4—简单的线性规划、基本不等式

4—简单的线性规划、基本不等式
4—简单的线性规划、基本不等式

4—简单的线性规划、基本不等式

知识块一:求目标函数的最值

归纳起来常见的命题角度有:(1)求线性目标函数的最值;(2)求非线性目标的最值; (3)求线性规划中的参数.

1.设x ,y 满足约束条件????

?

x +y -7≤0,x -3y +1≤0,

3x -y -5≥0,则z =2x -y 的最大值为( )

A .10

B .8

C .3

D .2

解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.

2.若x ,y 满足????

?

y ≤1,x -y -1≤0,

x +y -1≥0,

则z =3x +y 的最小值为 ________.

解析:根据题意画出可行域如图,由于z =3x +y 对应的直线斜率为-3,且z 与x 正相关,结合图形可知,当直线过点A (0,1)时,z 取得最小值1.

答案:1

角度二:求非线性目标的最值

3.在平面直角坐标系xOy 中,M 为不等式组????

?

2x -y -2≥0,x +2y -1≥0,

3x +y -8≤0所表示的区域上一动点,则直线OM

斜率的最小值为( )

A .2

B .1

C .-1

3

D .-12

解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-1

3

.

4.设实数x ,y 满足不等式组????

?

x +y ≤2y -x ≤2,

y ≥1,则x 2+y 2的取值围是( )

A .[1,2]

B .[1,4]

C .[2,2]

D .[2,4]

解析:选B 如图所示,不等式组表示的平面区域是△ABC 的部(含边界),x 2+y 2表示的是此区域的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值围是[1,4].

角度三:求线性规划中的参数 5.若x ,y 满足????

?

x +y -2≥0,kx -y +2≥0,

y ≥0,且z =y -x 的最小值为-4,则k 的值为( )

A .2

B .-2 C.1

2

D .-12

解析:选D 作出线性约束条件????

?

x +y -2≥0,kx -y +2≥0,

y ≥0

的可行域.当k >0时,如图①所示,此时可行域

为y 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.

当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意. 当-1<k <0时,如图②所示,此时可行域为点A (2,0),B ????-2

k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ????-2k ,0时,有最小值,即-????-2k =-4?k =-1

2

.故选D.

6.x ,y 满足约束条件????

?

x +y -2≤0,x -2y -2≤0,

2x -y +2≥0.

若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )

A.12或-1 B .2或1

2

C .2或1

D .2或-1

解析:选D 法一:由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C =2a -2,要使目标函数取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.

法二:目标函数z =y -ax 可化为y =ax +z ,令l 0:y =ax ,平移l 0,则当l 0∥AB 或l 0∥AC 时符合题意,故a =-1或a =2.

一、选择题

1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值围为( ) A .(-24,7) B .(-7,24)

C .(-∞,-7)∪(24,+∞)

D .(-∞,-24)∪(7,+∞)

解析:选B 根据题意知(-9+2-a )·(12+12-a )<0. 即(a +7)(a -24)<0,解得-7<a <24.

2.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件?????

x +|y |≤1,x ≥0,

则z =u u u r OA ·u u u r OP 的最大值

为( )

A .-2

B .-1

C .1

D .2

解析:选D 如图作可行域,

z =u u u r OA ·

u u u

r OP =x +2y ,显然在B (0,1)处z max =2.故选D. 3.设动点P (x ,y )在区域Ω:????

?

x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线

段AB ,则以AB 为直径的圆的面积的最大值为( )

A .π

B .2π

C .3π

D .4π

解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,以AB 为直径的圆的面积的最大值S =π×????422

=4π,故选D.

4.变量x ,y 满足约束条件????

?

y ≥-1,x -y ≥2,

3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a

的取值集合是( )

A .{-3,0}

B .{3,-1}

C .{0,1}

D .{-3,0,1} 解析:选B 作出不等式组所表示的平面区域,如图所示.

易知直线z =ax +y 与x -y =2或3x +y =14平行时取得最大值的最优解有无穷多个,即-a =1或-a =-3,∴a =-1或a =3.故选B.

5.设x ,y 满足约束条件?

???

?

x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )

A .-5

B .3

C .-5或3

D .5或-3

解析:选B 法一:联立方程?

????

x +y =a ,

x -y =-1,解得

???

x =a -12

y =a +12,

代入x +ay =7中,解得a =3或-5,

当a =-5时,z =x +ay 的最大值是7;当a =3时,z =x +ay 的最小值是7,故选B.

法二:先画出可行域,然后根据图形结合选项求解.

当a =-5时,作出不等式组表示的可行域,如图(1)(阴影部分).

图(1)

由?

????

x -y =-1,x +y =-5得交点A (-3,-2), 则目标函数z =x -5y 过A 点时取得最大值.

z max =-3-5×(-2)=7,不满足题意,排除A ,C 选项. 当a =3时,作出不等式组表示的可行域,如图(2)(阴影部分).

图(2)

由?

????

x -y =-1,x +y =3得交点B (1,2),则目标函数z =x +3y 过B 点时取得最小值.z min =1+3×2=7,满足题意.

答案:4

6.设D 为不等式组????

?

x ≥0,2x -y ≤0,

x +y -3≤0

所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值

第一章第四节 基本不等式

数学科第一轮复习教案 第四节 基本不等式 一、教学目标: (一)必备知识: 1.探索并了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. (二) 关键能力:读写能力、运算能力、信息通信技术能力、批判性与创造性思维、个人与社会能力、道德理解、跨文化理解 (三) 学科品格及学科素养:数学运算、数学建模 (四)核心价值:提高数学学习兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。具有一定的数学视野,逐步认识数学的科学价值,应用价值和文化价值。形成批判性的思维习惯,了崇尚数学的理性精神,体会数学的美学意义。树立辩证唯物主义和历史唯物主义的世界观。 二、生情分析: 1.学生对基础知识的掌握不扎实一些易得分的题也出现失分现象,对所学知识不能熟练运用,对知识的掌握也不是很灵活,造成容易的失分难的攻不下的两难状况。 2.一些学生的学习方法有待改进一些同学平时学习也挺认真,日常练习也不错,但一遇上综合性的考试就不行,像这样的状况主要是因为学生的复习方法不对,作为一名高三的学生应该学会自己归纳总结,可以把相似和有关联的一些题总结在一起,也可以把知识点相同或做题方法相同的题总结在一块,这样便于复习,也省时。 3.同学们的应试技巧也有待提高,翻看这次学生们的试卷会发现有些学生的题还没做完,前面难的没拿下后面容易的没时间做。拿不到高分认为是自己时间不够,这就是考试技巧的问题。 三、过程方法:讲练结合 四、重点难点: 1.利用基本不等式求最值.2.利用基本不等式解决实际问题 3.基本不等式的综合应用 五、教学用具:PPT 六、教学课时:2课时 七、设计思路:夯实基础→考点分类突破→课堂活动→解题技巧→教学生成 八、教学过程: ( [知识梳理] 1.基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b .

(基本不等式)公开课教案

(基本不等式)公开课 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

基本不等式: 2 a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:2 a b +≤的证明过程。 难点:2 a b +≤ 等号成立条件。 三、教学过程 1.课题导入 2a b +≤ 的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民

热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系 将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22 a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22 a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:22 2a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有22 2a b ab +=。 2.得到结论:一般的,如果 ) ""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22 ,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(2 2ab b a ≥+ 4.12a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, (a>0,b>0)2a b ab +≤ 22a b ab +≤ 用分析法证明: 32a b ab +≤ 的几何意义

4 第4讲 基本不等式

第4讲 基本不等式 1.基本不等式:ab ≤ a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤???? a + b 22 (a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥ ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2 4 .(简记:和定积最大) 判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2.( ) (2)ab ≤???? a + b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +y x ≥2”的充要条件.( ) (4)若a >0,则a 3+1 a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× (教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析:选C.xy ≤????x +y 22 =???? 1822 =81,当且仅当x =y =9时等号成立,故选C.

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高考数学一轮复习第六篇不等式第4节基本不等式训练理新人教版

第4节基本不等式 知识点、方法题号 利用基本不等式比较大小、证明2,3 利用基本不等式求最值1,4,7,9,11,13 基本不等式的实际应用6,12,14 基本不等式的综合应用5,8,10 基础巩固(时间:30分钟) 1.已知f(x)=x2(x<0),则f(x)有( C ) (A)最大值0 (B)最小值0 (C)最大值4 (D)最小值4 解析:因为x<0,所以f(x)=(x)2≤=4,当且仅当x=,即x=1时取等号. 选C. 2.下列不等式一定成立的是( C ) (A)lg(x2)>lg x(x>0) (B)sin x≥2(x≠kπ,k∈Z) (C)x21≥2|x|(x∈R) (D)>1(x∈R) 解析:当x>0时,x2≥2·=x,所以lg(x2)≥lg x(x>0),故选项A不正确当2kππ

解析:由ab=1,可得a2bab=1, 因为2ab≤a2b2,当且仅当a=b时取等号. 所以2ab2≥1, 则a2b2≥. 当a,b异号时,不妨取a=1,b=2,易知A,C,D都不正确. 故选B. 4.导学号 38486112(2017·枣庄一模)若正数x,y满足=1,则3x4y的最小值是( C ) (A)24 (B)28 (C)25 (D)26 解析:因为正数x,y满足=1, 则3x4y=(3x4y)( )=13≥133×2=25, 当且仅当x=2y=5时取等号. 所以3x4y的最小值是25. 故选C. 5.导学号 38486113(2017·平度二模)若直线2mxny2=0 (m>0,n>0)过点(1,2),则最小值 ( D ) (A)2 (B)6 (C)12 (D)32 解析:因为直线2mxny2=0(m>0,n>0)过点(1,2), 所以2m2n2=0,即mn=1, 因为=()(mn)=3≥32, 当且仅当=,即n=m时取等号, 所以的最小值为32, 故选D. 6.(2017·河北邯郸一模)已知棱长为的正四面体ABCD(四个面都是正三角形),在侧棱AB 上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则的最小值为( C ) (A) (B)4 (C) (D)5 解析:由题意可得, a·S△BCD bS△ACD=h·S△BCD,其中S△BCD=S△ACD,h为正四面体ABCD的高. h==2, 所以ab=2.

6-4第四节 基本不等式练习题(2015年高考总复习)

第四节 基本不等式 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.设a ,b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :? ?? ??a +b 22≤a 2+b 2 2,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 解析 命题p :(a -b )2≤0?a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件. 答案 B 2.已知f (x )=x +1 x -2(x <0),则f (x )有( ) A .最大值为0 B .最小值为0 C .最大值为-4 D .最小值为-4 解析 ∵x <0,∴-x >0. ∴x +1 x -2=-? ?? ??-x +1-x -2≤-2 (-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 答案 C 3.下列不等式:①a 2 +1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1,其 中正确的个数是( ) A .0 B .1

C .2 D .3 解析 ①②不正确,③正确,x 2 +1x 2+1=(x 2 +1)+1x 2+1-1≥2 -1=1. 答案 B 4.(2014·云南师大附中模拟)已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t 的值为( ) A .2 B .4 C .2 2 D .2 5 解析 当a >0,b >0时,有ab ≤(a +b )24=t 24,当且仅当a =b =t 2时取等号.∵ab 的最大值为2,∴t 2 4=2,t 2=8,∴t =8=2 2. 答案 C 5.(2014·山东师大附中模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D .6 解析 由x +3y =5xy ,可得x xy +3y xy =5,即1y +3x =5,∴15y +3 5x =1,∴3x +4y =(3x +4y )? ????15y +35x =95+45+3x 5y +12y 5x ≥135+23x 5y ×12y 5x = 135+12 5=5. 答案 C 6.(2014·湖北八校联考)若x ,y ∈(0,2]且xy =2,使不等式a (2x +y )≥(2-x )(4-y )恒成立,则实数a 的取值范围为( )

2015届高考数学总复习 基础知识名师讲义 第六章 第四节基本不等式≤ (a,b∈R+ ) 文

第四节 基本不等式: ab ≤a +b 2 (a ,b ∈R +) 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 知识梳理 一、算术平均数与几何平均数的概念 若a >0,b >0,则a ,b 的算术平均数是a +b 2,几何平均数是ab . 二、常用的重要不等式和基本不等式 1.若a ∈R ,则a 2≥0,||a ≥0(当且仅当a =0时取等号). 2.若a ,b ∈R ,则a 2+b 2≥2ab (当且仅当a =b 时取等号). 3.若a ,b ∈R +,则a +b ≥2ab (当且仅当a =b 时取等号). 4.若a ,b ∈R +,则a 2+b 22≥ ????a +b 22 (当且仅当a =b 时取等号). 三、均值不等式(基本不等式) 两个正数的均值不等式:若a ,b ∈R +,则a +b 2≥ab (当且仅当a =b 时取等号). 变式: ab ≤?? ?a +b 22 (a ,b ∈R +). 四、最值定理 设x >0,y >0,由x +y ≥2xy ,有: (1)若积xy =P (定值),则和x +y 最小值为2P . (2)若和x +y =S (定值),则积xy 最大值为????S 22 . 即积定和最小,和定积最大. 运用最值定理求最值应满足的三个条件:“一正、二定、三相等”. 五、比较法的两种形式

一是作差,二是作商. 基础自测 1.(2012·深圳松岗中学模拟)若函数f (x )=x +1 x -2(x >2)在x =n 处有最小值,则n =( ) A .1+2 B .1+ 3 C .4 D .3 解析:f (x )=x -2+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2 ,即x -2=1,x =3时,f (x )有最小值.故选D. 答案:D 2.(2013·广州二模)已知0<a <1,0<x ≤y <1,且log a x ·log a y =1,那么xy 的取值范围为( ) A .(0,a 2] B .(0,a ] C .(0,1 a ] D .(01a 2] 解析:因为0<a <1,0<x ≤y <1,所以log a x >0,log a y >0, 所以log a x +log a y =log a (xy )≥2log a x ·log a y =2,当且仅当log a x =log ay =1时取等号.所以0<xy ≤a 2.故选A. 答案:A 3.(2012·合肥重点中学联考)若直线2ax -by +2=0(a ,b >0)始终平分圆x 2+y 2+2x -4y +1=0的周长,则1a +1 b 的最小值是________. 答案:4 4.当x >2时,不等式x +1 x -2≥a 恒成立,则实数a 的取值范围是________. 解析:因为x + 1 x -2≥a 恒成立, 所以a 必须小于或等于x +1 x -2 的最小值.

(基本不等式)公开课教案知识分享

基本不等式 2a b +≤ 授课人:祁玉瑞 授课类型:新授课 一、知识与技能: 使学生了解基本不等式的代数、几何背景,学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;学会应用基本不等式解决简单的数学问题。 过程与方法: 通过探索基本不等式的过程,让学生体会研究数学问题的基本思想方法,学会学习,学会探究。 情感态度与价值观: 在探索过程中,鼓励学生大胆尝试,大胆猜想,并能对猜想进行证明,增强学生的信心,获得探索问题的成功情感体验。逐步养成学生严谨的科学态度及良好的思维习惯。同时通过本节内容的学习,让学生体会数学来源于生活,提高学习数学的兴趣。 二、重点及难点 重点:应用数形结合的思想理解不等式,2 a b +≤的证明过程。 难点:2a b +≤等号成立条件。 三、教学过程 1.课题导入 2a b +≤的几何背景: 如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 教师引导学生从面积的关系去找相等关系或不等关系。 2.讲授新课 1.探究图形中的不等关系

将图中的“风车”抽象成如图,在正方形ABCD 中右个全等的直角三角形。 设直角三角形的两条直角边长为a,b 那么正方形的边长为22a b +。这样,4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的 面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。 当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时 有222a b ab +=。 2.得到结论:一般的,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a 3.思考证明:你能给出它的证明吗? 证明:因为 222)(2b a ab b a -=-+ 当 22,()0,,()0,a b a b a b a b ≠->=-=时当时 所以,0)(2≥-b a ,即 .2)(22ab b a ≥+ 4.1)从几何图形的面积关系认识基本不等式2a b ab +≤ 特别的,如果a>0,b>0,我们用分别代替a 、b ,可得2a b ab +≥, 通常我们把上式写作:(a>0,b>0)2a b ab +≤ 22a b ab +≤ 用分析法证明: 32a b ab +≤的几何意义 探究:课本第98页的“探究” 在右图中,AB 是圆的直径,点C 是AB 上的一点,AC=a,BC=b 。过 点C 作垂直于AB 的弦DE ,连接AD 、BD 。你能利用这个图形得出基本 2a b ab +≤的几何解释吗?

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理 一、选择题 1.若x >0,则x +4 x 的最小值为( ). A .2 B .3 C .2 2 D .4 解析 ∵x >0,∴x +4 x ≥4. 答案 D 2.已知a >0,b >0,a +b =2,则y =1a +4 b 的最小值是( ). A.72 B .4 C.9 2 D .5 解析 依题意得1a +4b =12? ????1a +4b (a +b )=12??????5+? ????b a +4a b ≥12? ? ???5+2 b a ×4a b =9 2 , 当且仅当????? a + b =2b a = 4a b a >0,b >0 ,即a =2 3 , b =4 3时取等号,即1a +4b 的最小值是9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a 和b (a a 2 -a 2 a + b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4

C.a +b 有最大值 2 D .a 2+b 2 有最小值 22 解析 由基本不等式,得ab ≤ a 2+ b 2 2 = a +b 2 -2ab 2,所以ab ≤14,故B 错;1a +1b = a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2 -2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C 5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2 +2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ?? ??2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2 +2m 恒成立, 只需(x +2y )min >m 2 +2m 恒成立, 即8>m 2 +2m ,解得-40),l 1与函数y =|log 2x |的图象从左至右相 交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为 ( ). A .16 2 B .8 2 C .83 4 D .434 解析 如图,作出y =|log 2x |的图象,由图可 知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

高中数学《基本不等式》优质课教学设计

《基本不等式》教学设计 一、教学内容解析: 1、本节内容选自《普通高中课程标准实验教科书》(人教A版教材)高中数学必修5第三章第4节基本不等式,是在学习了不等式的性质、一元二次不等式的解法、线性规划的基础上对不等式的进一步的研究,本节是教学的重点,学生学习的难点,内容具有条件约束性、变通灵活性、应用广泛性等的特点; 2、本节主要学习基本不等式的代数、几何背景及基本不等式的证明和应用,为选修4-5进一步学习基本不等式和证明不等式的基本方法打下基础,也是体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养的良好素材; 3、在学习了导数之后,可用导数解决函数的最值问题,但是,借助基本不等式解决某些特殊类型的最值问题简明易懂,仍有其独到之处; 4、在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学很多章节都有联系,尤其与函数、方程联系紧密,因此,不等式才自然而然地成为高考中经久不衰的热点、重点,有时也是难点. 二、学情分析: 1、学生已经掌握的不等式的性质和作差比较法证明不等式对本节课的学习有很大帮助; 2、学生逻辑推理能力有待提高,没有系统学习过证明不等式的基本方法,尤其对于分析法证明不等式的思路以前接触较少; 3、对于最值问题,学生习惯转化为一元函数,根据函数的图像和性质求解,对于根据已知不等式求最值接触较少,尤其会忽略取等号的条件。 三、教学目标: 1、知识与技能:会从不同角度探索基本不等式,会用基本不等式解决简单的最值问题; 2、过程与方法:经历基本不等式的推导过程,体会数形结合、分类讨论等数学思想,提升数学抽象、直观想象、逻辑推理等数学核心素养; 3、情感态度价值观:培养学生主动探索、勇于发现的科学精神,并在探究的过

高中数学x基本不等式--三项注意

基本不等式----三大注意事项例题解答 基本不等式是高中阶段的重要内容,是学生不容易掌握的重点知识之一,关键是其变形灵活,形式多姿多样,基本不等式“(0,0)2 a b ab a b +≥>>”沟通了两个正数的“和”与“积”之间的关系,利用它可以解决求最值或者不等式证明问题.在运用基本不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形,造条件满足应用情境后再解决问题. 因此需要掌握一些变形技巧,注意三大方面. 一个技巧: 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如22 2a b ab +≥逆用就是22 2a b ab +≤,2a b ab +≥ (0,0)a b >>逆用就是2()2 a b ab +≤等. 两个变形: (1) 222 1122a b a b ab a b ++≤≤≤+ (,)a b R +∈,即调和平均数≤几何平均数≤算术平均数≤平方平均数;(当且仅当a b =时取等号) (2) 22 2()22 a b a b ab ++≤≤ (,)a b R ∈(当且仅当a b =时取等号). 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 例题. 一、注意运用不等式链 例1 已知0a >,0b >,1a b +=,求 11a b +的最大值. 解析:由0a >,0b >,又2 112a b a b +≤+,因为1a b +=,所以21112a b ≤+,所以11a b +4≥,当且仅当12 a b ==时,等号成立. 评注:本题利用基本不等式链简化了问题,是题目的证明思路一目了然.

3.4基本不等式(第一课时)

3.4 基本不等式: 2b a a b + ≤(第一课时) 教学设计 一、教学内容解析 (一)教材的地位和作用 本节课是人教版《数学》必修5第三章第四节(第一课时),基本不等式是高中数学中一个非常重要的不等式,它是解决一些简单的最大(小)值问题的最基本也是最重要的方法。在前几节课刚刚学习了不等式的性质、一元二次不等式、二元一次不等式组与线性规划问题,这些内容为本节课打下了坚实的基础,同时基本不等式的学习为今后解决最值问题提供了新的方法。 本节内容是在系统的复习了不等关系和不等式性质,掌握了不等式性质的基础上展开的。教材通过赵爽弦图回顾基本不等式,在代数证明的基础上,通过“探究”引导学生回顾基本不等式的几何意义,并给出在解决函数最值和实际问题中应用,在知识体系中起着承上启下的作用;从知识的应用价值上看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法(如数形结合、抽象归纳、演绎推理、分析法证明等)在各种不等式的研究中均有着广泛的应用;从内容的人文价值上看,基本不等式的探究、推导和应用需要学生观察、分析、猜想、归纳和概括等,有助于培养学生思维能力和探索精神,是培养学生数形结合意识和提高数学能力的良好载体. (二)教学目标 1. 通过实例探究,引导学生从几何图形中获得重要不等式,并通过类比的和代换的思想得到基本不等式,让体会数形结合的思想,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣; 2. 从结构、形式等方面进一步认识基本不等式; 3. 经历由实际问题推导出基本不等式,在回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。 (三)教学重点与难点 重点:应用数形结合的思想理解不等式,并从不同角度认识基本不等式。 难点:在几何背景下抽象出基本不等式的过程;使用基本不等式解决求最值问题时的条件的认识。 二、学生学情分析: 在初中阶段,学生学习了平方、开方、勾股定理、圆、射影定理等概念,高中阶段学生学习了基本初等函数及其性质,加上刚学过的不等关系与不等式的性质,学生对不等式有了初步的了解和应用,但本节内容,变换灵活,应用广泛,条件有限制,考察了学生属性结合、转化化归等数学思想,对学生能灵活应用数

高中数学《基本不等式》公开课优秀教学设计

《§3.4.1基本不等式》的教学设计 教材:人教版高中数学必修5第三章 一、教学内容解析 本节选自人教版必修五的第三章第四节的第一课时,它是在学生学习完“不等式的性质”、“一元二次不等式及其解法”及“二元一次不等式(组)与简单的线性规划问题”的基础上对不等式的进一步研究。在探究基本不等式内涵和证明的过程中,能够培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识;在应用的过程中,通过对条件的转换和变式,有助于培养学生形成类比归纳的思想和习惯,进而形成严谨的思维方式。 二、教学目标设置 1.通过探究“数学家大会的会标”及感受会标的变形,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景培养学生观察问题、分析问题和解决问题的能力;培养学生形成数形结合的思想意识; 2.进一步让学生探究不等式的代数证明,加深对基本不等式的理解和认识,提高学生逻辑推理的能力和严谨的思维方式。 3.通过例题让学生学会用基本不等式求最大值和最小值。 三、学生学情分析 对于高一的学生,不等式并不陌生,前面学习了不等式及不等式的性质,能够进行简单的数与式的比较,本节所学内容就用到了不等式的性质,所以学生可以在巩固不等式性质的前提下学习基本不等式,接受上是容易的,争取让学生真正意义上理解基本不等式。 四、教学策略分析 在教学过程中学生往往会直接应用不等式而忽略成立的条件,因此本节课的重点内容是对基本不等式的理解和运用。在运用过程中生成的规律,在学生做题时能灵活运用是难点,因此理解基本不等式和灵活应用基本不等式十本节课难点 五、教学过程: (一)情景引入 下图是2002年在北京召开的第24届国际数学家大会会议现场。

2021 第7章 第4节 基本不等式

第四节 基本不等式 [最新考纲] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 1.基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)xy ≤? ???? x +y 22 ,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).

[常用结论 ] 重要不等式链 若a ≥b >0,则a ≥ a 2+ b 22≥a +b 2≥ab ≥2ab a + b ≥b . 一、思考辨析(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2. ( ) (2)函数f (x )=cos x +4cos x ,x ∈? ? ???0,π2的最小值等于4. ( ) (3)x >0,y >0是x y +y x ≥2的充要条件. ( ) (4)若a >0,则a 3+1 a 2的最小值为2a . ( ) [答案] (1)× (2)× (3)× (4)× 二、教材改编 1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 C [xy ≤? ???? x +y 22 =81,当且仅当x =y =9时,等号成立.故选C.] 2.若x >0,则x +4 x ( ) A .有最大值,且最大值为4 B .有最小值,且最小值为4 C .有最大值,且最大值为2 2 D .有最小值,且最小值为2 2 B [x >0时,x +4 x ≥2 x ×4 x =4,当且仅当x =2时等号成立.故选B.] 3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是 m 2. 25 [设一边长为x m ,则另一边长可表示为(10-x )m ,

【高考精品复习】第七篇 不等式 第4讲 基本不等式

第4讲 基本不等式 【高考会这样考】 1.考查应用基本不等式求最值、证明不等式的问题. 2.考查应用基本不等式解决实际问题. 【复习指导】 1.突出对基本不等式取等号的条件及运算能力的强化训练. 2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养. 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定

积最大 ) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤? ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b 2≥ab ≥2 1a +1b (a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

第7章第4讲 基本不等式

第4讲 基本不等式 基础知识整合 1.重要不等式 a 2+ b 2≥012ab (a ,b ∈R )(当且仅当02a =b 时等号成立). 2.基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:03a >0,b >0; (2)等号成立的条件:当且仅当04a =b 时等号成立; (3)其中a +b 2叫做正数a ,b 的05算术平均数,ab 叫做正数a ,b 的06几何平均数. 3.利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值), 那么当07x =y 时,x +y 有08最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值), 那么当09x =y 时,xy 有10最大值S 2 4.(简记:“和定积最大”) 1.常用的几个重要不等式 (1)a +b ≥2ab (a >0,b >0); (2)ab ≤? ?? ??a +b 22 (a ,b ∈R ); (3)? ?? ??a +b 22≤a 2+b 2 2(a ,b ∈R ); (4)b a +a b ≥2(a ,b 同号). 以上不等式等号成立的条件均为a =b . 2.利用基本不等式求最值的两个常用结论

(1)已知a ,b ,x ,y ∈R +,若ax +by =1,则有1x +1y =(ax +by )·? ???? 1x +1y =a +b +by x +ax y ≥a +b +2ab =(a +b )2. (2)已知a ,b ,x ,y ∈R +,若a x +b y =1,则有x +y =(x +y )· ? ???? a x + b y =a +b +ay x +bx y ≥a +b +2ab =(a +b )2 . 1.已知a ,b ∈R +,且a +b =1,则ab 的最大值为( ) A .1 B.14 C.12 D.22 答案 B 解析 ∵a ,b ∈R +,∴1=a +b ≥2ab ,∴ab ≤14,当且仅当a =b =1 2时等号成立,即ab 的最大值为1 4.故选B. 2.已知a ,b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b 答案 D 解析 ∵a ,b ∈(0,1)且a ≠b ,则显然有a +b >2ab ,a 2+b 2>2ab .下面比较a 2+b 2与a +b 的大小.由于a ,b ∈(0,1),∴a 2

相关文档
最新文档