八下压轴题-一次函数与几何-动点问题教师版

八下压轴题-一次函数与几何-动点问题教师版
八下压轴题-一次函数与几何-动点问题教师版

八年级下数学期末压轴题精选

1.等腰三角形存在性

(2017广西柳州)23.(10分)如图,在四边形OABC中,OA∥BC,∠OAB=90°,O为原点,点C的坐标为(2,8),点B的坐标为(24,8),点D从点B出发,以每秒1个单位长度的速度沿BC向点C运动,点E同时从点O出发,以每秒3个单位长度的速度沿OA向A运动,当点E达到点A时,点D也停止运动,从运动开始,设D(E)点运动的时间为t秒.

(1)连接AD,记△ADE得面积为S,求S与t的函数关系式,写出t的取值范围;

(2)当t为何值时,四边形ABDE是矩形;

(3)在(2)的条件下,当四边形ABDE是矩形,在x轴上找一点P,使得△ADP 为等腰三角形,直接写出所有满足要求的P点的坐标.

【分析】(1)根据三角形面积公式计算即可;

(2)当BD=AE时,四边形ABDE是矩形,由此构建方程即可解决问题;

(3)分三种情形:①当AD=AP时,②当DA=DP时,③当PD=PA时,分别求解即可;

【解答】解:(1)如图1中,S=×(24﹣3t)×8=﹣12t+96(0≤t≤8).

(2)∵OA∥BD,

∴当BD=AE时,四边形BDEA是平行四边形,

∵∠OAB=90°,

∴四边形ABDE是矩形,

∴t=24﹣3t,

t=6s,

∴当t=6s时,四边形ABDE是矩形.(3)分三种情形讨论:

由(2)可知D(18,8),A(24,0),∴AD==10,

①当AD=AP时,可得P

1(14,0),P

2

(34,0),

②当DA=DP时,可得P

3

(12,0),

③当PD=PA时,设PD=PA=x,

在Rt△DP

4

E中,x2=82+(x﹣6)2,

解得x=,

∴P

4

(,0),

综上所述,满足条件的点P坐标为(14,0)或(34,0)或(12,0)或(,0);

【点评】本题考查四边形的综合题、矩形的判定和性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,属于中考压轴题.

2.直角三角形存在性

(2017深圳新华)如图,在平面直角坐标系中,O是坐标原点,平行四边形的顶点C的坐标为(8,8),顶点A的坐标为(﹣6,0),边AB在x轴上,点E为线段AD的中点,点F在线段DC上,且横坐标为3,直线EF与y轴交于点G,有一动点P以每秒1个单位长度的速度,从点A沿折线A﹣B﹣C﹣F运动,当点P到达点F时停止运动,设点P运动时间为t秒.

(1)求直线EF的表达式及点G的坐标;

(2)点P在运动的过程中,设△EFP的面积为S(P不与F重合),试求S与t 的函数关系式;

(3)在运动的过程中,是否存在点P,使得△PGF为直角三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

【分析】(1)根据点C的坐标可求出点F的纵坐标,结合题意可得出点F的坐标,过点E作EH⊥x轴于点H,利用△AHE∽△AOD,可求出点E的坐标,从而利用待定系数法可确定直线EF的解析式,令x=0,可得出点G的坐标.

(2)延长HE交CD的延长线于点M,讨论点P的位置,①当点P在AB上运动时,②当点P在BC边上运动时,③当点P在CF上运动时,分别利用面积相减法可求出答案.

(3)很明显在BC上存在两个点使△PGF为直角三角形,这两点是通过①过点G 作GP⊥EF,②过点F作FP⊥EF得出来的.

【解答】解:(1)∵C(8,8),DC∥x轴,点F的横坐标为3,

∴OD=CD=8.

∴点F的坐标为(3,8),

∵A(﹣6,0),

∴OA=6,

∴AD=10,

过点E作EH⊥x轴于点H,

则△AHE∽△AOD.

又∵E为AD的中点,

∴===.

∴AH=3,EH=4.

∴OH=3.

∴点E的坐标为(﹣3,4),

设过E、F的直线为y=kx+b,

∴直线EF为y=x+6,

令x=0,则y=6,即点G的坐标为(0,6).

(2)延长HE交CD的延长线于点M,

则EM=EH=4.

∵DF=3,

∴S

△DEF

=×3×4=6,

且S

平行四边形ABCD

=CD?OD=8×8=64.

①当点P在AB上运动时,如图3,

S=S

平行四边形ABCD ﹣S

△DEF

﹣S

△APE

﹣S

四边形PBCF

∵AP=t,EH=4,

∴S

△APE

=×4t=2t,

S

四边形PBCF

=(5+8﹣t)×8=52﹣4t.∴S=64﹣6﹣2t﹣(52﹣4t),

即:S=2t+6.

②当点P在BC边上运动时,

S=S

平行四边形ABCD ﹣S

△DEF

﹣S

△PCF

﹣S

四边形ABPE

过点P作PN⊥CD于点N.

∵∠C=∠A,sin∠A==,

∴sin∠C=.

∵PC=18﹣t,

∴PN=PC?sin∠C=(18﹣t).

∵CF=5,

∴S

△PCF

=×5×(18﹣t)=36﹣2t.

过点B作BK⊥AD于点K.

∵AB=CD=8,

∴BK=AB?sin∠A=8×=.

∵PB=t﹣8,

∴S

四边形ABPE

=(t﹣8+5)×=t﹣.∴S=64﹣6﹣(36﹣2t)﹣(t﹣),即S=﹣t+.(8分)

③当点P在CF上运动时,

∵PC=t﹣18,

∴PF=5﹣(t﹣18)=23﹣t.

∵EM=4,

∴S

△PEF

=×4×(23﹣t)=46﹣2t.

综上:S=

(3)存在.

(,).

P

1

(,).

P

2

3.一次函数与平行四边形:

(2016山西晋中)(1)在直角坐标系中,A(1,2),B(4,0),在图1中,四边形ABCD为平行四边形,请写出图中的顶点C的坐标( 5 , 2 )

(2)平面内是否存在不同于图1的点C,使得以O、A、B、C为顶点的四边形为平行四边形,请在图2中画出满足情况的平行四边形,并在图中直接标出点C 的坐标.

(3)如图3,在直角坐标系中,A(1,2),P是x轴上一动点,在直线y=x上是否存在点Q,使以O、A、P、Q为顶点的四边形为平行四边形?若存在,画出所有满足情况的平行四边形,并求出对应的Q的坐标;若不存在,请说明理由.【分析】(1)根据平行四边形的性质对边相等,即可解决问题.

(2)存在.注意有两种情形.点C坐标根据平行四边形的性质即可解决.

(3)存在.如图3中所示,平行四边形AQ

1P

1

O,平行四边形AOQ

2

P

2

,平行四边形

AQ

1OP

2

.点Q的坐标根据平行四边形的性质即可解决.

【解答】解:(1)如图1中,

∵四边形ABCD是平行四边形,∴OB=AC,OB∥AC,

∵A(1,2),B(4,0),

∴AC=4,

∴点C坐标(5,2).

故点C坐标为(5,2).

(2)存在.点C坐标如图2中所示,

(3)存在.如图3中所示,平行四边形AQ

1P

1

O,平行四边形AOQ

2

P

2

,平行四边形

AQ

1OP

2

点Q

1(2,2),点Q

2

(﹣2,﹣2).

【点评】本题考查四边形综合题、点与坐标的关系等知识,解题的关键是学会正确画出图形,学会分类讨论,不能漏解,属于中考常考题型.

(2017襄阳)25.(11分)如图,平面直角坐标系中,直线l:y=﹣x+分别交x轴,y轴于A,B两点,点C在x轴负半轴上,且∠ACB=30°.

(1)求A,C两点的坐标.

(2)若点M从点C出发,以每秒1个单位长度的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,求出S关于t的函数关系式,并写出自变量的取值范围.

(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A,B,P,Q为顶点

的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.

【分析】(1)由直线方程易得点A的坐标.在直角△BOC中,利用30度所对的直角边等于斜边的一半求出BC的长,利用勾股定理求出OC的长,确定出C的坐标即可;

(2)先求出∠ABC=90°,分两种情况考虑:当M在线段BC上;当M在线段BC 延长线上;表示出BM,利用三角形面积公式分别表示出S与t的函数关系式即可;

(3)点P是y轴上的点,在坐标平面内存在点Q,使以A、B、P、Q为顶点的四边形是菱形,分两种情况,如图所示,利用菱形的性质求出AQ的长,根据AQ 与y轴平行得到Q与A横坐标相同,求出满足题意Q得坐标即可.

【解答】解:(1)当x=0时,y=;当y=0时,x=1.

∴点A坐标为(1,0),点B坐标为(0,),

在Rt△BOC中,∠OCB=30°,OB=,

∴BC=2.

∴OC==3.

∴点C坐标为(﹣3,0).

(2)如图1所示:∵OA=1,OB=,AB=2,

∴∠ABO=30°,

同理:BC=2,∠OCB=30°,

∴∠OBC=60°,

∴∠ABC=90°,

分两种情况考虑:若M在线段BC上时,BC=2,CM=t,可得BM=BC﹣CM=2﹣t,

此时S

=BM?AB=×(2﹣t)×2=2﹣t(0≤t<2);

△ABM

若M在BC延长线上时,BC=2,CM=t,可得BM=CM﹣BC=t﹣2,

=BM?AB=×(t﹣2)×2=t﹣2(t≥2);

此时S

△ABM

综上所述,S=;

(3)P是y轴上的点,在坐标平面内存在点Q,使以 A、B、P、Q为顶点的四边形是菱形,

如2图所示,

当P在y轴正半轴上,四边形ABPQ为菱形,①可得AQ=AB=2,且Q与A的横坐标相同,

此时Q坐标为(1,2),②AP=AQ=,Q与A的横坐标相同,此时Q坐标为(1,),

当P在y轴负半轴上,四边形ABPQ为菱形,①可得AQ=AB=2,且Q与A横坐标相同,

此时Q坐标为(1,﹣2),②BP垂直平分AQ,此时Q坐标为(﹣1,0),

综上,满足题意Q坐标为(1,2)、(1,﹣2)、(1,)、(﹣1,0).

【点评】此题属于一次函数综合题,涉及的知识有:含30度直角三角形的性质,勾股定理,坐标与图形性质,待定系数法求一次函数解析式,菱形的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题第二问的关键.

4.一次函数与矩形:

(2017重庆江津)26.(12分)如图,在平面直角坐标系中,一次函数y=mx+n (m≠0)的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=2x的图象交于点C(3,6).

(1)求一次函数y=mx+n的解析式;

(2)点P在x轴上,当PB+PC最小时,求出点P的坐标;

(3)若点E是直线AC上一点,点F是平面内一点,以O、C、E、F四点为顶点的四边形是矩形,请直接写出点F的坐标.

【分析】(1)由A、C坐标,可求得答案;

(2)由一次函数解析式可求得B点坐标,可求得B点关于x轴的对称点B′的坐标,连接B′C与x轴的交点即为所求的P点,由B′、C坐标可求得直线B′C 的解析式,则可求得P点坐标;

(3)分两种情形分别讨论即可①当OC为边时,四边形OCFE是矩形,此时EO⊥OC,②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC;

【解答】解:(1)∵一次函数y=mx+n(m≠0)的图象经过点A(﹣3,0),点C (3,6),

∴,

解得,

∴一次函数的解析式为y=x+3.

(2)如图1中,作点P关于x轴的对称点B′,连接CB′交x轴于P,此时PB+PC 的值最小.

∵B(0,3),C(3,6)

∴B′(﹣3,0),

∴直线CB′的解析式为y=3x﹣3,

令y=0,得到x=1,

∴P(1,0).

(3)如图,

①当OC为边时,四边形OCFE是矩形,此时EO⊥OC,

∵直线OC的解析式为y=2x,

∴直线OE的解析式为y=﹣x,

由,解得,

∴E(﹣2,1),

∵EO=CF,OE∥CF,

∴F(1,7).

②当OC为对角线时,四边形OE′CF′是矩形,此时OE′⊥AC,

∴直线OE′的解析式为y=﹣x,

由,解得,

∴E′(﹣,),

∵OE′=CF′,OE′∥CF′,

∴F′(,),

综上所述,满足条件的点F的坐标为(1.7)或(,).

【点评】本题考查一次函数综合题、轴对称最短问题、矩形的判定和性质等知识,解题的关键是学会利用对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.

5.一次函数与正方形

如图(1),四边形AOBC是正方形,点C的坐标是(,0),

(1)求点A的坐标点和正方形AOBC的面积;

(2)将正方形绕点O顺时针旋转45°,求旋转后的正方形与原正方形的重叠部分的面积;

(3)如图(2),动点P从点O出发,沿折线O﹣A﹣C﹣B方向以1个单位/每秒匀速运动;另一动点Q从点C出发,沿折线C﹣B﹣O﹣A方向以2个单位/每秒匀速运动.P、Q两点同时出发,当Q运动到点A 时P、Q同时停止运动.设运动时间为t秒,是否存在这样的t值,使△OPQ成为等腰三角形?若存在,直接写出

t的值;若不存在,请说明理由.

【分析】(1)连接AB,根据△OCA为等腰三角形可得AD=OD的长,从而得出点A 的坐标,则得出正方形AOBC的面积;

(2)根据旋转的性质可得OA′的长,从而得出A′C,A′E,再求出面积即可;(3)存在,从Q点在不同的线段上运动情况,可分为三种:

①当Q点在BC上时,使OQ=QP,则有OP=2BQ,而OP=t,BQ=4﹣2t,列式可得出t;

②当Q点在OB上时,使OQ=OP,而OP=t,OQ=8﹣2t,列式可得出t;

③当Q点在OA上时,使OQ=PQ,列式可得出t.

【解答】解:(1)如图1,连接AB,与OC交于点D,

由△OCA为等腰Rt△,得AD=OD=OC=2,

故点A的坐标为(2,2),

故正方形AOBC的面积为:×4×4=16;

(2)如图1,旋转后可得OA′=OB=4,

则A′C=4﹣4,而可知∠CA′E=90°,∠OCB=45°,

故△A′EC是等腰直角三角形,

则A′E=A′C=4﹣4,

故S

四边形OA’EB =S

△OBC

﹣S

△A’EC

=16﹣16.

(3)存在,从Q点在不同的线段上运动情况,可分为三种:①如图2,

当Q点在BC上时,使OQ=QP,QM为OP的垂直平分线,则有OP=2OM=2BQ,而OP=t,BQ=4﹣2t,

则t=2(4﹣2t),

解得:t=.

②如图3,

当Q点在OB上时,使OQ=OP,而OP=t,OQ=8﹣2t,

则t=8﹣2t,

解得:t=.

③当Q点在OA上时,如图4,

使OQ=PQ,t2﹣24t+96=0,

解得:t=12+4(舍去),t=12﹣4.

【点评】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.

6.四边形综合

(1)(2017武汉新洲)如图,正方形ABCD中,P为AB边上任意一点,AE⊥DP 于E,点F在DP的延长线上,且EF=DE,连接AF、BF,∠BAF的平分线交DF于G,连接GC.

(1)求证:△AEG是等腰直角三角形;

(2)求证:AG+CG=DG.

【分析】(1)根据线段垂直平分线的定义得到AF=AD,根据等腰三角形的性质、角平分线的定义证明即可;

(2)作CH⊥DP,交DP于H点,证明△ADE≌△DCH(AAS),得到CH=DE,DH=AE=EG,证明CG=GH,AG=DH,计算即可.

【解答】(1)证明:∵DE=EF,AE⊥DP,

∴AF=AD,

∴∠AFD=∠ADF,

∵∠ADF+∠DAE=∠PAE+∠DAE=90°,

∴∠AFD=∠PAE,

∵AG平分∠BAF,

∴∠FAG=∠GAP.

∵∠AFD+∠FAE=90°,

∴∠AFD+∠PAE+∠FAP=90°

∴2∠GAP+2∠PAE=90°,

即∠GAE=45°,

∴△AGE为等腰直角三角形;

(2)证明:作CH⊥DP,交DP于H点,

∴∠DHC=90°.

∵AE⊥DP,

∴∠AED=90°,

∴∠AED=∠DHC.

∵∠ADE+∠CDH=90°,∠CDH+∠DCH=90°,∴∠ADE=∠DCH.

∵在△ADE和△DCH中,

∴△ADE≌△DCH(AAS),

∴CH=DE,DH=AE=EG.

∴EH+EG=EH+HD,

即GH=ED,

∴GH=CH.

∴CG=GH.

∵AG=EG,

∴AG=DH,

∴CG+AG=GH+HD,

∴CG+AG=(GH+HD),

即CG+AG=DG.

(2)(2017天津)24.(8分)如图(1),正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连结EB,过点A作AM⊥BE,垂足为M,AM与BD相交于点F.

(1)求证:OE=OF;

(2)如图(2)若点E在AC的延长线上,AM⊥BE于点M,AM交DB的延长线于点F,其他条件不变,结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.

【分析】(1)根据正方形的性质对角线垂直且平分,得到OB=OA,又因为AM⊥BE,所以∠MEA+∠MAE=90°=∠AFO+∠MAE,从而求证出Rt△BOE≌Rt△AOF,得到OE=OF.

(2)根据第一步得到的结果以及正方形的性质得到OB=OA,再根据已知条件求证出Rt△BOE≌Rt△AOF,得到OE=OF.

【解答】解:(1)∵四边形ABCD是正方形.

∴∠BOE=∠AOF=90°,OB=OA.

又∵AM⊥BE,

∴∠MEA+∠MAE=90°=∠AFO+∠MAE,

∴∠MEA=∠AFO.

在△BOE和△AOF中,

∵,

∴△BOE≌△AOF.

∴OE=OF.

(2)OE=OF成立.

∵四边形ABCD是正方形,

∴∠BOE=∠AOF=90°,OB=OA.

又∵AM⊥BE,

∴∠F+∠MBF=90°,

∠E+∠OBE=90°,

又∵∠MBF=∠OBE,

∴∠F=∠E.

在△BOE和△AOF中,

∵,

∴△BOE≌△AOF.

∴OE=OF.

【点评】本题主要考查正方形的性质和全等三角形的判定与性质,将待求线段放到两个三角形中,通过证明三角形全等得到对应边相等是解题的关键.

7.动点问题:

(1)(2017黄石大冶)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.

(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;

(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;

(3)如图3,点G,H分别在边AB,CD上,且GH=3cm,连接EF,当EF与GH 的夹角为45°,求t的值.

【解答】解:(1)等腰直角三角形.理由如下:

如图1,在正方形ABCD中,DC=BC,∠D=∠ABC=90°.

依题意得:DE=BF=t.

在△CDE与△CBF中,

∴△CDE≌△CBF(SAS),

∴CF=CE,∠DCE=∠BCF,

∴∠ECF=∠BCF+∠BCE=∠DCE+∠BCE=∠BCD=90°,

∴△CEF是等腰直角三角形.

故答案是:等腰直角三角形.

(2)如图2,过点E作EN∥AB,交BD于点N,则∠NEM=∠BFM.∴∠END=∠ABD=∠EDN=45°,

∴EN=ED=BF.

在△EMN与△FMB中,

∴△EMN≌△FMB(AAS),

∴EM=FM.

∵Rt△AEF中,AE=4,AF=8,

∴=EF==4,

∴AM=EF=2;

一次函数压轴题包括答案.doc

))))))))) 1.如图 1,已知直线 y=2x+2 与 y 轴、 x 轴分别交于 A 、 B 两点,以 B 为直角顶点在第二象限作 等腰 Rt△ ABC (1)求点 C 的坐标,并求出直线 AC 的关系式. (2)如图 2,直线 CB 交 y 轴于 E,在直线 CB 上取一点 D ,连接 AD ,若 AD=AC ,求证: BE=DE . ( 3)如图 3,在( 1)的条件下,直线 AC 交 x 轴于 M , P(, k)是线段 BC 上一点, 在线段 BM 上是否存在一点N ,使直线 PN 平分△ BCM 的面积?若存在,请求出点N 的坐标;若不存在,请说明理由. 考点:一次函数综合题。 分析:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q,利用等腰直角三角形的性质证明△ ABO ≌△ BCQ,根据全等三角形的性质求OQ, CQ 的长,确定 C 点坐标; ( 2)同( 1)的方法证明△ BCH ≌△ BDF ,再根据线段的相等关系证明△ BOE ≌△ DGE,得出结论; ( 3)依题意确定 P 点坐标,可知△BPN 中 BN 变上的高,再由S△PBN= S△BCM,求 BN , 进而得出 ON . 解答:解:( 1)如图 1,作 CQ⊥ x 轴,垂足为 Q, ∵∠ OBA+ ∠ OAB=90 °,∠ OBA+ ∠QBC=90 °, ∴∠ OAB= ∠ QBC, 又∵ AB=BC ,∠ AOB= ∠ Q=90°, ∴△ ABO ≌△ BCQ , ∴BQ=AO=2 , OQ=BQ+BO=3 , CQ=OB=1 , ∴C(﹣ 3, 1), 由 A ( 0, 2),C(﹣ 3, 1)可知,直线 AC : y=x+2 ; (2)如图 2,作 CH⊥ x 轴于 H, DF ⊥x 轴于 F, DG ⊥ y 轴于 G, ∵ AC=AD ,AB ⊥ CB ,∴ BC=BD , ∴△ BCH ≌△ BDF ,∴ BF=BH=2 , ∴ OF=OB=1 , ∴DG=OB , ∴△ BOE ≌△ DGE , ∴BE=DE ;

苏教版中考数学压轴题动点问题

苏教版中考数学压轴题动 点问题 Modified by JEEP on December 26th, 2020.

运动变化型问题专题复习 【考点导航】 运动变化题是指以三角形、四边形、圆等几何图形为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行考察研究的一类问题,这类试题信息量大,题目灵活多变,有较强的选拔功能,是近年来中考数学试题的热点题型之一,常以压轴题的面目出现.解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住变化过程中的特殊情形,建立方程、不等式、函数模型.【答题锦囊】 例1 如图在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C 以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒). (1)设四边形PCQD的面积为y,求y与t的函数关系式; (2)t为何值时,四边形PQBA是梯形 (3)是否存在时刻t,使得PD∥AB若存在,求出t的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. 例2如图2,直角梯形CD ,AD=4,DC=3,动点P从点 A出发,沿A→D→C→B方向移动,动点P移动的路程为x,点Q移动的路程为y,线段 PQ平分梯形ABCD (1)求y与x的函数关系式,并求出x y ,的取值范围;(2)当PQ∥AC时,求 x y ,的值; (3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积若能,求出此时x的值;若不能,说明理由. 例3 如图3,在平面直角坐标系中,以坐标原点O为圆心,2 为半径画⊙O,P是⊙O上一动点,且P的切线与x轴相交于点A,与y轴相交于点B. (1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由; (2)在⊙O上是否存在一点Q,使得以Q、O、A、P为顶点的四边形时平行四边形若存在,请求出Q点的坐标;若不存在,请说明理由. 例4如图7①,一张三角形纸片ABC沿斜边AB的中线CD把这张 纸片剪成 11 AC D ?和 22 BC D ? 11 AC D沿直线 2 D B(AB)方向平 移(点 12 ,,, A D D B始终在同一直线上),当点.在平移过程中,11 C D与 2 BC交于点E, 1 AC与222 C D BC 、分别交于点F、P. ⑴当 11 AC D ?平移到如图7③所示的位置时,猜想图中的 1 D E与 2 D F的数量关系,并证明你的猜想; ⑵设平移距离 21 D D为x, 11 AC D ?与 22 BC D ?重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围; ⑶对于(2)中的结论是否存在这样的x的值,使重叠部分的面积等于原ABC ?面积的 1 4 .若存在,求x的值;若不存在,请说明理由. 【中考预 测】 ⒈如图8①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点. 如图8②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况). (1)当x为何值时,OP∥AC Q B M 图1 AC D Q P B 图2 1 2 2 D ① 2 1 ②

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

八上期末复习一次函数压轴题附答案解析

一次函数综合题选讲及练习 例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式; (2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长; (3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③. 问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由. 变式练习: 1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3. (1)求点B的坐标; (2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标; (3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等. ①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.) ②求点P的坐标.

例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB. (1)求直线BC的函数表达式; (2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC; (3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由. 变式练习: 2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO. (1)点A坐标是,BC= . (2)当点P在什么位置时,△APQ≌△CBP,说明理由. (3)当△PQB为等腰三角形时,求点P的坐标. 课后作业: 1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点. (1)求两直线与y轴交点A,B的坐标及交点C的坐标; (2)求△ABC的面积. 2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB (1)求直线AC的解析式; (2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.

中考数学压轴题动点问题

2016年中考数学压轴题动点问题 一、选择题 1. (2016·湖北鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s. 设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是() 【考点】动点函数的图像问题. 【分析】分别判断点P在AB、在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)的变化情况进行求解即可. 2.(2016年浙江省台州市)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是() A.6 B.2+1 C.9 D. 【考点】切线的性质. 【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值 故选C. 3.(2016年浙江省温州市)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB

方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是() A.一直减小B.一直不变C.先减小后增大D.先增大后减小 【考点】动点问题的函数图象. 【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可. 4.(2016.山东省泰安市,3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是() A.B. C. D. 【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.

一次函数相关的中考压轴题(含分析和答案)

一次函数是初中数学的重点内容之一,也是中考的主要考点。现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考 一.解答题(共30小题) 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO 于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE. (3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值. (2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.

中考数学压轴题(对称问题、双动点对称问题)

(2014?济宁,第22题11分)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C; (1)求该抛物线的解析式; (2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由; (3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M ,是否存在这样的点P, 使四边形PACM是平行四边形若存在,求出点P的坐标;若不存在,请说明理由. 分析:(1)利用待定系数法求出抛物线的解析式; (2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本 问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标; (3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解. 解 答: 解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点, ∴,解得.∴抛物线的解析式为y=x2﹣x﹣. (2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D, ∵点C在直线y=2x上,∴C(5,10) ∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD. ∵OA =5,AC =10, ∴OC ===.∵S△OAC=OC ?AD=OA?AC,∴AD=.∴AA′=,

在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°, ∴Rt △A′EA∽Rt△OAC.∴,即. ∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4), 当x =﹣3时,y=×(﹣3)2+3﹣=4.所以,点A ′在该抛物线上. (3)存在.理由:设直线CA′的解析式为y=kx+b, 则,解得∴直线CA′的解析式为y =x +…(9分)设点P 的坐标为(x,x2﹣x﹣),则点M为(x,x+). ∵PM∥AC, ∴要使四边形PACM是平行四边形,只需PM= AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10. 解得x1=2,x2=5(不合题意,舍去) 当x=2时,y=﹣. ∴当点P运动到(2,﹣)时,四边形PACM是平行四边形. 点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、 勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解.

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

(完整版)一次函数与几何图形综合题,精选十道,道道经典。

专题训练:一次函数与几何图形综合 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并 证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的值不 变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.(本题满分12分)如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; x y o B A C P Q x y o B A C P Q M 第2题图①

(2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 (3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) 第2题图② 第2题图③ C B A l 2 l 1 x y

中考数学压轴题动点

中考专题——动点问题详细分层解析(一) 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式 例1如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G. (1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度. (2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是 GH=32NH=2132?OP=2. (3)△PGH 是等腰三角形有三种可能情况: ①GP=PH 时,x x =+23363 1,解得6=x .经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 23363 12=+x ,解得0=x .经检验,0=x 是原方程的根,但不符合题意. ③PH=GH 时,2=x . 综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式 例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式; (2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. H M N G P O A B 图1 x y

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

中考数学—反比例函数的综合压轴题专题复习含详细答案

中考数学—反比例函数的综合压轴题专题复习含详细答案 一、反比例函数 1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数 (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于 D. (1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值; (3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值; (2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得, 所以一次函数解析式为y= x+ , 把B(﹣1,2)代入y= 得m=﹣1×2=﹣2; (3)解:如下图所示: 设P点坐标为(t,t+ ), ∵△PCA和△PDB面积相等, ∴? ?(t+4)= ?1?(2﹣t﹣),即得t=﹣,

∴P点坐标为(﹣,). 【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到? ?(t+4)= ?1?(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标. 2.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣ 2),与y轴交于点C. (1)m=________,k1=________; (2)当x的取值是________时,k1x+b>; (3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标. 【答案】(1)4; (2)﹣8<x<0或x>4 (3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4). ∴CO=2,AD=OD=4. ∴S梯形ODAC= ?OD= ×4=12, ∵S四边形ODAC:S△ODE=3:1, ∴S△ODE= S梯形ODAC= ×12=4,

八年级数学一次函数与几何图形综合题专题训练

一次函数与几何图形综合题专题训练 1、直线y=-x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC 的解析式; (2) 在OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M,BP 交AC 于N,下面两个结论:①(MQ+AC)/PM 的 值不变;②(MQ-AC)/PM 的值不变,期中只有一个正确结论,请选择并加以证明。 2.如图①所示,直线L :5y mx m =+与x 轴负半轴、y 轴正半轴分别交于A 、B 两点。 (1)当OA=OB 时,试确定直线L 的解析式; (2)在(1)的条件下,如图②所示,设Q 为AB 延长线上一点,作直线OQ ,过A 、B 两点分别作AM ⊥OQ 于M ,BN ⊥OQ 于N ,若AM=4,BN=3,求MN 的长。 第2题图① 第2题图②

(3)当m 取不同的值时,点B 在y 轴正半轴上运动,分别以OB 、AB 为边,点B 为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE ,连EF 交y 轴于P 点,如图③。 问:当点B 在 y 轴正半轴上运动时,试猜想PB 的长是否为定值,若是,请求出其值,若不是,说明理由。 3、如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+, (1)求直线2l 的解析式;(3分) (2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF = 第2题图③

最新数学八级与一次函数有关的压轴题word版本

一次函数压轴题 1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1). (1)求直线AB的解析式; (2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围; (3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值. 2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证: BE=DE.(3)如图3,在(1)的 条件下,直线AC交x轴于M, P(,k)是线段BC上一点, 在线段BM上是否存在一点N, 使直线PN平分△BCM的面积? 若存在,请求出点N的坐标;若 不存在,请说明理由.

3.如图直线?:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线?在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C, (1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式; (2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

八年级数学下《一次函数及几何综合》专题练习题.doc

2019-2020 年八年级数学下《一次函数与几何综合》专题练习题 1.如图,直线 l1的函数解析式为 y=- 3x+3,且 l1与 x 轴交于点 D,直线 l2经过点 A,B,直线 l 1,l2交于点 C. (1)求点 D 的坐标; (2)求直线 l 2的函数解析式; (3)求△ADC 的面积; (4)在直线 l 2上存在异于点 C 的另一点 P,使得△ADP 与△ADC 的面积相等,请直接写出点 P 的坐标. 1 2. 如图,直线 y=2x+6 与 x 轴交于点 A,与 y 轴交于点 B,直线 y=-2x+1 与 x 轴交于点 C,与 y 轴交于点 D,两直线交于点 E,求 S△BDE和 S 四边形AODE . 4 3.如图,直线 y=-3x+8 分别交 x 轴、y 轴于 A,B 两点,线段 AB 的垂直平分线分别交 x 轴、 y 轴于 C,D 两点. (1) 求点 C 的坐标; (2) 求直线 CE 的解析式; (3) 求△BCD 的面积.

4.如图,在平面直角坐标系中,点 A( -1,0),B(0,3),直线 BC 交坐标轴于 B,C两点,且∠ CBA =45°.求直线 BC 的解析式. 5.如图, A(0,4),B(-4,0),D(-2,0),OE⊥AD 于点 F,交 AB 于点 E,BM ⊥OB 交 OE 的延长线于点 M. (1)求直线 AB 和直线 AD 的解析式; (2)求点 M 的坐标; (3)求点 E,F 的坐标. 6.如图,正方形 OBAC 中, O(0,0),A( -2,2),B,C 分别在 x 轴、 y 轴上, D(0,1),CE⊥BD 交 BD 延长线于点 E,求点 E 的坐标. 1 7. 如图,在平面直角坐标系中,A(0 ,1),B(3,2),P 为 x 轴上一动点,则 PA+PB 最小时点 P 的坐标为 ________.

一次函数压轴题含答案

1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等 腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式. (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM 上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由. 2.如图直线:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0) (1)求k的值. (2)若P(x,y)是直线在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围. (3)当点P运动到什么位置时,△OPA的面积为9,并说明理由. 3.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C. (1)若直线AB解析式为y=﹣2x+12, ①求点C的坐标; ②求△OAC的面积. (2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q 分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由. 4.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点. (1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式; (2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标; (3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由. 5.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合. (1)求点F的坐标和∠GEF的度数; (2)求矩形ABCD的边DC与BC的长; (3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t (0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围. 6.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A 点的坐标是(1,0).

中考数学压轴题专题:动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01 :动点问题 25. (2012 吉林长春10 分)如图,在Rt △KBC 中,/ACB=90 °,AC=8cm , BC=4cm , D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD —DE —EB运动,到点B停止.点P在AD上以5cm/s的速度运动,在折线DE—EB上以1cm/s的速度运动.当点P与点A 不重合时,过点P作 PQ丄AC于点Q,以PQ为边作正方形PQMN ,使点M落在线段AC 上.设点P的运动时间为t(s). (1 )当点P在线段DE上运动时,线段DP的长为___________ cm,(用含t的代数式表示). (2)当点N落在AB边上时,求t的值. (3)当正方形PQMN 与△ABC重叠部分图形为五边形时,设五边形的面积为S (cm2), 求S与t的函数关系式. (4)连结CD?当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M 连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1) t —2。 (2)当点N落在AB边上时,有两种情况:

①如图(2) a ,当点N 与点D 重合时,此时点P 在DE 上,DP=2=EC , 即 t — 2=2 , t=4。 ②如图(2) b ,此时点P 位于线段EB 上. ???DE=1 2 AC=4 ,???点P 在DE 段的运动时间为 4s , ???PE=t -6 ,「.PB=BE-PE=8-t , PC=PE+CE=t-4 。 ???PN //AC , ??? △NP s/BAC 。???PN : AC = PB : BC=2 , /-PN=2PB=16-2t 。 由PN=PC ,得 20 16-2t=t-4 ,解得 t= 。 3 综上所述,当点 20 N 洛在AB 边上时,t= 4 或t= 3 (3)当正方形PQMN 与/ABC 重叠部分图形为五边形时,有两种情况: DP=t-2 , PQ=2 , .-.CQ=PE=DE-DP=4- (t-2 ) =6-t , AQ=AC-CQ=2+t AM=AQ-MQ=t VMN //BC ,./\FM S /ABC °.FM : BC = AM : AC=1 : 2,即 FM : AM=BC : AC=1 : 2。 ①当2 v t v 4时,如图(3) a 所示。

一次函数与几何综合 专题练习题 含答案

一次函数与几何综合专题练习题 1. 如图,直线l 1的函数解析式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A ,B ,直线l 1,l 2交于点C. (1)求点D 的坐标; (2)求直线l 2的函数解析式; (3)求△ADC 的面积; (4)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接写出点P 的坐标. 2. 如图,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,直线y =-12x +1与x 轴 交于点C ,与y 轴交于点D ,两直线交于点E ,求S △BDE 和S 四边形AODE . 3.如图,直线y =-43x +8分别交x 轴、y 轴于A ,B 两点,线段AB 的垂直平分线分 别交x 轴、y 轴于C ,D 两点.

(1)求点C的坐标; (2)求直线CE的解析式; (3)求△BCD的面积. 4. 如图,在平面直角坐标系中,点A(-1,0),B(0,3),直线BC交坐标轴于B,C 两点,且∠CBA=45°.求直线BC的解析式. 5. 如图,A(0,4),B(-4,0),D(-2,0),OE⊥AD于点F,交AB于点E,BM⊥OB 交OE的延长线于点M. (1)求直线AB和直线AD的解析式; (2)求点M的坐标; (3)求点E,F的坐标. 6. 如图,正方形OBAC中,O(0,0),A(-2,2),B,C分别在x轴、y轴上,D(0,1),CE⊥BD交BD延长线于点E,求点E的坐标.

7. 如图,在平面直角坐标系中,A(0,1),B(3,12),P 为x 轴上一动点,则PA +PB 最 小时点P 的坐标为________. 8. 如图,直线y =x +4与坐标轴交于点A ,B ,点C(-3,m)在直线AB 上,在y 轴上 找一点P ,使PA +PC 的值最小,求这个最小值及点P 的坐标.

相关文档
最新文档