模拟量输入模块

模拟量输入模块
模拟量输入模块

下例是将外部的模拟量信号转换为数字量后存入D100内。X1是通过1通道转换。X2是通过2通道转换。其中划线部分是由编程者来决定的。如D100和M100。可以更换为D0--D79999之间任意一个,M同样是。其它部分的格式是固定的。这样就完成了转换。

1.概述

模拟量输入模块(A/D模块)是把现场连续变化的模拟信号转换成适合PLC内部处理的数字信号。输入的模拟信号经运算放大器放大后进行A/D转换,再经光电藕合器为PLC提供一定位数的数字信号。FX2N系列常用的PLC模拟量输入/输出模块如图所示。

模拟量输出模块(D/A模块)是将PLC处理后的数字信号转换成相应的模拟信号输出,以满足生产过程现场连续控制信号的需求。模拟信号输出接口一般由光电隔离、D/A转换、信号驱动等环节组成。

2.模拟量输入/输出单元

以三菱公司的F2-6A模块为例,来说明模拟量输入输出单元模块的有关情况。F2-6A是三菱公司F1、F2系列PLC的扩展单元,为8位4通道输入、2通道输出的模拟量输入输出单元模块。F2-6A模块与F1、F2系列PLC连接示意图如下:

3.A/D转换、D/A转换

1)模数转换(A/D)模块:将现场仪表输出的(标准)模拟量信号0-10mA、4-20mA、1-5VDC等转化为计机可以处理的数字信号数模转换(D/A)模块:将计算机内部的数字信号转化为现场仪表可以接收的标准信号4-20mA等。如:12位数字量(0-4095)→4-20mA;2047对应的转换结果:12mA。

2)A/D转换(A/D、AI)的作用。

3)D/A转换(D/A、AO)的作用。

4.几种常见模拟量输入/输出模块简介:

1)模拟量输入模块FX-4AD。FX-4AD为4通道12位A/D转换模块,根据外部连接方法及PLC指令,可选择电压输入或电流输入,是一种与F2-6A相比具有高精确度的输入模块。

2)热电偶温度传感器模拟量输入模块FX-4AD-TC。FX-4AD-TC是4通道热电偶温度传感器模拟量输入模块。

3)模拟量输出模块FX-2DA。FX-2DA为2通道12位D/A转换模块,每个通道可独立设置电压或电流输出。FX-2DA是一种与F2-6A相比具有高精确度的输出模块。

三菱FX2N系列模拟量输入输出模块在水箱控制系统方面的应用

【方案】分布式视频联网解决方案

只看该作者| 顶[0] | 踩[0] | 引用| 回复| 编辑| 推荐| 举报| 管理

产品体验中心会员

liuguoxing

文章数:530

年度积分:50

历史总积分:2743

作者的所有帖子(530)

作者的工控博客(79)

注册时间:2005/8/6

发站内信

发表于:2009/8/25 22:10:12

西门子SIMATIC S7-200 SMART PLC 体验活动第一季S7-200 SMART PLC 官网

#1楼下图为读取水箱温度的程序梯形图。第一行表示0号模块CH1~CH4的用计算平均值的采样数为50,第二行表示0号模块CH1的平均温度值写到D1中。

下图为读取水箱压力的程序梯形图,第一、二行表示1号模块选择了模拟输入通道1(BFM17的b0=0),并且启动A/D转换处理(BFM17的b0=0→1),第三行表示1号模块CH1(即水箱压力)经A/D转换后的数字量写到D0中。

下图为控制水箱电动调节阀开度的程序梯形图。第一、二行表示1号模块模拟输出通道(FXON-3A只有一个输出通道)启动A/D转换处理(BFM17的b2=0→1),第三行表示存储在PLC的D2寄存器中的数字量经D/A转换处理后输出与数字量等值的模拟量(在BFM16中存储在PLCD2寄存器中的数字量)。这里数字量为0-250,对应的电流输出为4mA-20mA。

【方案】Cognex一流的字符辨认技术确保可靠的产品质量跟踪

只看该作者| 顶[0] | 踩[0] | 引用| 回复| 编辑| 推荐| 举报| 管理

产品体验中心会员

liuguoxing

文章数:530

年度积分:50

历史总积分:2743

作者的所有帖子(530)

作者的工控博客(79)

注册时间:2005/8/6

发站内信

发表于:2009/8/25 23:20:55

麦格米特PLC、称重模块、温控器、无线模块等多款产品免费试用

#2楼

三菱FX PLC通过FROM和TO指令从2AD模块中读入原始数据

以下是三菱FX PLC通过FROM和TO指令,从2AD模块中读入原始数据并进行求平均值运算的小程序。其中D100中是原始

数据,D300中是采样次数,D125中是采样总和,最后结果平均值则放在D302中.

LD M8000

TO K0 K17 H0 K1

TO K0 K17 H2 K1

FROM K0 K0 K2M300 K2

MOV K4M300 D100

LD M8002

MOV K0 D125

LD M8000

CMP D300 K10 M380

LD M382

DADD D100 D125 D125

INC D300

LD M380

OR M381

DDIV D125 D300 D302

MOV K0 D125

MOV K0 D300

三菱PLC模拟量模块应用

2014-5-14 18:16|发布者: admin|查看: 167|评论: 0

摘要: 一、模拟量模块介绍(一)模拟量输入模块FX2N常用的模拟量输入模块有

FX2N-2AD、FX2N-4AD、FX2N-8AD模拟量输入模块和温度传感器输入模块。FX—2AD

为2通道12位A/D转换模块。根据外部连接方法及PLC指令,可选...

一、模拟量模块介绍

(一)模拟量输入模块

FX2N常用的模拟量输入模块有FX2N-2AD、FX2N-4AD、FX2N-8AD模拟量输入模块和温度传感器输入模块。FX—2AD为2通道12位A/D转换模块。根据外部连接方法及PLC指令,可选择电压输入或电流输入,是一种具有高精确度的输入模块。通过简易的调整或根据可编程控制器的指令可改变模拟量输入的范围。瞬时值和设定值等数据的读出和写入用FROM/TO指令进行。

FX—2AD的技术指标

(二)模拟量输出模块

FX2N常用的模拟量输出模块有FX2N-2DA、FX2N-4DA、FX2N-8DA模拟量输出模块。FX—2DA为2通道12位D/A转换模块,是一种具有高精确度的输出模块。通过简易的调整或根据可编程控制器的指令可改变模拟量输出的范围。瞬时值和设定值等数据的读出和写入用FROM/TO指令进行。

FX-2DA的技术指标

二、模拟量模块使用

(一)确定模块的编号

在FX系列可编程控制器基本单元的右侧,可以连接最多8块特殊功能模块,它们的编号从最靠近基本单元的那一个开始顺次编为0~7号。如图:该配置使用

FX2N48点基本单元,连接FX-4AD、FX-4DA、FX-2AD 3块模拟量模块,它们的编号分别为0、1、2号。这3块模块不影响右边2块扩展的编号,但会影响到总的输入输出点数。3块模拟量模块共占用24点,那么基本单元和扩展的总输入输出点数只能有232点。

(二)缓冲寄存器(BFM)分配

FX系列可编程控制器基本单元与FX—4AD、FX—2DA等模拟量模块之间的数据通

信是由FROM指令和TO指令来执行的,FROM是基本单元从FX—4AD、FX—2DA读数据的指令,TO是从基本单元将数据写到FX—4AD、FX—2DA的指令。实际上读、写操作都是对FX—4AD、FX—2DA的缓冲寄存器BFM进行的。这一缓冲寄存器区由32个16位的寄存器组成,编号为BFM#0一#31。

(三)FX-4AD模块BFM的分配表

(四)编程举例

FX-4AD模拟量输入模块连接在最靠近基本单元FX2N-48MR的地方,那么它的编号为N0,如果仅开通CH1和CH2两个通道作为电压量输入通道,计算平均值的取样次数定为4次,可编程控制器中的D0和D1分别接收这两个通道输入量平均值数字量,并编梯形图程序。

梯形图

案例:制冷中央空调温度控制

一、动作要求分析

该制冷系统使用两台压缩机组,系统要求温度在低于12℃时不起动机组,在温度高于12℃时两台机组顺序起动,温度降低到12℃时停止其中一台机组。要求先起动的一台停止,温度降到7.5℃时两台机组都停止,温度低于5℃时,系统发出超低温报警。

二、硬件设计

在这个控制系统中,温度点的检测可以使用带开关量输出的温度传感器来完成,但是有的系统的温度检测点很多,或根据环境温度变化要经常调整温度点,要用很多开关量温度传感器,占用较多的输入点,安装布线不方便,把温度信号用温度传感器转换成连续变化的模拟量,那么这个制冷机组的控制系统就是一个模拟量控制系统。对于一个模拟量控制系统,采用可编程控制器控制,控制性能可以得到极大的改善。在这里可以选用FX2N-32MR基本单元与FX2N-4AD-PT模拟量输入单元,就能方便的实现控制要求。

中央空调温度控制I/O分配表

三、软件设计

家用电表怎么偷电_电度表偷电方法

2013-7-30 22:14|发布者: admin|查看: 29284|评论: 4

摘要: 1、从电度表的结构谈偷电我知道电度表有四个接线端子,从左往右分别是一,二,三,四号。其中一,二是电流线圈一,三是电压线圈。电度表的转动有两个条件:电流线圈中有电流,电压线圈两端有额定电压。使它不转的方...

直接偷电是犯法的,但可以用几种方法减少用电量,有些地方不需要高功率的,尽量不用,比如,路灯,浴室,卧室等,尽量使用节能灯,改造线路,搜集线路损耗,提高功率因数,甚至电话线路也可以用于照明,当然需要一点技术。根据众多窃电案例显示,窃电多从计量装置入手,因为计量箱内具隐蔽性,不易被发现,所以作为反窃电人员必须做到一丝不苟。电能表计量电量是由电压、电流、功率因数三要素和时间的乘积决定,因此,改变三素中的任何一个都可以使电能表慢转、停转甚至反转。

1、从电度表的结构谈偷电

我知道电度表有四个接线端子,从左往右分别是一,二,三,四号。其中一,二是电流线圈一,三是电压线圈。电度表的转动有两个条件:电流线圈中有电流,电压线圈两端有额定电压。

使它不转的方法有

方法一:在一二端子之间有一个小连片,能活动的连片,你可以把一端固定它的螺丝拧松一点,把它们分开,也就是断开了电压线圈的电压,表就不动了。当然这是最简单的也是最容易被发现的,太明显了。

方法二:标准的电度表接线是一号端子接火线,三号接零线。我们知道三四之间是连通的,只要把火线接到三,把零线接到一,同时在家里做一个可靠的地线,把原来的零线断开,也就是通常说的一火一地,表就不会动了,想让它动的时候把零线恢复就行了。这个方法的特点是隐蔽又简单,要是怕被发现表长时间不动,一般在家里的零火之间接一个小功率的灯泡,这样从外表看是看不出来的。要想发现很难,因为用户太多了,不可能经常去打开表箱检查。

防治的方法:安装漏电保护器,只要有人利用这种方法,漏电保护器就会跳闸。可是漏电保护器太容易坏或被弄坏。

2、从电度表的结构谈偷电

一般的做法是想法打开电表箱,办法应该是很多的,我现在主要讲几种电表的改造方法

一、改变计数器的传动比,一般的是计数器蜗杆输出的那个小齿轮,齿数不多,可按你想减少的比率锉去.这种方法有可能出现咬齿的现象.比较可靠的是用一块转数高的表,比如2100转/KWH的,用它的计数器替换转数低的计数器,如720转/KWH,那么记数就是实际用电的1/3.当然要注意计数器的大小最好一致才显自然.

二、用一段约15厘米的漆包线,粗细和电流线圈相同,从表内并在电流线圈上,这样计数器的数字约是实际用电的1/10,如果用电量不大而且不集中,可以试着表内的磁隙调整螺丝,在空载时表会缓慢的往回倒,大约相当于15W左右。附带的说一说铅封的问题.用修钟表的小改锥、或针,小心的顺着铅封中的线慢慢撑大,不太难就可以抽出它,往回装的时候最后把铅封用扁嘴钳轻轻夹一下,不要损坏上面的字迹。

3、继续从电度表的结构谈偷电

以前讲了普通电度表的常见偷电方法,这一次介绍另一种。

首先使用这种方法的人要有必要的电工基础,才能灵活运用,假如懂得了其中的原理而将其用在带互感器的大电流电度表上效果更为惊人。

根据电度表的原理,在正常工作时电流线圈要消耗一部分能量,其两端有就要有电压,大小视电流大小而定。这种方法就是利用这一点。

准备一个自藕变压器,容量不小于2KVA,太小容易烧坏且效果不佳,次级电压要求3~8V,在变压器的三个端子上(“0”线端,公共端,次级另一端),在“0”线和公共端接一个活动插头,(标清火线端不得有错)使次级另一端与“0”线的电压比公共端的电压低,(如不是请调换次级抽头即可)。

使用时务必使插头插入正确位置即公共端接火线,次级另一端用足够长的导线接至电度表前某位置的火线上,注意接线的顺序千万不要造成人身伤害!

由于给电流线圈加了反相的电压,电度表将反方向运转,视次级电压大小,速度为2~5KWH,使用此方法,回路中所有接头务必接触良好,否则效果受影响。(可别成负数喽)

至于IC式电度表可以综合以前的介绍,只要弄懂原理后,应该没什么问题。

以上说的原理不错!但是只适用于DT862、DD862及以下型号电能表!

电能表在防盗方面已经克服了以上缺点。

1、在机械电能表中,有的转盘上已经安装了止逆装置,电能表最大反转的圈数不会超过一圈。

2、在电子电能表中,不论你怎么调换火线、零线的位置,表还是照样读数。在部分大量程表计和三相表中甚至会出现反接线电度计量乘倍的现象。有效防止恶意乱接。

总结:

1、把用电器的零线直接接地而不流经电能表。这样,你用再多的电,电表动都不动。坏处:一旦人接触接地的零线立即死亡;在别人查电表的时候可能发现“电灯亮着,电表不转”的现象,你就挂了。

2、由于电表中的转盘是受磁场涡流的力而旋转的,可以在电表旁安装磁铁产生

反磁场,来部分抵消磁力。坏处:在别人查电表的时候要是发现你家的电表上有一个大磁铁,你的偷电行径就败露了。

3、将电表短路。坏处同1。

4、在电表处并联一个阻值合适的电阻。这样可以避免“电灯亮着,电表不转”的现象,但是安装难度大,并联的电阻容易烧掉。

5、用专门的工具把电表拆开,把计数器往会拨。坏处:技术要求高,很麻烦。(要是每个人都会这么做,电信局就该倒闭了)

最后提示:

第一招直接调表或甩表接线

把电表盖打开,直接调动×××限制表的走速。或者不接电表,直接引线。

后果:造成电表停走或慢走。如果是共用一个总电表,则给其他用户造成损失。

第二招钢丝窃电

钢丝插入表箱上内部。

后果:钢丝破坏表的内部结构使表停走,如果发生电击,窃电者是最直接的受害者。

第三招使用倒表器

不法商贩手中购得,促使电表倒转。

后果:用电量与额定电量出入很大,有时甚至出现负值,使电力部门或周围邻居蒙受损失。

第四招电线反接

利用连接电表的电线,反接一相或两相电流×××。

后果:存在安全隐患,造成电表倒转或不转。

第五招:私装电表

擅自在电线杆上接动力线,安装未经检验的动力电表。

后果:私接高压电极其危险,电力部门蒙受损失巨大。

第六招:断开计量表

利用微型交流接触器断开计量表达到偷电目的。,利用三相补偿电容,断开其中××,只接入×××××,造成电表反转。

后果:对人身安全构成威胁,电力部门蒙受巨大损失。

第七招:直接引线

把计量表线直接接入地下。私接地缆线,然后安装刀闸,通过地缆将电源引到大变压器上,

后果:操作失误的时候,超负荷用电造成短路,电线被烧甚至引发火灾或电器被毁。

第八招:金属物插表

用铝合金片或钢针插进计量表的××。外表不易看出,在电表上方打小孔,有的还用白灰堵住小孔。有的人用绳子把金属片捆住。

后果:造成电表走速变慢或停转。国家电力损失严重,对窃电者安全构成威胁。

第九招:私接临时线

电线暴露于外,连接不规范。

后果:不安全,接口处经常冒出火花。电力部门或邻居蒙受损失。

第十招:私搭电缆井

私自搭建电缆井,电缆线埋设在地下,一直通到变压器。

后果:电线包扎不规范,受潮很容易短路,造成大面积停电。给国家电力造

成巨大损失。

第十一招利用管道引电

此法多属违规引接的临时电。电线连接不规范,有的甚至借助自来水

管导电。

后果:危险性极大,带电的管道时刻威胁人的生命安全。

第十二招改造电流互感器

通过缠绕××,产生涡流电,导致电表停走。

后果:威胁人的安全,电力部门蒙受损失。

第十三招电费卡钥匙非法充值

外表很难识别。须精通电子知识,通过非法渠道增加用电量,专业人员可

检测。

后果:给国家电力造成损失。

第十四招增加用电容量

擅自增加用电容量,增大计量变比等用电。

后果:造成电费损失。

《供电营业规则》对偷电行为是如何确定和处理的?

根据《供电营业规则》的规定偷电行为包括如下行为。

(1)在供电企业的供电设施上,擅自接线用电。

(2)绕越供电企业用电计量装置用电。

(3)伪造或者开启供电企业加封的用电计量装置封印用电。

(4)故意损坏供电企业用电计量装置。

(5)故意使供电企业用电计量装置不准或者失效。

(6)采用其他方法偷电。

供电企业对查获的偷电者,应予制止,并可当场中止供电。对偷电者应按所

偷电量补交电费,并承担补交电费三倍的违约使用电费。拒绝承担偷电责任的,

供电企业应报请电力管理部门依法处理。偷电数额较大或情节严重的,供电企业

应提请司法机关依法追究刑事责任。

《中华人民共和国电力法》第七十一条盗窃电能的,由电力管理部门责令停止

违法行为,追缴电费并处

应交电费五倍以下的罚款;构成犯罪的,依照刑法第一百五十一条或者第一百五

二条的规定追究刑事责任。

如何通过PLC编程实现用单按钮控制启动和停止

2013-9-22 21:39|发布者: admin|查看: 551|评论: 0

摘要: 在实际应用中,有时PLC的输入口不够用,或者其开关数量有限,我们可以通过编

程的方式用一个按钮解决掉启动和停止的控制,即按一下启动,再按一下停止。当然,为了

安全,实际应用中还应当配备运行和停止的指示灯,否...

在实际应用中,有时PLC的输入口不够用,或者其开关数量有限,我们可以通过编程的方式用一个按钮解决掉启动和停止的控制,即按一下启动,再按一下停止。当然,为了安全,实际应用中还应当配备

运行和停止的指示灯,否则容易发生操作危险事故。以下的例子中X0接的都是点动开关,即手按着变化,手松开又复位。

方法一:利用功能指令ALT ALT指令是交替输出指令,多用其脉冲边沿触发指令ALTP,如下图所示。

X0第一次通电时Y0为ON,第二次时为OFF,反复交替

方法二:利用计数器来控制

计数器C0设置为2,当x0第一次通电时Y0为ON,当x0第二次通电时计数器经过值为2,计数器动作,常开触点闭合,常闭触点断开,Y0为OFF,同时计数器清零复位,下次又可循环操作。方法三:

X0第一次通电时M0置位,Y0接通,Y0的常开触点闭合,同时常闭触点断开,当x0第二次通电时M0复位,Y0为OFF,同时Y0也复位了。

需要注意的是此时x0选脉冲边沿触发较好,原因是,plc对程序是循环扫描的,若是电平触发,当x0接通的时间超过两个扫描周期的话,结果会是什么呢。。。。y0不动作的。当选边沿触发时可解决这个问题。

以上方法仅仅是本人初学PLC所总结的一些自认为实用价值较高的资料,和大伙分享下,有些仅供参考,如有疑问欢迎讨论。

FX2N-2AD模拟量模块零点和增益调整方法说明

0520 2013-12-17 15:56:43

帖子269关注7粉丝293

郑工管理员关注

FX2N-2AD模块的出厂标定值为0到10V的电压输入信号,其对应的数字量为0到4000,如果我需要把一个4到20mA的电流信号接入到这个模拟量模块的时候,那么我们必须要对其进行零点和增益进行调整。

什么是零点?什么是增益?

在三菱FX系列的PLC中,我们对零点和增益有以下的定义。

零点表示为数字量为0时所对应的模拟量值,我们称之为零点。

增益表示为数字量为1000是所对应的模拟量值,我们称之为增益。

而我们在对FX2N-2AD的模块进行零点和增益进行调整的时候,我们往往调整的增益值,并不是调整为1000所对应的模拟量值,而是调整为4000所对应的模拟量值,也就是说他的最大值所对应的模拟量值。

对FX2N-2AD模块来说,他的零点和增益的调整跟我们使用别的模拟量模块的调整是不一样的,比如说FX2N-4AD模块的调整,我们可以通过改变FX2N-4AD模块里面的相应的BFM缓冲区的值来进行调整,而FX2N-2AD的模块,我们需要通过模块上自带的零点和增益旋钮来进行调整。

下面我们说说它的调整方式

(1)准备好一个能够提供4到20mA电流的电流源,如果没有,我们也可以使用别的模拟量输出模块来输出一个4到20mA的电流信号,然后把这信号接到外面的FX2N-2AD 的模块上。

(2)在编程软件里面编写数字量读取的程序,把这个FX2N-2AD模块转换的数字量读取出来。

(3)首先进行增益调整,让电流源输出一个电流为20mA大小的电流到我们的FX2N-4AD的模块上,然后我们用螺丝刀旋转增益按钮。同时监控我们程序中读取到数字量值大小的变化情况。旋转到读取到的数字量的大小为4000时停止对增益的调整。

(4)让电流源输出一个4mA的电流信号,同样的调整零点旋钮,当读出到的数字量为0时,说明已把零点调整好。如果是对电压输入的零点进行调整,大家最好不要把他做成0V对应0的数字量这种调整,要给定一个电压对应应用数字量的调整。比如说给定出一个电压信号为1V时他对应的数字量是多少,以这个作为标准来进行调整,当把零点调整好后,因为零点的改变,增益可能会跟着出现变动,所以我们还需要再次对增益进行调整,如此反复的调整,才可以得到一个我们所需要的零点和增益出来。

(5)虽然对于FX2N-2AD的模块来说,调整好了一个通道后,另一个通道也会跟着调整好,但是为了获得最大的精度,还是要对每个通道进行单独的检查。

对于FX2n-2AD模块来说进行零点和增益的一个调整的做法主要就是根据以上几步来进行完成的。

FX2N三菱PLC与FCS900模拟量采集模块的通讯———FX2N三菱PLC串口通讯程序

发布:2011-09-07 | 作者: | 来源: haojunjie | 查看:1627次 | 用户关注:

PLC在工控界中应用广泛,有许多优点和方便之处,很多同行都有共同的体会,在PLC系统中实现模拟量采集时价格十分昂贵,尤其实现热电阻温度、热电偶温度采集时,价格更是无法承受。本文介绍一种在PLC中实现低成本模拟量数据采集的方法,可以实现大量模拟量数据采集,每路模拟量输入的价格仅120元左右。系统连接如下图所示,PLC选用三菱FX2N系列产品,配带RS485通讯接口板,通过通讯接口与FCS900数据采集模块连接,实现大量模拟量数据

PLC在工控界中应用广泛,有许多优点和方便之处,很多同行都有共同的体会,在PLC系统中实现模拟量采集时价格十分昂贵,尤其实现热电阻温度、热电偶温度采集时,价格更是无法承受。本文介绍一种在PLC中实现低成本模拟量数据采集的方法,可以实现大量模拟量数据采集,每路模拟量输入的价格仅120元左右。系统连接如下图所示,PLC选用三菱FX2N系列产品,配带RS485通讯接口板,通过通讯接口与FCS900数据采集模块连接,实现大量模拟量数据采集,数量没有限制,通讯距离可以到1200米,从而实现低成本模拟量数据采集。FCS900是具有RS485接口的数据采集模块,支持MOD BUS-RTU和自由口通讯

协议,模块的型号和数量根据使用情况决定,通讯距离1200米。FX2N通讯格式设置通讯使用RS指令,对应FCS900模块使用自由通讯口通讯协议。实例程序:读取#1FCS900模块的1~16通道的模拟量数据PLC发送下列数据:01H、C4H、00H、00H、00H、10H、00H、D5H最后两个字节00H、D5H为前面6个字节的和校验。FCS900模块接收上述命令后,回复下列数据:01H、C4H、32H、X1、X1、X2、X2、X3、X3、………X16、X16、ACC、ACCX1~X16为16个通道的数据,每个数据为双字节;ACC为和校验。数据接收后验证和校验是否正确,将正确的数据保存至数据缓冲区。有关通讯协议参见“MODBUS通讯协议及自由口通讯协议”。FX2N的应用程序如下图所示。

通过上

述方法采集的模拟量数据没有数量限制,每个FCS911采集16路模拟量信号,10个模块就可以采集160点模拟量信号,可以是电压、电流、热电阻温度、热电偶温度,在大量模拟量数据采集系统中非常实用。FCS900数据采集模块专为PLC的模拟量数据采集应用设计,详细使用说明参见https://www.360docs.net/doc/0513402846.html,。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 1.1具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 2.1参考图片

图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 2.2问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电

S7-200模拟量接线

S7-200模拟量模块系列 模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可 以理解为模拟量的有效量程。在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。 本文中,我们按照S7-200模拟量模块类型进行分类介绍: ?AI 模拟量输入模块? 1. ? 2. AO模拟量输出模块 3. AI/AO模拟量输入输出模块 4. 常见问题分析 首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明: AI 模拟量输入模块 A. 普通模拟量输入模块: 如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。注意:按照规范接线, 尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。具体请参看 《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。 4AI EM231模块: 首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。开关的设置应用于 整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能 生效。也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。如下表所示:

注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码 开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。 ? 8AI EM231模块: 8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。反之,若选择为OFF,对应通道则为电压输入。 注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。 B. 测温模拟量输入模块(热电偶TC;热电阻RTD): 如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测 温模块。测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。注意:不同的信 号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用 EM231TC。且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。 热电偶模块TC: EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。另外, ?该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。 热电阻模块RTD: 热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这 种关系是电阻变化率α。RTD模块的拨码开关设置与α有关,如下图所示,就算同是 Pt100,α值不同时拨码开关的设置也不同。在选择热电阻时,请尽量弄清楚α参数,按 照对应的拨码去设置。具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和 热电阻扩展模块介绍。

模拟量输入模块

下例是将外部的模拟量信号转换为数字量后存入D100内。X1是通过1通道转换。X2是通过2通道转换。其中划线部分是由编程者来决定的。如D100和M100。可以更换为D0--D79999之间任意一个,M同样是。其它部分的格式是固定的。这样就完成了转换。 1.概述 模拟量输入模块(A/D模块)是把现场连续变化的模拟信号转换成适合PLC内部处理的数字信号。输入的模拟信号经运算放大器放大后进行A/D转换,再经光电藕合器为PLC提供一定位数的数字信号。FX2N系列常用的PLC模拟量输入/输出模块如图所示。

模拟量输出模块(D/A模块)是将PLC处理后的数字信号转换成相应的模拟信号输出,以满足生产过程现场连续控制信号的需求。模拟信号输出接口一般由光电隔离、D/A转换、信号驱动等环节组成。 2.模拟量输入/输出单元 以三菱公司的F2-6A模块为例,来说明模拟量输入输出单元模块的有关情况。F2-6A是三菱公司F1、F2系列PLC的扩展单元,为8位4通道输入、2通道输出的模拟量输入输出单元模块。F2-6A模块与F1、F2系列PLC连接示意图如下: 3.A/D转换、D/A转换 1)模数转换(A/D)模块:将现场仪表输出的(标准)模拟量信号0-10mA、4-20mA、1-5VDC等转化为计机可以处理的数字信号数模转换(D/A)模块:将计算机内部的数字信号转化为现场仪表可以接收的标准信号4-20mA等。如:12位数字量(0-4095)→4-20mA;2047对应的转换结果:12mA。 2)A/D转换(A/D、AI)的作用。

3)D/A转换(D/A、AO)的作用。 4.几种常见模拟量输入/输出模块简介: 1)模拟量输入模块FX-4AD。FX-4AD为4通道12位A/D转换模块,根据外部连接方法及PLC指令,可选择电压输入或电流输入,是一种与F2-6A相比具有高精确度的输入模块。 2)热电偶温度传感器模拟量输入模块FX-4AD-TC。FX-4AD-TC是4通道热电偶温度传感器模拟量输入模块。 3)模拟量输出模块FX-2DA。FX-2DA为2通道12位D/A转换模块,每个通道可独立设置电压或电流输出。FX-2DA是一种与F2-6A相比具有高精确度的输出模块。 三菱FX2N系列模拟量输入输出模块在水箱控制系统方面的应用 【方案】分布式视频联网解决方案 只看该作者| 顶[0] | 踩[0] | 引用| 回复| 编辑| 推荐| 举报| 管理

K-AI01 8通道模拟量输入模块使用说明书

HOLLiAS MACS -K 系列模块 2014年5月B版

HOLLiAS MAC-K系列手册- K-AI01 8通道模拟量输入模块使用说明书 重要信息 危险图标:表示存在风险,可能会导致人身伤害或设备损坏件。 警告图标:表示存在风险,可能会导致安全隐患。 提示图标:表示操作建议,例如,如何设定你的工程或者如何使用特定的功能。

目录 1.概述 (1) 2.接口说明 (3) 2.1模块单元示意图 (3) 2.2IO-BUS (4) 2.3模块的防混淆设计 (6) 2.4模块地址跳线 (7) 2.5现场接口电路原理 (8) 3.状态灯说明 (11) 4.其他特殊功能说明 (13) 4.1抗220V AC功能 (13) 4.2二线制外供电保护 (14) 4.3诊断功能 (15) 4.4冗余功能 (17) 5.工程应用 (18) 5.1底座选型说明 (18) 5.2应用注意事项 (19) 6.尺寸图 (20) 7.技术指标 (20)

K-AI01 8通道模拟量输入模块 1.概述 K-AI01为K系列8通道模拟量通道隔离输入模块,测量范围0~22.7mA模拟信号(默认出厂量程4~20mA),可以按1:1冗余配置使用。无需跳线就可以设置为配电或不配电工作方式,可以接二线制仪表或四线制仪表。 K-AI01模块具备强大的过流过压保护功能,误接±30VDC和过电流都不会损坏。同时,配合增强型底座还可以做到现场误接220V AC不损坏。 K-AI01模块支持带点热插拔、支持冗余配置,具备完善断线、短路、超量程诊断功能,面板设计有丰富的LED指示灯,除指示模块电源、故障、通讯信息外,每个通道也有指示灯,可以方便指示各通道的断线、短路、超量程等信息。 K-AI01模块每个通道可设置不同的滤波参数以适应不同的干扰现场。可以根据工艺需要,配合主控制器的不同运算周期,组成可快可慢的控制回路。 K-AI01模块采用双冗余IO-BUS、双冗余供电工作方式,任意断一根IO-BUS,不会影响其正常工作。 K-AI01模块采用了现场电源和系统电源分开隔离供电。同仪表相连的电路采用现场电源供电,数字电路和通讯电路采用系统电源供电,因此现场来干扰不会影响数字电路和通讯。 K-AI01模块实施喷涂三防漆处理,按照ISA-S71.04-1985标准生产,达到G3防腐等级。 K-AI01模块配套K-A T01、K-A T02、K-A T11、K-A T21和K-DOT01底座使用,通过电缆连接构成完整的电流测量模块单元。模块插在模块底座上,模块底座的接线端子负责接入现场仪表信号,模块负责将模拟信号转换为数字信号,最后通过冗余的IO-BUS送给主控器单元,IO-BUS同时提供冗余的系统电源和现场电源。 如图1-1、图1-2所示,分别为模块非冗余配置和冗余配置的外观结构图。完整的模块单元在系统机柜中的安装位置如图1-3所示:

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。

西门子模拟量输入模块SM331接线方法总结

P L C 接法 西门子模拟量输入模块S M 331接线方法总结 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当P L C 的模板输入通道设定为连接四线制传感器时,P L C 只从模板通道的端子上采集模拟信号,而当P L C 的模板输入通道设定为连接二线制传感器时,P L C 的模拟输入模板的通道上还要向外输出一个直流24V 的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24v D C 电源的,输出信号为4-20M A ,电流)即+接24v d c ,负输出4-20m A 电流。 2、四线制(有自己的供电电源,一般是220v a c ,信号线输出+为4-20m a 正,-为4-20m a 负。 P L C : (以2正、3负为例)1、两线制时正极2输出24V D C 电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24v d c ;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M 为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,p l c 跳线 为4线制电流。 (以2 正、3负为例)3、四线制传感器与p l c 两线制跳线接法:信号线负与柜内M 线相连。将传感器正与p l c 的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,p l c 跳线为电压信号。 第 1 页4线制与2线制注意区别地是否相同? 这2个为2线制的解释。 传感器,变送器 此时plc 跳线为4线制。 跳线为2线制。

0-10V模拟量采集模块,模数转换器

C2000 MDV8为通道隔离增强型智能模拟量数字量采集器,8路24位高精度电压型模拟量输入(量程为-10V~10V),采用通道隔离、全差分输入、插补输出设计,确保设备适用于更加复杂的环境。2路数字量(干接点)输入,RS485接口光电隔离和电源隔离技术,有效抑制闪电,雷击,ESD和共地干扰。且支持用户标定,满足了几乎所有情况对精度的要求。为系统集成商、工程商集成了标准的Modbus RTU协议。通过RS-485即可实现对远程模拟量和开/关设备的数据采集和控制。下层设备通常有接近开关、机械开关、按钮、光传感器、LED以及光电开关等数字量开关设备及PH、电导计、温度计、湿度计、压力计、流量计、启动器和阀门等模拟量设备。 特点: →8路模拟量(电压量)输入; →2路数字量干接点输入; →I/O与系统完全隔离; →AI分辨率:24位; →AI输入通道采取全差分输入,支持标定,插补输出; →模拟量输入通道之间完全隔离,隔离度350VDC; →AI输入测量范围:-10V~10 V ; →采用Modbus RTU通信协议; →RS485通信接口提供光电隔离及每线600W浪涌保护; →电源具有过流过压保护和防反接功能; →安装方便。 1.2 技术参数 模拟量接口AI 8路差分输入 AI分辨率24bit AI量程-10V~10 V(可标定)AI通道隔离度350V DC AI输入阻抗1MΩ 数字量输入接口 DI 2路干接点输入 DI保护过压小于240V ,过流小于80mA 串口通讯参数接口类型RS-485 波特率1200~115200bps 数据位8

奇偶校验 None 停止位 1 流量控制 None 通信协议 Modbus RTU 串口保护 串口ESD 保护 1.5KV 串口防雷 600W 串口过流,过压 小于240V ,小于80mA 电源参数 电源规格 9-24VDC (推荐12VDC) 电流 100mA@12VDC 浪涌保护 1.5kW 电源过压,过流 60V ,500mA 工作环境 工作温度、湿度 -25~85℃,5~95%RH ,不凝露 储存温度、湿度 -60~125℃,5~95%RH ,不凝露 其他 尺寸 72.1*121.5*33.6mm 保修 5年质保 MDV8外观

西门子模拟量输入输出模块235编程手册

本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量

程和分辨率。(后面将详细介绍) 量的单/双极性、增益和衰减。 时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置

模拟量输入模块AI561

模拟量输入模块AI561 -4个可配置的模拟量输入 -分辨率:11位加标志位或12位 图:模拟量输入模块AI561概述 目录 用途 功能 电气连接 内部数据交换 I/O配置 参数 诊断 显示

测量范围 技术数据 订货信息 用途 模拟量输入模块AI561可在以下设备中作为远程扩展模块使用:?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) 具有以下特点: ?在1个组中有4个可配置的模拟量输入(I0到I3) 输入之间电气隔离。 该模块其他的电气线路没有与输入或I/O总线电气隔离。 功能

电气连接 模拟量输入模块AI561可通过I/O总线连接到以下设备: ?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) ?其他AC500 I/O模块 使用可插拔的9针和11针端子排进行电气连接。这些端子排的连接有所不同(弹簧接线端子或螺钉接线端子,电缆为正面接线或旁侧接线)。更多相关信息,请参见S500-eCo I/O模块的端子排一章。端子排不包含在模块订货范围中,须单独订购。 端子的分配:

通过I/O 总线为模块内的电路提供内部电源(由总线模块或CPU 提供)。因此,每个AI561从CPU 或总线模块的24V DC 电源端子L+/UP 和 M/ZP 消耗10mA 的电流。 外部电源连接到端子L+ (+24 V DC) 和M (0 V DC)。M 端子与CPU 或总线模块的M/ZP 端子电气连接在一起。 该模块提供几种诊断功能 (请参见“诊断”章节)。 下图显示推荐的模拟量输入AI0的内部结构。模拟量输入 AI1 ...AI3 采用相同的设计。 下图显示推荐的连接模拟量传感器(电压)到模拟量输入模块AI561的输入I0的电气连接。I1到I3的连接方法相同。

PLC模拟量模块

S7-200 PLC的模拟量输入/输出模块EM 235(及CN) 为满足工业控制要求,S7-200配有模拟量输入/输出模块EM 235(及CN),它具有4个模拟量输入通道、1个模拟量输出通道。该模块的模拟量输入功能同EM 231模拟量输入模块,特性参数基本相同,只是电压输入范围有所不同,单极性为0~10V、0~5V、0~1V、0~500mV、0~100mV、0~50mV,双极性为±10V、±5V、±2.5V、±1V、±500mV、±250mV、±100mV、±50mV、±25mV;该模块的模拟量输出功能同EM 232模拟量输出模块,特性参数也基本相同,不再重述。该模块需要24VDC供电,可由CPU模块的传感器电源DC24V/400mA供电,也可由用户设置外部电源,这在设计时应予以考虑。 图2-21所示是EM 235模拟量输出模块的端子接线图。M为24VDC电源负极端,L+为电源正极端;M0、V0、10为模拟量输出端;电压输出时,V0为电压正端,M0为电压负端;电流输出时,10为电流的进入端,M0为电流流出端;RA、A+、A-,RB、B+、B-,RC、C+、C-,RD、D+、D-分别为第1~4路模拟量的输入端,电压输入时,“+”为电压正端,“-”为电压负端,电流输入时,需将“R”与“+”短接后作为电流的进入端,“-”为电流流出端。 图2-21 EM 235模拟量输出模块的端子接线图 表2-9列出了如何用设定开关DIP设置EM 235模块,开关1~6可选择模拟量输入范围和分辨率,所有输入设置成相同的模拟量输入范围和格式。表2-10给出了如何选择单/双极

性(开关6)、增益(开关4和5)和衰减(开关1、2和开关3)。表中的ON表示开关接通,OFF表示开关断开。 表2-9 EM 235选择模拟量输入范围和分辨率的开关表 表2-10 EM 235选择单,双极性、增益和衰减的开关表

所有模拟量模块接线问题

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重 要 2013-03-04 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15 是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模块 M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模块的 好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

K-AIH01 8通道带HART模拟量输入模块使用说明书

HOLLiAS MACS -K 系列模块 2014年5月B 版

HOLLiAS MAC-K系列手册- K-AIH01 8通道带HART模拟量输入模块 重要信息 危险图标:表示存在风险,可能会导致人身伤害或设备损坏件。 警告图标:表示存在风险,可能会导致安全隐患。 提示图标:表示操作建议,例如,如何设定你的工程或者如何使用特定的功能。

目录 1.概述 (1) 2.接口说明 (3) 2.1模块单元示意图 (3) 2.2IO-BUS (4) 2.3模块的防混淆设计 (6) 2.4模块地址跳线 (7) 2.5现场接口电路原理 (8) 3.指示灯说明 (12) 4.其他特殊功能说明 (14) 4.1抗220V AC功能 (14) 4.2二线制外供电功能 (15) 4.3诊断功能 (16) 4.4冗余功能 (18) 5.工程应用 (19) 5.1底座选型说明 (19) 5.2应注意事项 (20) 6.尺寸图 (21) 7.技术指标 (21)

K-AIH01 8通道带HART模拟量输入模块 1.概述 K-AIH01为K系列8通道模拟量通道隔离输入模块,支持Profibus-DP协议、HART协议。测量范围0~22.7mA模拟信号(默认出厂量程4~20mA),同时与现场HART智能执行器进行通信,以实现现场仪表设备的参数设置、诊断和维护等功能。可以按1:1冗余配置使用。无需跳线就可以设置为配电或不配电工作方式,可以接二线制仪表或四线制仪表。 K-AIH01模块具备强大的过流过压保护功能,误接±30VDC和过电流都不会损坏。同时,配合增强型底座还可以做到现场误接220V AC不损坏。 K-AIH01模块支持带点热插拔、支持冗余配置,具备完善断线、短路、超量程诊断功能,面板设计有丰富的LED指示灯,除指示模块电源、故障、通讯信息外,每个通道也有指示灯,可以方便指示各通道的断线、短路、超量程等信息。 K-AIH01模块每个通道可设置不同的滤波参数以适应不同的干扰现场。可以根据工艺需要,配合主控制器的不同运算周期,组成可快可慢的控制回路。 K-AIH01模块采用双冗余IO-BUS、双冗余供电工作方式,任意断一根IO-BUS,不会影响其正常工作。 K-AIH01模块采用了现场电源和系统电源分开隔离供电。同仪表相连的电路采用现场电源供电,数字电路和通讯电路采用系统电源供电,因此现场来干扰不会影响数字电路和通讯。 K-AIH01模块实施喷涂三防漆处理,按照ISA-S71.04-1985标准生产,达到G3防腐等级。 K-AI01模块配套K-A T01、K-A T02、K-A T11、K-A T21和K-DOT01底座使用,通过电缆连接构成完整的电流测量模块单元。模块插在模块底座上,模块底座的接线端子负责接入现场仪表信号,模块负责将模拟信号转换为数字信号,最后通过冗余的IO-BUS送给主控器单元,IO-BUS同时提供冗余的系统电源和现场电源。 如图1-1、图1-2所示,分别为模块非冗余配置和冗余配置的外观结构图。完整的模块单元在系统机柜中的安装位置如图1-3所示:

模拟量输出模块说明书

鲲航 KHAQ系列输出模块说明书 使用手册 此说明书适用于: 1:KHAQ-4AI4AO:4路模拟量输入+4路模拟量输出模块,35mm导轨安装 2:KHAQ-8AO:8路模拟输出模块。PLC外形35mm导轨安装

1概述 KHAQ-4AI4AO主要特性 基于RS485接口,Modbus协议的模拟量输入输出控制模块。隔离 RS485接口,支持Modbus-RTU协议。 电源:直流8-30V。 模拟量采样精度:16位AD。 电流输出类型:0-20mA(21mA MAX),输出电压与供电电压相同,负载电阻0欧到900欧。电压输出类型:0-5V、0-10V,输出电流不超过4mA 外形尺寸:88*72*59 工作温度:-35℃~+50℃。采用标准 35mm导轨安装方式。 应用领域:模拟量输出控制、自动控制。 8路与10路输出如下图:

2、接口如下: A:RS485串行通讯A B:RS485串行通讯B 电源V+:直流电源正极电源GND:直流电源负极、公共端AIN(x):模拟量输入端 AOUT(x):模拟量输出端 3、寄存器地址模拟量输入功能码03H 模拟量输出 06H(写) 3.3功能码10H(写连续寄存器) 16H-19H 寄存器支持MODBUS 的10H 命令。此功能的意义在于: 使用06H 命令设置4个输出,就要分别写入4次,而用10H 命令一次就可以写入4个输出。 16进制地址10进制地址说明 介绍 只读60H 40097第1路模拟量输入数值数值为符号整型,-32768-32767,单位为:uA、mV。 例如:25000表示25000(uA、mV)相当于25.000(mA、V)。 R 61H 40098第2路模拟量输入数值R 62H 40099第3路模拟量输入数值R 63H 40100 第4路模拟量输入数值 R 16进制地址10进制地址说明 介绍 读写16H 40023第1路模拟量输出数值电压或电流输出数值,2字节的无符号整数,数值单位是:uA、mV。 例如:写入4000-20000,对应4-20mA 写入0-10000,对应0-10v RW 17H 40024第2路模拟量输出数值RW 18H 40025第3路模拟量输出数值RW 19H 40026第4路模拟量输出数值RW 1AH 40027第5路模拟量输出数值RW 1BH 40028第6路模拟量输出数值RW 1CH 40029第7路模拟量输出数值RW 1DH 40030第8路模拟量输出数值RW 1EH 40031第9路模拟量输出数值RW 1FH 40032 第10路模拟量输出数值 RW

西门子模拟量输入SM331的接线方法

介绍西门子模拟量输入模块SM331的接线方法 我们在这里介绍下西门子模拟量输入模块SM331的接线方法,下面我们就分别来介绍两线制和四线制 两线制 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC 的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 四线制有自己的供电电源,一般是220vac ,信号线输出+为 4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3 接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 “传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。

西门子200模拟量模块

西门子S7-200模拟量编程 PLC 2009-09-16 20:05 阅读77 评论0 字号:大中小 西门子S7-200模拟量编程 韩耀旭 本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容: 1、模拟量扩展模块接线图及模块设置 2、模拟量扩展模块的寻址 3、模拟量值和A/D转换值的转换 4、编程实例 模拟量扩展模块接线图及模块设置 EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。下面以EM235为例讲解模拟量扩展模块接线图,如图1。 图1 图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端; 未连接传感器的通道要将X+和X-短接。 对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量 程和分辨率。(后面将详细介绍)

量的单/双极性、增益和衰减。 模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。 SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟 量的衰减选择。

6个DIP开关决定了所有的输入设置。也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。 输入校准 模拟量输入模块使用前应进行输入校准。其实出厂前已经进行了输入校准,如果OFFSET和GAIN电位器已被重新调整,需要重新进行输入校准。其步骤如下: A、切断模块电源,选择需要的输入范围。 B、接通CPU和模块电源,使模块稳定15分钟。 C、用一个变送器,一个电压源或一个电流源,将零值信号加到一个输 入端。 D、读取适当的输入通道在CPU中的测量值。 E、调节OFFSET(偏置)电位计,直到读数为零,或所需要的数字数据 值。 F、将一个满刻度值信号接到输入端子中的一个,读出送到CPU的值。 G、调节GAIN(增益)电位计,直到读数为32000或所需要的数字数据 值。 H、必要时,重复偏置和增益校准过程。 EM235输入数据字格式 下图给出了12位数据值在CPU的模拟量输入字中的位置 图2

西门子模拟量输入模块SM331接线方法

电子知识 SM331(1)模拟量输入(2)西门子(187) 1、两线制 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当PLC的模板输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出一个直流24V的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24vDC电源的,输出信号为4-20MA,电流)即+接24vdc,负输出4-20mA电流。 2、四线制(有自己的供电电源,一般是220vac ,信号线输出+为4-20ma正,-为4-20ma负。 PLC: (以2正、3负为例)1、两线制时正极2输出24VDC电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24vdc;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线

制传感器时,一种方法是2接传感器正,3接传感器负,plc跳线为4线制电流。 “传感器正与plc的3相连,2悬空,跳线为两线制电流。”此条在四线制和二线制传感器均适用,大家可以自己试验,好用的顶起来。 (以2正、3负为例)3、四线制传感器与plc两线制跳线接法:信号线负与柜内M线相连。将传感器正与plc的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,plc跳线为电压信号。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入 模块接线的阐述 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐 述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331- 7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP)和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明

问题讲解 ①问题“①端子10(COMP)为什么和端子11(MANA)短接。” 端子10(COMP)是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0使用内部补偿,所以必须将端子10(COMP)与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。 图3四线制和两线制电流流向 ④问题“③两线制具体怎么接,为什么要这样接。” 两线制仪表把测量的正M0连接到端子2上,测量的负M0-连接到端子3上,端子3无需接地。 ⑤问题“④四线制具体怎么接,为什么要这样接。” 四线制分为两种情况:

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍 2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。 HCNR200和HCNR201的内部结构完全相同,差别在于一些指标上。相对于HCNR200,HCNR201 提供更高的线性度。 采用HCNR200/201进行隔离的一些指标如下所示: * 线性度:HCNR200:0.25%,HCNR201:0.05%; * 线性系数K3:HCNR200:15%,HCNR201:5%; * 温度系数: -65ppm/oC; * 隔离电压:1414V;

相关文档
最新文档