动量变化为4kg·m/s D .碰撞过程A 、B 两球组成的系统损失的机械能为10 J 4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为 3 v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是() A .若m 0=3m ,则能够射穿木块 B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动 C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零 D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 2 5.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是 A .2 083 mv 2023 mv B .2 0mv 2032 mv C . 2012mv 2032mv D . 2023mv 2 056 mv 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为 m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( ) A .v A ′=1 m/s ,v B ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/s C .v A ′=2 m/s ,v B ′=-1 m/s D .v A ′=-1 m/s ,v B ′=-5 m/s 7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下

【物理】物理动量定理练习题及答案

【物理】物理动量定理练习题及答案 一、高考物理精讲专题动量定理 1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】 设运动员从h 1处下落,刚触网的速度为 1128m /s v gh == 运动员反弹到达高度h 2,,网时速度为 22210m /s v gh == 在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有 ()21()F mg t mv mv -=-- 得 F =1.5×103N 方向向上 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 3.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

相关文档
最新文档