Do与温度压力关系

Do与温度压力关系
Do与温度压力关系

Table9Solubility of Oxygen in Water

Exposed to Water-Saturated Air at Atmospheric Pressure(101.3kPa)

Temp.°C

Oxygen Solubility mg/L

Salinity:09.018.027.036.0

014.6213.7312.8912.1111.37

1.014.2213.361

2.5511.7911.08

2.01

3.8313.0012.2211.4910.80

3.013.4612.6611.9111.2010.54

4.013.1112.3411.6110.9310.28

5.012.7712.0311.3310.6610.04

6.012.4511.7311.0510.419.81

7.012.1411.4410.7910.179.58

8.011.8411.1710.549.949.37

9.011.5610.9110.299.719.16

10.011.2910.6610.069.508.97

11.011.0310.429.849.298.78

12.010.7810.199.639.098.59

13.010.549.969.428.908.42

14.010.319.759.228.728.25

15.010.089.549.038.558.09

16.09.879.358.858.387.93

17.09.679.158.678.217.78

18.09.478.978.508.057.63

19.09.288.798.347.907.49

20.09.098.628.187.757.35

21.08.928.468.027.617.22

22.08.748.307.887.477.09

23.08.588.147.737.34 6.97

24.08.428.007.597.21 6.85

25.08.267.857.467.09 6.73

26.08.117.717.33 6.97 6.62

27.07.977.587.20 6.85 6.51

28.07.837.457.08 6.73 6.40

29.07.697.32 6.96 6.62 6.30

30.07.567.20 6.85 6.52 6.20

31.07.437.07 6.74 6.41 6.10

32.07.31 6.96 6.63 6.31 6.0133.07.18 6.84 6.52 6.21 5.9234.07.07 6.73 6.42 6.11 5.8335.0 6.95 6.63 6.32 6.02 5.7436.0 6.84 6.52 6.22 5.93 5.6537.0 6.73 6.42 6.12 5.84 5.5738.0 6.62 6.32 6.03 5.75 5.4839.0 6.52 6.22 5.93 5.66 5.4040.0 6.41 6.12 5.84 5.58 5.3241.0 6.31 6.03 5.75 5.50 5.2542.0 6.21 5.94 5.67 5.41 5.1743.0 6.12 5.84 5.58 5.33 5.0944.0 6.02 5.75 5.50 5.25 5.0245.0

5.93

5.67

5.42

5.18

4.95

Table 9Solubility of Oxygen in Water

Exposed to Water-Saturated Air at Atmospheric Pressure (101.3kPa)(Continued)

Temp.°C Oxygen Solubility mg/L

Salinity:

9.018.027.036.0Table 10Solubility of Oxygen in Water vs.Temperature and

Barometric Pressure (lower range)

Pressure

mm Hg 550575600625650675700inches Hg 21.7

22.6

23.6

24.6

25.6

26.6

27.6

Temp.°C

Oxygen Solubility mg/L 010.5611.0411.5312.0112.4912.9813.46110.2710.7411.2111.6812.1512.6213.0929.9810.4410.9011.3611.8212.2712.7339.7210.1610.6111.0511.5011.9412.3949.469.8910.3310.7611.2011.6312.0659.219.6410.0610.4810.9111.3311.756

8.98

9.39

9.80

10.22

10.63

11.04

11.46

Table10Solubility of Oxygen in Water vs.Temperature and

Barometric Pressure(lower range)(Continued)

Pressure

mm Hg550575600625650675700 inches Hg21.722.623.624.625.626.627.6 Temp.°C Oxygen Solubility mg/L

78.759.169.569.9610.3710.7711.17

88.548.939.339.7210.1110.5110.90

98.338.729.109.489.8710.2510.64

108.138.518.889.269.6410.0110.39 117.948.318.689.049.419.7810.15 127.768.128.488.849.209.569.92 137.587.948.298.648.999.349.69 147.417.768.108.458.799.149.48 157.257.597.938.268.608.949.28 167.107.437.768.098.428.759.08

17 6.947.277.597.928.248.568.89

18 6.807.127.437.758.078.398.70

19 6.66 6.977.287.597.918.228.53

20 6.52 6.837.137.447.758.058.36

21 6.39 6.69 6.997.297.597.898.19

22 6.26 6.56 6.857.157.457.748.04

23 6.14 6.43 6.727.017.307.597.88

24 6.02 6.31 6.59 6.887.167.457.73

25 5.91 6.19 6.47 6.757.037.317.59

26 5.80 6.07 6.35 6.62 6.907.187.45

27 5.69 5.96 6.23 6.50 6.777.057.32

28 5.58 5.85 6.12 6.38 6.65 6.927.19

29 5.48 5.74 6.01 6.27 6.53 6.807.06

Table10Solubility of Oxygen in Water vs.Temperature and

Barometric Pressure(lower range)(Continued)

Pressure

mm Hg550575600625650675700 inches Hg21.722.623.624.625.626.627.6 Temp.°C Oxygen Solubility mg/L

30 5.38 5.64 5.90 6.16 6.42 6.68 6.94

31 5.28 5.54 5.80 6.05 6.31 6.56 6.82

32 5.19 5.44 5.69 5.95 6.20 6.45 6.70

33 5.10 5.35 5.59 5.84 6.09 6.34 6.59

34 5.01 5.25 5.50 5.74 5.99 6.23 6.48

35 4.92 5.16 5.40 5.64 5.89 6.13 6.37

36 4.83 5.07 5.31 5.55 5.79 6.03 6.26

37 4.75 4.98 5.22 5.46 5.69 5.93 6.16

38 4.67 4.90 5.13 5.36 5.60 5.83 6.06

39 4.58 4.81 5.04 5.27 5.50 5.73 5.96

40 4.50 4.73 4.96 5.19 5.41 5.64 5.87

41 4.43 4.65 4.88 5.10 5.32 5.55 5.77

42 4.35 4.57 4.79 5.01 5.24 5.46 5.68

43 4.27 4.49 4.71 4.93 5.15 5.37 5.59

44 4.20 4.41 4.63 4.85 5.07 5.28 5.50

45 4.12 4.34 4.55 4.77 4.98 5.20 5.41

Table11Solubility of Oxygen in Water vs.Temperature

and Barometric Pressure(upper range)

Pressure

mm Hg725750760775800825850 inches Hg28.529.529.930.531.532.533.5 Temp°C Oxygen Solubility mg/L

013.9414.4314.6214.9115.3915.8816.36

Table11Solubility of Oxygen in Water vs.Temperature

and Barometric Pressure(upper range)(Continued)

Pressure

mm Hg725750760775800825850 inches Hg28.529.529.930.531.532.533.5 Temp°C Oxygen Solubility mg/L

113.5614.0314.2214.5014.9715.4415.91 213.1913.6513.8314.1014.5615.0215.48 312.8413.2813.4613.7314.1714.6215.06 412.5012.9313.1113.3713.8014.2414.67 512.1812.6012.7713.0213.4513.8714.29 611.8712.2812.4512.6913.1113.5213.93 711.5711.9812.1412.3812.7813.1913.59 811.2911.6911.8412.0812.4712.8713.26 911.0211.4111.5611.7912.1712.5612.94 1010.7611.1411.2911.5111.8912.2612.64 1110.5110.8811.0311.2511.6111.9812.35 1210.2710.6310.7810.9911.3511.7112.07 1310.0410.4010.5410.7511.1011.4511.80 149.8210.1710.3110.5110.8611.2011.54 159.619.9510.0810.2910.6210.9611.30 169.419.749.8710.0710.4010.7311.06 179.219.549.679.8610.1810.5110.83 189.029.349.479.669.9810.2910.61 198.849.159.289.469.7710.0910.40 208.668.979.099.289.589.8910.19 218.498.798.929.109.409.7010.00 228.338.638.748.929.219.519.80 238.178.468.588.759.049.339.62

SECTION8,continued

Table11Solubility of Oxygen in Water vs.Temperature

and Barometric Pressure(upper range)(Continued)

Pressure

mm Hg725750760775800825850 inches Hg28.529.529.930.531.532.533.5 Temp°C Oxygen Solubility mg/L

248.028.308.428.598.879.169.44 257.878.158.268.438.718.999.27 267.738.008.118.288.558.839.11 277.597.867.978.138.408.678.94 287.457.727.837.998.258.528.79 297.327.597.697.858.118.378.64 307.207.467.567.717.978.238.49 317.077.337.437.587.848.098.35

32 6.957.207.317.467.717.968.21

33 6.847.087.187.337.587.838.08

34 6.72 6.977.077.217.467.707.95

35 6.61 6.85 6.957.097.347.587.82

36 6.50 6.74 6.84 6.987.227.467.70

37 6.40 6.63 6.73 6.877.107.347.57

38 6.29 6.53 6.62 6.76 6.997.227.46

39 6.19 6.42 6.52 6.65 6.887.117.34

40 6.09 6.32 6.41 6.55 6.787.007.23

41 6.00 6.22 6.31 6.45 6.67 6.907.12

42 5.90 6.12 6.21 6.35 6.57 6.797.01

43 5.81 6.03 6.12 6.25 6.47 6.69 6.91

SECTION8,continued

Table12Pressure Conversions

mbar mm Hg inches Hg

1mbar10.750060.02953

1mm Hg 1.333210.039370

1inch Hg33.86425.4001

Example:

To convert1013.25mbar to mm Hg,multiply1013.25by

0.75006.The result is760mm Hg.

To convert1013.25mbar to in.Hg,multiply1013.25by0.02953.

The result is29.92in.Hg.

GENERAL INFORMATION At Hach Company,customer service is an

important part of every product we make.

With that in mind,we have compiled the

following information for your convenience.

REPLACEMENT PARTS

Description unit Cat.No. Barometer,Digital................................................................................each.................27584-00 Batteries,AA......................................................................................4/pkg.................19380-04 BOD Accessory Kit

Includes funnel and spacer for Dissolved Oxygen Probe.................each.................51971-00 Cable,Dissolved Oxygen Probe,1meter............................................each.................51970-00 Cable,Dissolved Oxygen Probe,3meter............................................each.................51970-03 Cable,Dissolved Oxygen Probe,15meter..........................................each.................51970-15 Calibration Storage Chamber,Dissolved Oxygen Probe.....................each.................51974-00 Cobalt Standard Solution,100mg/L...............................................100mL.................21503-42 Dissolved Oxygen Service Kit

Includes2membranes,fill solution,polishing cloth,2sponges......each.................51968-00 Docking Station,external,115V,N.American style plug..................each.................51875-01 Docking Station,external,230V,European style plug........................each.................51875-02 Filling Solution,Dissolved Oxygen..................................................59mL.................27591-26 Membranes,for Dissolved Oxygen Probe.........................................2/pkg.................51973-00 Power Cord for PN60,continental European plug...............................each.................46836-00 Print Cartridges for PN60,black........................................................2/pkg.................26690-00 Printer,portable,Citizen PN60............................................................each.................26687-00 Printer Port Cable for PN60.................................................................each.................26689-00 Silica3Reagent Powder Pillows(contains sodium sulfite)...........100/pkg.....................271-69 Sodium Sulfite....................................................................................454g.....................195-01 Weight Assembly.................................................................................each.................51969-00

79

气体的压强跟温度的关系

三、气体的压强跟温度的关系 在日常生活中,我们常会遇到这样一些情况:夏天给旧的自行车车胎打气,不宜打得很足,不然,在太阳下骑行,车胎容易爆裂;卡车在运输汽水等饮料时,由于太阳曝晒,一些质地较差的汽水瓶往往会爆裂。这些现象都表明气体压强的大小跟温度的高低有关。 我们可以用实验的方法来研究一定质量的气体,在体积不变时,它的压强跟温度的关系。 查理定律 通过实验探索,我们初步得出一定质量气体在体积不变时,它的压强随着温度的升高而增大的结论。从实验数据描绘出的p -t 图象,基本上是一条倾斜的直线(图2-7),但是这样还没有反映出压强和温度间确切的关系。 最早定量研究气体压强跟温度的关系的是法国物理学家查理(1746-1823)。我们为了精确测量一定质量气体在体积不变时,不同温度下的压强,采用了图2-8所示的实验装置。容器A 中有一定质量的空气,空气的温度可由温度计读出,空气的压强可由跟容器A 连在一起的水银压强计读出。但温度升高后,容器A 中的空气会膨胀,由于压强计两臂间是用橡皮管相连的,它的右臂可以上下移动。移上时,受热膨胀后的空气就能被压缩到原来的体积。 控制变量法 自然界发生的各种现象,往往是错综复杂的。决定某一个现象的产生和变化的因素常常也很多。为了弄清事物变化的原因和规律,必须设法把其中的一个或几个因素用人为的方法控制起来,使它保持不变,然后来比较、研究其他两个变量之间的关系,这是一种研究问题的科学方法。 例如物体吸收热量温度会升高,温度升高多少是由多个因素决定的,跟吸收的热量、物体的质量以及组成物体的物质性质有关。在研究时,可以先使一些因素保持不变,如在物质 相同、质量相同的情况下,观察物体温度升高跟所吸收热量的关系;接着再研究同种物质, 图2-8 图2-7

蒸汽温度与压力的关系

33 第4章 饱和蒸汽压力和温度关系实验 水蒸汽是人类在热机中应用最早的工质。虽然以后也应用燃气和其它工质,由于水蒸汽具有易于获得、有适宜的热力参数和不会污染环境等优点,至今仍是工业上广泛应用的的主要工质。他的物理性质较理想气体复杂的多,不能用简单的数学式来表达。本实验通过研究饱和蒸汽的压力与温度的关系加深对水蒸汽饱和状态的理解。 各种物质由液态转变为汽态的过程为汽化。 4.1实验目的 (1)通过观察饱和蒸汽压力和温度的关系,加深对饱和状态的理解。 (2)通过试验数据的整理,掌握饱和蒸汽P-T 关系图表的编制方法。 (3)学会温度计、压力表、调压器和大气压力计等仪表的使用方法。 4.2 实验装置 蒸汽发生器、压力表、温度计、可控数显温度仪和电流表等,如图4.1。 图4.1 饱和蒸汽温度、压力关系实验装置 1-压力表;2-排气阀;3-缓冲器;4-可视玻璃及蒸汽发生器;5-电源开关;6-电功率调节器;7-温度计;8-可控数显温度仪;9-电流表

34 4.3 实验方法与步骤 (1)熟悉实验装置及使用仪表的工作原理和性能。 (2)将电功率调节器调节至电流表零位,然后接通电源。 (3)调节电功率调节器并缓慢逐渐加大电流,待蒸汽压力升至一定值时,将电流降低0.2安培左右保温,待工况稳定后迅速记录下水蒸气的压力和温度。重复上述实验,在0~1.0MPa(表压)范围内实验不少于6次,且实验点应尽量分布均匀。 (4)实验完毕后,将调压指针旋回零位,并断开电源。 (6)记录室温和大气压力。 4.4 数据记录和整理 (1)数据记录和计算 实验 次数 饱和压力(MPa ) 饱和温度(℃) 误差 备注 压力表读数P ' 大气压力B 绝对压力B P P +'= 温度 计读 数t ' 理论值t t t t ' -=?(℃) %100??t t (%) 1 2 3 4 5 6 (2)绘制P-t 关系曲线 将实验结果点在坐标上,清除偏离点,绘制曲线。 图4.2 饱和水蒸汽压力和温度的关系式

饱和蒸汽压力与温度的关系

当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其蒸汽称为干饱和蒸汽(也称饱和蒸汽)。 饱和蒸汽与过热蒸汽的区别:饱和蒸汽压力与温度有一一对应关系,如已知饱和蒸汽压力为0.5MPa,则温度为158℃,反之,已知饱和蒸汽温度为180℃,则压力必为0.9MPa,所以从压力与温度数据可以判断是否为饱和蒸汽、过热蒸汽。 饱和蒸汽温度1mpa以下160~170度左右 1mpa以上170~195度左右 过热蒸汽在2mpa以上就400度左右. 饱和蒸汽温度压力对照表

压力MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 压力 MPa 温度 ℃ 0.000 99.5 0.180 131.0 0.000 99.5 -0.072 65.0 0.005 101.0 0.185 131.5 -0.002 99.0 -0.074 64.0 0.010 102.0 0.190 132.0 -0.004 98.5 -0.076 63.0 0.015 103.5 0.195 132.5 -0.006 97.5 -0.078 62.0 0.020 104.5 0.200 133.5 -0.008 97.0 -0.08 60.0 0.025 105.5 0.210 134.5 -0.010 96.5 -0.081 59.0 0.030 107.0 0.220 135.5 -0.012 96.0 -0.082 57.5 0.035 108.0 0.230 136.5 -0.014 95.0 -0.083 56.0 0.040 109.0 0.240 137.5 -0.016 94.5 -0.084 55.0 0.045 110.0 0.250 139.0 -0.018 94.0 -0.085 53.5 0.050 111.0 0.260 139.5 -0.020 93.0 -0.086 52.0 0.055 112.0 0.270 140.5 -0.022 92.5 -0.087 50.0 0.060 113.0 0.280 141.5 -0.024 92.0 -0.088 48.5 0.065 114.0 0.290 142.5 -0.026 91.0 -0.089 47.0 0.070 115.0 0.300 143.5 -0.028 90.5 -0.090 45.5 0.075 115.5 0.310 144.5 -0.030 90.0 -0.091 43.5 0.080 116.5 0.320 145.0 -0.032 89.0 -0.092 41.5 0.085 118.0 0.330 146.0 -0.034 88.5 -0.093 39.0 0.090 119.0 0.340 147.0 -0.036 88.0 -0.094 35.5 0.095 119.5 0.350 147.5 -0.038 87.0 -0.095 32.5

压力与温度的关系

压力与温度的关系标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg= J/=287 J/(标准适用),摩尔R= J/ Vm=*10-3m3/mol 空气的 mol 空气的标准密度= m3 空气的标准比体积= m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT,

所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差,即 T(K)=t (℃)+,例如温度为100℃就是热力学温度为 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。

饱和水蒸汽的压力与温度的关系的介绍

饱和水蒸汽的压力与温度的关系 ( 摘自仲元: "水和水蒸气热力性质图表" p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。 3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2 在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或 S=Q/P Q=流量(托·升/秒) P=压强(托) V=体积(升) t=时间(秒) 6、通导: C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式: t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

10、罗茨泵的前级抽速: S=(0.1~0.2)S罗 (l/s) 11、漏率: Q漏=V(P2-P1)/(t2-t1) Q漏-系统漏率(mmHg·l/s) V-系统容积(l) P1-真空泵停止时系统中压强(mmHg) P2-真空室经过时间t后达到的压强(mmHg) t-压强从P1升到P2经过的时间(s) 12、粗抽泵的抽速选择: S=Q1/P预 (l/s) S=2.3V·lg(Pa/P预)/t S-机械泵有效抽速 Q1-真空系统漏气率(托·升/秒) P预-需要达到的预真空度(托) V-真空系统容积(升) t-达到P预时所需要的时间 Pa-大气压值(托) 13、前级泵抽速选择: 排气口压力低于一个大气压的传输泵如扩散泵、油增压泵、罗茨泵、涡轮分子泵等,它们工作时需要前级泵来维持其前级压力低于临界值,选用的前级泵必须能将主泵的最大气体量排走,根据管路中,各截面流量恒等的原则有: PnSg≥PgS 或Sg≥Pgs/Pn Sg-前级泵的有效抽速(l/s) Pn-主泵临界前级压强(最大排气压强)(l/s) Pg-真空室最高工作压强(托) S-主泵工作时在Pg时的有效抽速。(l/s) 14、扩散泵抽速计算公式: S=Q/P=(K·n)/(P·t)(升/秒) 式中:S-被试泵的抽气速率(l/s) n-滴管油柱上升格数(格) t-油柱上升n格所需要的时间(秒) P-在泵口附近测得的压强(托)

蒸汽温度压力对照表

根据1MPa=1000kPa=10.2kgf/cm2(kg/cm2),通过与饱和蒸气压(单位为MPA)和蒸汽标准表的比较,可以计算出饱和蒸气压(kgf/cm2)与蒸汽温度的关系。温度如下:饱和蒸汽的温度和压力之间只有一个自变量。理想饱和蒸汽状态是指温度、压力和蒸汽密度之间存在一一对应关系。如果其中一个已知,其他两个值为常量。有此关系的蒸汽为饱和蒸汽,有饱和蒸汽压力和温度的对照表。饱和蒸汽压力与蒸汽温度标准对照表按国际单位制编制,压力单位为兆帕,温度单位为摄氏度。 扩展数据 测量饱和蒸气压有两种方法 1动态方法。测定液体在不同外压下沸点的方法,又称沸点法。这种方法只能测量接近大气压的饱和蒸气压,精度高。 2静态法。它是指直接测量液体在不同温度下的饱和蒸气压,即在恒定温度下测量饱和压力。静态方法相对简单,用途更广。通常的方法是将被测材料置于密闭容器中,使其处于

气液共存状态,然后放入恒温槽中。通过调节恒温槽的温度,可以测量不同温度下的饱和蒸气压数据。 在封闭条件下,在一定温度下,与固体或液体平衡的蒸气压称为饱和蒸气压。饱和蒸汽压力也称为蒸汽压力。同一种物质在不同的温度下有不同的蒸气压,并且随着温度的升高而增加。对于同一种物质,固体的饱和蒸气压低于液体的饱和蒸气压。 饱和蒸汽是指由于气体分子之间的热运动而处于饱和状态的蒸汽。当液体在有限的封闭空间内蒸发时,液体分子通过液体表面进入上层空间,成为蒸汽分子。因为蒸汽分子处于湍流热运动中,它们相互碰撞。蒸汽压力与饱和蒸汽温度之间存在对应关系,不同压力下存在一定的饱和温度。换言之,在一定的压力下,水完全蒸发并继续吸收热量,但直到温度开始升高,温度才上升,变成饱和蒸汽。

大气压与温度的关系

大气压与温度的关系 大气压:和高度、湿度、温度的变化成反比--注意,这里说的是大气压,而非气压! 详细说明如下: 高度越高--空气越稀薄; 湿度越大--空气中的水分越多,尔水的分子量比空气的混合分子量小,水气的增加,等于稀释了空气; 温度越高--虽然增加了空气分子的对撞机会,但是空气迅速膨胀,对流,尔引起空气变得稀薄,其增加的对撞能量远小于空气变稀薄减小的对撞能量,自然空气压力减小。 有关常识如下: 定义: 1.亦称“大气压强”。重要的气象要素之一。由于地球周围大气的重力而产生的压强。其大小与高度、温度等条件有关。一般随高度的增大而减小。例如,高山上的大气压就比地面上的大气压小得多。 在水平方向上,大气压的差异引起空气的流动。 2.压强的一种单位。“标准大气压”的简称。科学上规定,把相当于760mm 高的水银柱(汞柱)产生的压强或1.01×十的五次方帕斯卡叫做1标准大气压,简称大气压。 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为大气压。在1643年意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒臵在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了。

这4厘米的空间无空气进入,是真空。托里拆利据此推断大气的压强就等于水银柱的长度。后来科学家们根据压强公式准确地算出了大气压在标准状态下为1.013×105Pa。由于当时的信息交流不畅意大利和法国对大气压实验研究结果并没有被全欧洲所熟知,所以在德国对大气压的早期研究是独立进行的。1654年奥托格里克在德国马德堡作了著名的马德堡半球实验,有力的验证了大气压强的存在,这让人们对大气压有了深刻的认识。在那个时期,奥托格里克还做了很多验证大气压存在且很大的实验,也正是在这一时候他第一次听到托里拆利早在11年前已测出了大气压。 标准大气压 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10的5次方帕斯卡=10.336米水柱。 标准大气压值及其变迁 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。 最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。 于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。测量大气压的仪器叫气压计。 为了确保标准大气压是一个定值,1954年第十届国际计量大会决议声明,规定标准大气压值为 1标准大气压=101325牛顿/米2,即为101325帕斯卡(Pa)大气压的变化温度、湿度与大气压强的关系 湿度越大大气压强越大 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不

主蒸汽温度过高或压力过低影响

主蒸汽温度过高或过低对汽机有什么危害! 汽温、汽压异常对设备的危害 在汽轮机运行中,初终汽压、汽温、主蒸汽流量等参数都等于设计参数时,这种运行工况称为设计工况,此时的效率最高,所以又称为经济工况。运行中如果各种参数都等于额定值,则这种工况称为额定工况。目前大型汽轮机组的热力计算工况多数都取额定工况,为此机组的设计工况和额定工况成为同一个工况。在实际运行中,很难使参数严格地保持设计值,这种与设计工况不符合的运行工况,称为汽轮机的变工况。这时进入汽轮机的蒸汽参数、流量和凝结器真空的变化,将引起各级的压力、温度、焓降、效率、反动度及轴向推力等发生变化。这不仅影响汽轮机运行的经济性,还将影响汽轮机的安全性。所以在日常运行中,应该认真监督汽轮机初、终参数的变化。 1、主蒸汽压力升高 当主蒸汽温度和凝结器真空不变,而主蒸汽压力升高时,蒸汽在汽轮机内的焓降增大,末级排汽湿度增加。 主蒸汽压力升高时,即使机组调速汽阀的总开度不变,主蒸汽流量也将增加,机组负荷则增大,这对运行的经济性有利。但如果主蒸汽压力升高超出规定范围时,将会直接威胁机组的安全运行。因此在机组运行规程中有明确规定,不允许在主蒸汽压力超过极限数值时运行。 主蒸汽压力过高有如下危害: (1)主蒸汽压力升高时,要维持负荷不变,需减小调速汽阀的总开度,但这只能通过关小全开的调速汽阀来实现。在关小到第一调速汽阀全开,而第二调速汽阀将要开启时,蒸汽在调节级的焓降最大,会引起调节级动叶片过负荷,甚至可能被损伤。 (2)末级叶片可能过负荷。主蒸汽压力升高后,由于蒸汽比容减小,即使调速汽阀开度不变,主蒸汽流量也要增加,再加上蒸汽的总焓降增大,将使末级叶片过负荷,所以,这时要注意控制机组负荷。 (3)主蒸汽温度不变,只是主蒸汽压力升高,将使末几级的蒸汽湿度变大,机组末几级的动叶片被水滴冲刷加重。 (4)承压部件和紧固部件的内应力会加大。主蒸汽压力升高后,主蒸汽管道、自动主汽阀及调速汽阀室、汽缸、法兰、螺栓等部件的内应力都将增加,这会缩短其使用寿命,甚至造成这些部件受到损伤。

压力与温度的关系

压力与温度的关系 用方程:pV=nRT,即p=nRT/V,此题为等容过程,体积不变。如要改变值,需要知道第二个公式中T的系数,楼主的初始条件还应该有初始温度吧!用初始压力除以初始温度就算出了系数,再用这个系数算每摄氏度对应的压力变化. 温度在1~1000之间时,可以近似认为是理想气体,可以根据 理想气体的状态方程:PV=mRgT ,p压力V体积m质量RgT温度 空气的Rg=0.287 J/g.k=287 J/kg.k(标准适用),摩尔R=8.314411 J/mol.k Vm=22.41383*10-3m3/mol 空气的28.97g/ mol 空气的标准密度= 1.294kg/m3 空气的标准比体积= 0.7737 m3/kg 根据以上公式,就可以求出所需内容。 当然,你的问题的前提,缺少一项,体积的变化。 气体在不同压力和温度下的密度怎么计算 用气体方程pV=nRT, 式中p为压强,V为体积,n为,R为,T为。 而n=M/Mmol,M为质量,Mmol为。 所以pV=MRT/Mmol 而密度ρ=M/V 所以ρ=pMmol/RT, 所以,只要知道了压强、、就可以算出气体密度。 气体的浓度与温度有什么关系(同体积、压力) 根据PV=NRT,其中P为压强,V为体积,T为 ,N为物质的量,可视为浓度指标。R为常数。在体积压力一致的情况下,温度越高,则N越小。所以浓度越低。 注:热力学温度就是绝对温度T,以开尔文(K)为单位 摄氏温标表示的温度t[以摄氏度(℃)为单位]与热力学温度T相差273.15,即T (K)=t(℃)+273.15,例如温度为100℃就是热力学温度为373.15K 一定质量和体积的气体,压力和温度之间关系 PVM=mRT R为常数,M、m一定时,忽略体积变化的。故,压力提高,温度上升。 1

R22温度与压力关系

温度 (℃) →压力 (MPa):一般蒸发温度比出风温度低10度。-50 → 0.06453 -49 → 0.067919 -48 → 0.071448 -47 → 0.075121 -46 → 0.078943 -45 → 0.082917 -44 → 0.087049 -43 → 0.091341 -42 → 0.0958 -41 → 0.10043 -40 → 0.10523 -39 → 0.11021 -38 → 0.11538 -37 → 0.12073 -36 → 0.12628 -35 → 0.13203 -34 → 0.13797 -33 → 0.14413 -32 → 0.1505 -31 → 0.15708 -30 → 0.16389 -29 → 0.17092 -28 → 0.17819 -27 → 0.18569 -26 → 0.19344 -25 → 0.20143 -24 → 0.20968 -23 → 0.21819 -22 → 0.22696 -21 → 0.236 -20 → 0.24531 -19 → 0.25491 -18 → 0.26479 -17 → 0.27496 -16 → 0.28543 -15 → 0.2962 -14 → 0.30728 -13 → 0.31867 -12 → 0.33038 -11 → 0.34242 -10 → 0.35479 -9 → 0.36749 -8 → 0.38054

-7 → 0.39394 -6 → 0.40769 -5 → 0.4218 -4 → 0.43628 -3 → 0.45113 -2 → 0.46636 -1 → 0.48198 0 → 0.49799 1 → 0.51439 2 → 0.5312 3 → 0.54842 4 → 0.56605 5 → 0.58411 6 → 0.60259 7 → 0.62151 8 → 0.64088 9 → 0.66068 10 → 0.68095 11 → 0.70167 12 → 0.72286 13 → 0.74453 14 → 0.76668 15 → 0.78931 16 → 0.81244 17 → 0.83607 18 → 0.8602 19 → 0.88485 20 → 0.91002 21 → 0.93572 22 → 0.96195 23 → 0.98872 24 → 1.016 25 → 1.0439 26 → 1.0724 27 → 1.1014 28 → 1.1309 29 → 1.1611 30 → 1.1919

蒸汽温度与压力对照表

饱和蒸汽温度与绝对压力对照 压力温度压力温度压力温度压力温度压力温度压力温度 0.10 0.11 0.12 0.13 0.14 99.634 102.316 104.810 107.138 109.318 0.35 0.36 0.37 0.38 0.39 138.891 139.885 140.855 141.803 142.732 0.70 0.72 0.74 0.76 0.78 164.983 166.123 167.237 168.328 169.397 1.50 1.55 1.60 1.65 1.70 198.327 199.887 201.410 202.895 204.346 2.75 2.80 2.85 2.90 2.95 229.115 230.096 231.065 232.020 232.962 5.0 5.1 5.2 5.3 5.4 263.980 265.221 266.443 267.648 268.835 0.15 0.16 0.17 0.18 0.19 111.378 113.326 115.178 116.941 118.625 0.40 0.41 0.42 0.43 0.44 143.642 144.535 145.411 146.269 147.112 0.80 0.82 0.84 0.86 0.88 170.444 171.471 172.477 173.466 174.436 1.75 1.80 1.85 1.90 1.95 205.764 207.151 208.508 209.838 211.140 3.0 3.1 3.2 3.3 3.4 233.893 235.718 237.499 239.238 240.936 5.5 5.6 5.7 5.8 5.9 270.005 271.159 272.298 273.422 274.530 0.20 0.21 0.22 0.23 0.24 120.240 121.789 123.281 124.717 126.103 0.45 0.46 0.47 0.48 0.49 147.933 148.751 149.550 150.336 151.108 0.90 0.92 0.94 0.96 0.98 175.389 176.325 177.245 178.150 179.040 2.00 2.05 2.10 2.15 2.20 212.417 213.669 214.898 216.104 217.289 3.5 3.6 3.7 3.8 3.9 242.597 244.222 245.812 247.370 248.897 6.0 6.1 6.2 6.3 6.4 275.625 276.706 277.773 278.827 279.868 0.25 0.26 0.27 0.28 0.29 127.444 128.740 129.998 131.218 132.403 0.50 0.52 0.54 0.56 0.58 151.867 153.350 154.788 156.185 157.543 1.00 1.05 1.10 1.15 1.20 179.916 182.048 184.100 186.081 187.995 2.25 2.30 2.35 2.40 2.45 218.452 219.596 220.722 221.829 222.918 4.0 4.1 4.2 4.3 4.4 250.394 251.862 253.304 254.719 256.110 6.5 6.6 6.7 6.8 6.9 280.897 281.914 282.920 283.914 284.897 0.30 0.31 0.32 0.33 0.34 133.556 134.677 135.770 136.836 137.876 0.60 0.62 0.64 0.66 0.68 158.863 160.148 161.402 162.625 163.817 1.25 1.30 1.35 1.40 1.45 189.848 191.644 193.386 195.078 196.725 2.50 2.55 2.60 2.65 2.70 223.990 225.046 226.085 227.110 228.120 4.5 4.6 4.7 4.8 4.9 257.447 258.820 260.141 261.441 262.721 7.0 7.1 7.2 7.3 7.4 285.869 286.830 287.781 288.722 289.654

水蒸气温度与压力关系

中文"饱和水蒸气压力"英文water vapor saturation pressure; "饱和水蒸气压力" 在学术文献中的解释1、当空气中所含水蒸气的量达到最大时就称这种空气为“饱和湿空气”,与饱和湿空气对应的压力称为“饱和水蒸气压力”,用符号Ps表示.水蒸气压力p与饱和水蒸气压力Ps的比值称为相对湿度Rh,与饱和水蒸气压力Ps对应着的相对湿度为:Rh=100%编辑本段饱和水蒸气压力表 温度t/℃绝对压强 p/kPa 水蒸汽的密 度 ρ/kg·m-3 焓 H/kJ·kg-1 汽化热 r/kJ·kg-1 液体水蒸汽 0 0.61 0.00 0.00 2491.10 2491.10 5 0.87 0.01 20.94 2500.80 2479.86 10 1.23 0.01 41.87 2510.40 2468.53 15 1.71 0.01 62.80 2520.50 2457.70 20 2.33 0.02 83.74 2530.10 2446.30 25 3.17 0.02 104.67 2539.70 2435.00 30 4.25 0.03 125.60 2549.30 2423.70 35 5.62 0.04 146.54 2559.00 2412.10 40 7.38 0.05 167.47 2568.60 2401.10 45 9.58 0.07 188.41 2577.80 2389.40 50 12.34 0.08 209.34 2587.40 2378.10 55 15.74 0.10 230.27 2596.70 2366.40 60 19.92 0.13 251.21 2606.30 2355.10 65 25.01 0.16 272.14 2615.50 2343.10 70 31.16 0.20 293.08 2624.30 2331.20 75 38.55 0.24 314.01 2633.50 2319.50 80 47.38 0.29 334.94 2642.30 2307.80 85 57.88 0.35 355.88 2651.10 2295.20 90 70.14 0.42 376.81 2659.90 2283.10 95 84.56 0.50 397.75 2668.70 2270.50 100 101.33 0.60 418.68 2677.00 2258.40 105 120.85 0.70 440.03 2685.00 2245.40 110 143.31 0.83 460.97 2693.40 2232.00 115 169.11 0.96 482.32 2701.30 2219.00 120 198.64 1.12 503.67 2708.90 2205.20 125 232.19 1.30 525.02 2716.40 2191.80 130 270.25 1.49 546.38 2723.90 2177.60 135 313.11 1.72 567.73 2731.00 2163.30

蒸汽温度压力对照表

饱和蒸汽: 未经过热处理的蒸汽称为饱和蒸汽,饱和蒸汽是在一个大气压下,温度为100度的蒸汽,温度不能再升高,是饱和状态下的蒸汽。饱和蒸汽由气体分子之间的热运动现象造成的。 原理: 当液体在有限的密闭空间中蒸发时,液体分子通过液面进入上面空间,成为蒸汽分子。由于蒸汽分子处于紊乱的热运动之中,它们相互碰撞,并和容器壁以及液面发生碰撞,在和液面碰撞时,有的分子则被液体分子所吸引,而重新返回液体中成为液体分子。开始蒸发时,进入空间的分子数目多于返回液体中分子的数目,随着蒸发的继续进行,空间蒸汽分子的密度不断增大,因而返回液体中的分子数目也增多。当单位时间内进入空间的分子数目与返回液体中的分子数目相等时,则蒸发与凝结处于动平衡状态,这时虽然蒸发和凝结仍在进行,但空间中蒸汽分子的密度不再增大,此时的状态称为饱和状态。在饱和状态下的液体称为饱和液体,其对应的蒸汽是饱和蒸汽,但最初只是湿饱和蒸汽,待蒸汽中的液态水完全蒸发后才是干饱和蒸汽。蒸汽从不饱和到湿饱和再到干饱和的过程温度是不增加的,干饱和之后继续加热则温度会上升,成为过热蒸汽。 特点: 饱和蒸汽具有如下特点: (1)饱和蒸汽的温度与压力之间一一对应,二者之间只有一个独立变量。理想的饱和蒸汽状态,指的是温度、压力及蒸汽密度三者

存在一一对应的关系,知道其中一个,其他二个值就是定数。存在这种关系的蒸汽就是饱和蒸汽,否则都可以视为过热蒸汽进行计量,如图为饱和蒸汽压力与温度对照表; (2)饱和蒸汽容易凝结,在传输过程中如有热量损失,蒸汽中便有液滴或液雾形成,并导致温度与压力的降低。含有液滴或液雾的蒸汽称为湿蒸汽。严格来说,饱和蒸汽或多或少都含有液滴或液雾的双相流体,所以,不同状态下不能用同一气体状态方程式来描述。饱和蒸汽中液滴或液雾的含量反映了蒸汽的质量,一般用干度这一参数来表示。蒸汽的干度是指单位体积饱和蒸汽中干蒸汽所占的百分数,以“x”表示; (3)准确计量饱和蒸汽流量比较困难,因为饱和蒸汽的干度难以保证,一般流量计都不能准确检测双相流体的流量,蒸汽压力波动将引起蒸汽密度的变化,流量计示值产生附加误差。所以在蒸汽计量中,必须设法保持测量点处蒸汽的干度以满足要求,必要时还应采取补偿措施,实现准确的测量。

饱和水蒸汽压力与温度密度蒸汽焓汽化热的关系对照表

饱和水蒸汽压力与温度、密度、蒸汽焓、气化热的关系对照表 一.什么是水和水蒸气的焓? 水或水蒸气的焓h,是指在某一压力和温度下的1千克水或1千克水蒸气内部所含有的能量,即水或水蒸气的内能u与压力势能pv之和(h=u+pv)。水或水蒸气的焓,可以认为等于把1千克绝对压力为兆帕温度为0℃的水,加热到该水或水蒸气的压力和温度下所吸收的热量。焓的单位为“焦/千克”。 (1)非饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该非饱和水的压力和温度下所吸收的热量。 (2)饱和水焓:将1千克绝对压力为兆帕温度为0℃的水,加热到该饱和水的压力对应的饱和温度时所吸收的热量。饱和温度随压力增大而升高,因此饱和水焓也随压力增大而增大。例如:绝对压力为兆帕时,饱和水焓为 x 103焦/千克;在绝对压力为兆帕时,饱和水焓则为 x 103焦/千克。 (3)饱和水蒸气焓:分为干饱和水蒸气焓和湿饱和水蒸气焓两种。干饱和水蒸气焓等于饱和水焓加水的汽化潜热;湿饱和水蒸气焓等于1千克湿饱和蒸汽中,饱和水的比例乘饱和水焓加干饱和汽的比例乘干饱和汽焓之和。例如:绝对压力为兆帕时,饱和水焓为 x103焦/公斤;汽化潜热为1328 x103焦/公斤。因此,干饱和水蒸气的焓等于: x103+1328x103= x 103焦/千克。又例如:绝对压力为兆帕的湿饱和水蒸气中,饱和水的比例为,(即湿度为20%)干饱和水蒸气比例为(即干度为80%),则此湿饱和水蒸气的焓为 x103 x 十 = x 103焦/千克。 (4)过热水蒸气焓:等于该压力下干饱和水蒸气的焓与过热热之和。例如:绝对压力为兆帕,温度为540℃的过热水蒸气的干饱和水蒸气的焓为 x 103焦/千克,过热热为 x 103焦/千克。则该过热水蒸气的焓为: x 103+ x 103= x 103焦/千克。

水露点及温度及压力的关系

天然气的水露点,指的是在特殊环境下,当含水量达到饱和状态时候的实际温度。在特殊环境条件下,影响含水量的主要因素有:温度、强压,当含水量突破最大值的时候,为了预防水化物或者液态水的产生,从而堵塞、污染或者腐蚀管道,所以需要充分减小管道里天然气中的实际含水量;一般来说,天然气在开发气田的时候,就会完成脱水作用,天然气的管道传输是一个压力逐渐降低的过程,可以简化为等温降压或升温降压过程,在上述条件下,不会产生液态水,因此不需要添加排水设备。 相关概念 (1).天然气绝对湿度 绝对湿度,指的是在每立方米的天然气里,含有的水汽总质量,使用字母e 进行表达; (2)。天然气的相对湿度 相对湿度,指的是在特殊温度、压强环境条件下,天然气里水汽的总质量e,和在相同环境中的饱和水汽的总质量的比值; (3)。天然气的水露点 水露点,指的是天然气在特殊压强条件下,水汽达到最大饱和值时的温度,也被称之为露点;可以采用天然气的露点分布图,查阅可知;气体水合物产生作用线是一条临界线,代表在特殊环境条件下,气体和水合物之间的相互平衡作用。 在下图里,水合物产生作用区,位于气体水合物产生作用线的下方,达标气体和水合物的达到相互平衡的状态;由图可知,在纯水接触作用下,绘制出实际密度是0.6的水合物产生作用线;假如天然气的实际密度高于或低于0.6,又或是接触水是含盐水的时候,需要根据图中的修正系数进行调整;中性的天然气中,饱和水含量通常根据下列公式完成运算: (4—2) W0.983WdCrdCs 式中W一一非酸性天然气饱和水含量,mg/m3 Wd一一由图查得的含水量,Ing/m3; Crd一一相对密度校正系数 Cs一一含盐量校正系数 当系统压力小于2100kPa(绝对压力)时,针对含有H2S或CO2的酸性天然气,不需要进行修正调整;当环境压强超过2100kPa的时候,则必须进行修正;

液体饱和蒸汽压与温度关系

液体饱和蒸汽压与温度关系 一、实验目的 1.学习动态法测定液体饱和蒸汽压与温度的关系。 2.使用克劳修斯-克拉佩龙关系式计算水的气化热。 3、掌握气压计、U型管压差计夫人使用的方法和蒸空泵的使用。 4、学习excel处理实验数据。 二、实验原理 在一定温度下与液体处于平衡状态时蒸气的压力称为该温度下的饱和蒸汽压。液体的蒸汽压是随着温度的改变而改变的,当温度升高时有更多的高动能的分子能够由液面逸出,因而蒸汽压增大。当蒸汽压与外界压力相等时,液体就沸腾。外压不同时液体的沸点也就不同,把1大气压时的沸腾温度定义为液体的正常沸点。 液体的饱和蒸汽压与温度的关系可用户克劳修斯-克拉佩龙方程式表示: dInp/dT=—ΔH 汽/RT2 在温度较小的变化范围内,H 汽可视为常数,对上式积分得: Inp=—ΔH 汽/RT+B 测定液体饱和蒸汽压的方法主要有: 饱和气流法、静态法、动态法。

本实验用动态法,利用当液体的蒸汽压与外压相等时液体沸腾的原理,测定液体在不同外压时的沸点就可求出不同温度下的蒸汽压。优点是对温度的控制要求不高,对于沸点低于100℃的液体,如四氯化碳、丙酮、氯仿等也可达到一定的精确度。饱和气流法不仅可测液体 三、仪器与试剂 1.仪器: 三颈烧瓶1个冷凝管1只水银温度计1只电热套(300-500W)1个真空泵及附件1套 2.试剂: 蒸馏水 四、主要实验步骤 1、准确读取实验时的大气压,实验结束的时候在读一次,取平均值。 2、先用洗液清洗三颈瓶,再用自来水冲洗,最后用蒸馏水洗两次。瓶内加约的蒸馏水,加入少许沸石。测温的温度计用纱布包裹,部分浸入水中。用橡皮筋将测环境温度的温度计绑在一起,但要能移动,作露茎校正。 3、系统检漏: 启动真空泵,系统减压53-63Kpa后,关闭真空泵,5分钟后系统压力不在发生变化,则属于正常。否则,检查各连接处是否漏气,可用少许真空酯涂在该处。 4、测定水在不同外压下沸腾的温度: 启动真空泵,让体系压力低于环境压力40-53KPa左右。加热,让水平稳的沸腾,调整测露茎的温度计水银球于测体系温度的温度计汞柱露出部分的中部。隔2-3分钟读数,两次读数基本没有变化时,记录t 观和t 环,同时记录压差计的读数。

空调系统压力与温度关系

空调系统压力与温度关系 Prepared on 22 November 2020

平衡压力、高压压力和低压压力是空调的重要参数。三个压力是制冷剂R22在空调管路中循环在不同位置所对应的压力,由于R22是在气液之间循环变化的,伴随着吸热和放热,所以外界环境的温度对其有明显的影响,一般情况下,环境温度高,压力值变大,环境温度低,压力值变小。 平衡压力是指压缩机不工作时,高低压平衡时的压力;高压压力是指排气压力或冷凝压力;低压压力是指吸气压力或蒸发压力。三个压力的测量都是在室外机气阀的工艺口上,制冷运转时为低压压力,制热运转时为高压压力,不工作时为平衡压力。 制冷学的蒸发是指沸腾,因此蒸发温度就是沸点,冷凝是指一定压力下的R22在饱和状态气变液的过程,所以冷凝温度也是沸点。R22在不同压力下对应不同的沸点,如表所示为R22的蒸发压力和蒸发温度的一一对应关系。 制冷学空调制冷设计的工况条件是:室外环温35℃,室内温度27度,蒸发温度+5℃,蒸发压力。 所以空调标准制冷低压力为。 空调制冷管路设计相对压力(表压力)制冷状态下低压压力是平衡压力的一半。 所以平衡压力为。 为达到理想的散热效果,制冷设计采用空气冷凝时,冷凝标准温差选取15℃,所以在室外35℃条件下冷凝温度为50℃,50℃对应的压力值为 所以空调高压压力为。 制冷学的压力是指物理学的压强,压强的单位还有“kg/cm2”,这就是我们所说的“公斤压力”。 1kg/cm2= MPa≈ MPa. 所以三个压力大小又是“公斤”,“公斤”,“公斤”。 由于空调工作环境通常满足不了工况条件,以及受湿度的影响,所以夏季制冷状态下三个压力值大约为: 低压压力, MPa或5公斤;

饱和蒸汽压力和温度关系实验

实验报告评分 13系07级第二大组实验室力一楼日期2010-03-23 姓名钟伟PB07013076 实验题目:饱和蒸汽压力和温度关系实验 实验目的:通过观察饱和蒸汽压力和温度变化的关系,加深对饱和状态的理解, 从而建立液体温度达到对应液面压力的饱和温度时,沸腾便会发生的基本概念。通过对实验数据的整理,掌握饱和蒸汽p-t关系图表的编制方法,观察小容积的 泡态沸腾现象。实验原理: 考察水在定压下加热时水的状态的变化过程。随着热量的加入,水的温度不断升高。当温度上升到某温度值t时水开始沸腾。此沸腾温度称为该压力下的饱和温度。同样,此时的压力称为饱和压力。继续加热,水中不断产生水蒸汽,随着加热过程的进行,水蒸汽不断增加,直至全部变为蒸汽,而达到干饱和蒸汽状态。对干饱和蒸汽继续加热,由蒸汽的温度由饱和温度逐渐升高。水在汽化过程中,呈现出五种状态,即未饱和水、饱和水、湿饱和蒸汽、干饱和蒸汽、过热蒸汽。在汽化阶段,处于汽液两相平衡共存的状态,它的特点是定温定压,即一定的压力对应着一定的饱和温度,或一定的温度对应着一定的饱和压力。 实验步骤: 熟悉实验装置的工作原理、性能和使用方法。 1.将调压器指针置于零位,然后接通电源。 2.将电接点压力表的上限压力指针拨到稍高于最高试验压力(如:0.7MPa)的位置。 3.将调压器输出电压调至170V,待蒸汽压力升至接近于第一个待测定 。由于热惯性,压左右(参考值)20-50V的压力值时,将电压降至. 力将会继续上升,待工况稳定(压力和温度基本保持不变)时,记录下蒸汽的压力和温度。重复上述实验,在0~0.6Pa(表压)范围内,取5个压力值,顺序分

饱和水蒸汽的压力与温度的关系介绍

饱和水蒸汽的压力与温度的关系 ( 摘自范仲元: "水和水蒸气热力性质图表" p4~10 ) 温度℃ 水蒸气压力 MPa 相应真空度 MPa 22 0.00264 0.09869 24 0.00298 0.09835 26 0.00336 0.09797 28 0.00378 0.09755 30 0.00424 0.09709 32 0.00475 0.09658 34 0.00532 0.09601 36 0.00594 0.09539 38 0.00662 0.09471 40 0.00738 0.09395 温度℃ 水蒸气压力 MPa 相应真空度 MPa 42 0.00820 0.09313 44 0.00910 0.09223 46 0.01009 0.09124 48 0.01116 0.09017 50 0.01234 0.08899 52 0.01361 0.08772 54 0.01500 0.08633 56 0.01651 0.08482 58 0.01815 0.08318 60 0.01992 0.08141 温度℃ 水蒸气压力 MPa 相应真空度 MPa 62 0.02184 0.07949 64 0.02391 0.07742 66 0.02615 0.07518 68 0.02856 0.07277 70 0.03116 0.07017 72 0.03396 0.06737 74 0.03696 0.06437 76 0.04019 0.06114 78 0.04365 0.05768 80 0.04736 0.05397 温度℃ 水蒸气压力 MPa 相应真空度 MPa 82 0.05133 0.05000 84 0.05557 0.04576 86 0.06011 0.04122 88 0.06495 0.03638 90 0.07011 0.03122 92 0.07561 0.02572 94 0.08146 0.01987 96 0.08769 0.01364 98 0.09430 0.00703 100 0.10133 温度℃ 水蒸气压力 MPa 102 0.10878 104 0.11668 106 0.12504 108 0.13390 110 0.14327 112 0.15316 114 0.16362 116 0.17465 118 0.18628 120 0.19854 温度℃ 水蒸气压力 MPa 122 0.21145 124 0.22504 126 0.23933 128 0.25435 130 0.27013 132 0.27831 134 0.30407 136 0.32229 138 0.34138 140 0.36138

相关文档
最新文档