读取DS18B20温度,通过LCD1602显示出来,并输出控制

读取DS18B20温度,通过LCD1602显示出来,并输出控制
读取DS18B20温度,通过LCD1602显示出来,并输出控制

基于DS18B20的多点温度测量系统设计

一、绪论 1.1 课题来源 温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一,同时它也是一种最基本的环境参数。人民的生活与环境温度息息相关,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,在电力、化工、石油、冶金、机械制造、大型仓储室、实验室、农场塑料大棚甚至人们的居室里经常需要对环境温度进行检测,并根据实际的要求对环境温度进行控制。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行。炼油过程中,原油必须在不同的温度和压力条件下进行分流才能得到汽油、柴油、煤油等产品;没有合适的温度环境,许多电子设备不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。可见,研究温度的测量具有重要的理论意义和推广价值。 随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日益突出,成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍及工农业生产和日常生活的各个领域。本设计就是为了满足人们在生活生产中对温度测量系统方面的需求。 本设计要求系统测量的温度的点数为4个,测量精度为0.5℃,测温范围为-20℃~+80℃。采用液晶显示温度值和路数,显示格式为:温度的符号位,整数部分,小数部分,最后一位显示℃。显示数据每一秒刷新一次。 1.2 课题研究的意义 21世纪科学技术的发展日新月异,科技的进步带动了测量技术的发展,现代控制设备的性能和结构发生了巨大的变化,我们已经进入了高速发展的信息时代,测量技术也成为当今科技的主流之一,被广泛地应用于生产的各个领域。对于本次设计,其目的在于: (1)掌握数字温度传感器DS18B20的原理、性能、使用特点和方法,利用C51对系统进行编程。

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)

电路实物图如下图所示: C 语言程序如下所示: /******************************************************************** zicreate ----------------------------- Copyright (C) https://www.360docs.net/doc/054699764.html, -------------------------- * 程序名; 基于DS18B20的测温系统 * 功 能: 实时测量温度,超过上下限报警,报警温度可手动调整。K1是用来 * 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限 * 调节模式。在正常模式下,按一下K2进入查看上限温度模式,显示1s 左右自动 * 退出;按一下K3进入查看下限温度模式,显示1s 左右自动退出;按一下K4消除 * 按键音,再按一下启动按键音。在调节上下限温度模式下,K2是实现加1功能, * K1是实现减1功能,K3是用来设定上下限温度正负的。 * 编程者:Jason * 编程时间:2009/10/2 *********************************************************************/ #include //将AT89X52.h 头文件包含到主程序 #include //将intrins.h 头文件包含到主程序(调用其中的_nop_()空操作函数延时) #define uint unsigned int //变量类型宏定义,用uint 表示无符号整形(16位) #define uchar unsigned char //变量类型宏定义,用uchar 表示无符号字符型(8位) uchar max=0x00,min=0x00; //max 是上限报警温度,min 是下限报警温度 bit s=0; //s 是调整上下限温度时温度闪烁的标志位,s=0不显示200ms ,s=1显示1s 左右 bit s1=0; //s1标志位用于上下限查看时的显示 void display1(uint z); //声明display1()函数 #include"ds18b20.h" //将ds18b20.h 头文件包含到主程序 #include"keyscan.h" //将keyscan.h 头文件包含到主程序 #include"display.h" //将display.h 头文件包含到主程序

基于单片机的DS18B20温度测量

基于DS18B20的温度测量系统 组员:计佳辰11221120 组员:徐文杰11221110 1.课题要求 测量环境中的温度,以BCD码的形式在LED上显示 2. 设计背景 随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,这里设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。本设计选用A T89C51单片机作为主控制器件,DS18B20作为测温传感器,通过LM016L 实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。 3.设计方案 3.1总体设计思路方案与系统框图 采用数字温度芯片DS18B20测量温度,输出信号全数字化。采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,DS18B20的DQ与AT89C51的P3.7口相连,与它直接输出温度的数字信号,采用AT89C51单片机控制,温度显示由四位八段LED显示屏完成,LED的D0~D7为8位双向数据端,与AT89C51的P1口相连,系统框图如下图所示。

3.2 DS18B20芯片介绍 DS18B20引脚定义: (1)DQ为数字信号输入输出端 (2)GND为电源地 (3)VDD为外接供电电源输入端温度寄存器(0和1字节) AT89C51 时钟电路复位电路 DS18B20数 字温度传感器 测温物体 图1 显示电路

DS18B20温度控制数码管显示(汇编非常详细)

; DS18B20温度控制数码管显示(汇编非常详细) * ;* 1、P1.6= → 进入设定温度报警值TL 状态: * ;* L--20 * ;* 2、P1.6 → 进入设定温度报警值TH 状态: * ;* H--28 * ;* 3、P1.6 → 返回 * ;* 4、设定过程:P1.4 →加键(UP),P1.5 →减键(DOWN),可快速调。* ;* ** TIMER_L DATA 23H TIMER_H DATA 24H TIMER_COUN DATA 25H TEMPL DATA 26H TEMPH DATA 27H TEMP_TH DATA 28H TEMP_TL DATA 29H TEMPHC DATA 2AH TEMPLC DATA 2BH TEMP_ZH DATA 2CH BEEP EQU P3.7 DATA_LINE EQU P3.3 RELAY EQU P1.3 FLAG1 EQU 20H.0 FLAG2 EQU 20H.1 ;------------------------------------------------- K1 EQU P1.4 K2 EQU P1.5 K3 EQU P1.6 K4 EQU P1.7 ;=================================================

ORG 0000H JMP MAIN ORG 000BH AJMP INT_T0 ;-------------------------------------------------- MAIN: MOV SP,#30H MOV TMOD,#01H ;T0,方式1 MOV TIMER_L,#00H ;50ms定时值 MOV TIMER_H,#4CH MOV TIMER_COUN,#00H ;中断计数 MOV IE,#82H ;EA=1,ET0=1 LCALL READ_E2 ;LCALL RE_18B20 MOV 20H,#00H SETB BEEP SETB RELAY MOV 7FH,#0AH ;熄灭符 CALL RESET ;复位与检测DS18B20 JNB FLAG1,MAIN1 ;FLAG1=0,DS18B20不存在 JMP START MAIN1: CALL RESET JB FLAG1,START LCALL BEEP_BL ;DS18B20错误,报警 JMP MAIN1 START: MOV A,#0CCH ; 跳过ROM匹配 CALL WRITE MOV A,#044H ; 发出温度转换命令 CALL WRITE CALL RESET MOV A,#0CCH ; 跳过ROM匹配 CALL WRITE MOV A,#0BEH ; 发出读温度命令 CALL WRITE CALL READ ;读温度数据 CALL CONVTEMP CALL DISPBCD CALL DISP1 CALL SCANKEY

温控器调整方法

E5AZ-R3-38数字式温度控制器调整说明 一、接线方式: 接线柱1、2――-AC220V电源 接线柱4、6―――低温输出101、103 接线柱7、8―――高温输出101、102 接线柱9、10、11―――PT100温度传感线A\B\B 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置高温值为26.0。 2)按一次菜单键,再按一次模式键,设置高温回差1.5。 3)按一次菜单键返回运行菜单。 4)按两次模式键,设置低温值为25.5。 5)按一次模式键,返回运行菜单。 2.系统设置(以下调整为系统模式设置,请不要改动) 1)菜单键+模式键同时按下3秒以上,进入保护菜单,按模式键切换 选项,依次按如下设置: 2)同时按菜单+模式1秒以上,返回运行菜单。

3.第二步:模式设置 1)按菜单3秒以上,进入初始菜单,按模式键切换选项,依次按如下 设置: ?设置温度传感器类型为1。 ?设置温度单位为℃。 ?设置最高温度限制值: ?设置最低温度限制值: ?设置ON/OFF方式为ONOF。 ?设置控制方式为标准方式。 ?设置动作方向为正方向。 ?设置报警1种类为0。 ?设置报警2种类为8。 ?设置报警3种类为0。 ?设置密码为-169,等待3秒,自动进入高级模式: ?设置 ?设置低温回差为1.5。

设置 2)按菜单键3秒以上,返回运行菜单。 4.第三步:状态设置 1)按一次模式键,进入状态设置,按上调或下调键设置为RUN。则温 控器开始工作。 2)如设置为STOP,则温控器STOP灯亮,停止工作。 TMC229-HT-DAA038数字式温度控制器调整说明 一、接线方式: 与E5AX相同,内芯可互换。 二、界面图形 三、设定方法: 1.温度设置(此部分用于常规调整) 1)在运行菜单下,设置低温值SV为24.0 2)按2次SET键,设置高温值SV2为26.0(一般要求SV2=SV1+2) 2.系统设置(以下调整为系统模式设置,请不要改动) 1)解锁:同时按SET和︽5秒,出现画面LOC-3,将3改为0后,先 按下SET不松开,再按︽后立即全部松开,解锁完毕。 2)调整:同时按下SET和︾键5秒,出现设置界面,按SET切换设置

基于DS18B20的温度测量系统设计

课程设计(论文) 题目名称基于DS18B20温度测量系统设计 课程名称单片机原理及应用 学生姓名尹彬涛 学号1341301075 系、专业电子信息工程 指导教师江世民 2015年 6 月12 日

摘要 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于STC89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20与STC89C52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 关键词:单片机; DS18B20; 温度传感器; 数字温度计; STC89C52

目录 摘要 (1) 引言 (3) 一、方案介绍 (3) 1、显示部分 (3) 2、温度采集 (5) 3、方案流程图 (5) 二、总体方案设计 (6) 1、硬件设计 (6) 1.1 温度采集设计 (6) 1.2温度显示设计 (6) 2、软件设计 (7) 2.1 DS18B20程序设计 (7) 2.2显示部分程序设计 (8) 三、实验调试过程 (10) 1、软件调试 (10) 1.1 显示部分调试........................................ . (10) 四、心得体会 (10) 五、致谢 (11) 六、参考文献 (12) 七、附录 (12) 附录一程序代码 (12) 附录二仿真电路图 (18)

实验八 DS18B20数字温度显示实验

D S18B20数字温度显示实验 1.实验目的 掌握一线式数字温度传感器的使用,了解单总线的工作方式。 掌握数字温度传感器DS18B20的工作原理及温度测量方法。 2.实验原理及内容 DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625℃。 主机控制DS18B20完成温度转换必须经过三个步骤:初始化、ROM操作指令、存储器操作指令。必须先启动DS18B20开始转换,再读出温度转换值。本程序仅挂接一个芯片,使用默认的12位转换精度,外接供电电源,读取的温度值高位字节送WDMSB单元,低位字节送WDLSB 单元,再按照温度值字节的表示格式及其符号位,经过简单的变换即可得到实际温度值。 图118B20封装引脚 图2相关原理 接线方法: 1.利用S T C89C51实验板上的I R F1插孔和排针,将D S18B20插入I R F1插孔,用一根单条数据线把D S18B20的2脚接到C P U部份的P3.0; 2.用一条4P I N的排线,把7474的A B C D接到P0口的P0.0,P0.1,P0.2,0.3四个端口。(即插入P0口的上半部份)。 3.用一条8P I N的排线。 把数码管译码部份的输出端接到数码管部份的数据口; 4.用一条4P I N的排线,把74138的输入端接到P0口的P0.4,P0.5,P0.6,07四个端口。(即插入P0口的下半部份)。 5.用一条8P I N的排线。 把38译码部份的输出端接到数码管部份的显示位口。 在本系统中,为了简化程序, 采用了74L S47(数码管译码)74L S138(三八译码)。即P0口的P0.0,P0.1,P0.2,P0.3四个端口接到74L S47进行硬件数码管译码,然后输出到数码管部分的数据口。P0.4,P0.5,P.0.6三个端口接到74L S138进行38译码,然后输出到数码管的位控制。

基于单片机的DS18B20温度测量

基于DS18B20的温度测量系 统 组员:计佳辰11221120 组员:徐文杰11221110 1.课题要求 测量环境中的温度,以BCD码的形式在LED上显示 2. 设计背景 随着现代信息技术的飞速发展和传统工业改造的逐步实现,能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差,这里设计的数字温度计具有读数方便,测温围广,测温精确,数字显示,适用围宽等特点。本设计选用AT89C51单片机作为主控制器件,DS18B20作为测温传感器,通过LM016L 实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在0℃~100℃最大线性偏差小于0.01℃。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。 3.设计方案 3.1总体设计思路方案与系统框图 采用数字温度芯片DS18B20测量温度,输出信号全数字化。采用了单总线的数据传输,由数字温度计DS18B20和AT89C51单片机构成的温度测量装置,DS18B20的DQ与AT89C51的P3.7口相连,与它直接输出温度的数字信号,采用AT89C51单片机控制,温度显示由四位八段LED显示屏完成,LED的D0~D7为8位双向数据端,与AT89C51的P1口相连,系统框图如下图所示。

3.2 DS18B20芯片介绍 DS18B20引脚定义: (1)DQ为数字信号输入输出端 (2)GND为电源地 (3)VDD为外接供电电源输入端温度寄存器(0和1字节)AT89C51 时钟电路复位电路 DS18B20数 字温度传感器 测温物体 图1 显示电路

基于stc51单片机的LCD1602显示时间_的电子万年历(显示当前温度)

1 课设所需软件简介 1.1 Keil uVision4的简要介绍 2009年2月发布Keil μVision4,Keil μVision4引入灵活的窗口管理系统,使开发人员能够使用多台监视器,并提供了视觉上的表面对窗口位置的完全控制的任何地方。新的用户界面可以更好地利用屏幕空间和更有效地组织多个窗口,提供一个整洁,高效的环境来开发应用程序。新版本支持更多最新的ARM芯片,还添加了一些其他新功能。 2011年3月ARM公司发布最新集成开发环境RealView MDK开发工具中集成了最新版本的Keil uVision4,其编译器、调试工具实现与ARM器件的最完美匹配。 Keil C51开发系统基本知识Keil C51开发系统基本知识 1. 系统概述 Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。下面详细介绍Keil C51开发系统各部分功能和使用。 2. Keil C51单片机软件开发系统的整体结构 C51工具包的整体结构,uVision与Ishell分别是C51 for Windows和for Dos的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。开发人员可用IDE本身或其它编辑器编辑C或汇编源文件。然后分别由C51及C51编译器编译生成目标文件(.OBJ)。目标文件可由LIB51创建生成库文件,也可以与库文件一起经L51连接定位生成绝对目标文件(.ABS)。ABS文件由OH51转换成标准的Hex文件,以供调试器dScope51或tScope51使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM中。

DS18B20温度显示演示程序-LCD1602显示

/*DS18B20温度显示演示程序-LCD1602显示 开机时对DS18B20进行检测,如果DS18B20检测不正常,LCD1602显示: DS18B20 ERROR PLEASE CHECK 蜂鸣器报警。 DS18B20检测正常,LCD1602显示: DS18B20 OK TEMP: 100.8℃ 如果温度值高位为0,将不显示出来。 你可以通过拔插DS18B20查看DS18B20的检测功能。*/ #include < reg51.h > #include < intrins.h > #define uchar unsigned char #define uint unsigned int sbit DQ = P3^2 ; //定义DS18B20端口DQ sbit BEEP=P1^0 ; //蜂鸣器驱动线 bit presence ; sbit LCD_RS = P1^0 ; sbit LCD_RW = P1^1; sbit LCD_EN = P1^2 ; uchar code cdis1[ ] = {" DS18B20 OK "} ; uchar code cdis2[ ] = {" TEMP: . C "} ; uchar code cdis3[ ] = {" DS18B20 BUSY "} ; uchar code cdis4[ ] = {" PLEASE WAIT "} ; unsigned char data temp_data[2] = {0x00,0x00} ; unsigned char data display[5] = {0x00,0x00,0x00,0x00,0x00} ; unsigned char code ditab[16] = {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04, 0x05,0x06,0x06,0x07,0x08,0x08,0x09,0x09} ; void beep() ; unsigned char code mytab[8] = {0x0C,0x12,0x12,0x0C,0x00,0x00,0x00,0x00} ; #define delayNOP() ; {_nop_() ;_nop_() ;_nop_() ;_nop_() ;} ; /*******************************************************************/ void delay1(int ms)

温控电路PID参数调节方法

在定值控制问题中,如果控制精度要求不高,一般采用双位调节法,不用PID。但如果要求控制精度高,而且要求波动小,响应快,那就要用PID调节或更新的智能调节。调节器就是根据设定值与实际检测到的输出值之间的误差来校正直接控制量的,温度控制中的直接控制量就是加热或制冷的功率。PID调节中,用比例环节(P)来决定基本的调节响应力度,用微分环节(D)来加速对快速变动的响应,用积分环节(I)来消除残留误差。PID调节按基本理论就是属于线性调节。但由于直接控制量的幅度总就是受到限定,所以在实际工作过程中三个调节环节都有可能使控制量进入受限状态。这时系统就是非线性工作。手动对PID进行整定时,总就是先调节比例环节,然后一般就是调节积分环节,最后调节微分环节。温度控制中控制功率与温度之间具有积分关系,为多容系统,积分环节应用不当会造成系统不稳定。许多文献对PID整定都给出推荐参数。 PID就是依据瞬时误差(设定值与实际值的差值)随时间的变化量来对加热器的控制进行相应修正的一种方法!!!如果不修正,温度由于热惯性会有很大的波动、大家讲的都不错、比例:实际温度与设定温度差得越大,输出控制参数越大。例如:设定温控于60度,在实际温度为50与55度时,加热的功率就不一样。而20度与40度时,一般都就是全功率加热、就是一样的、积分:如果长时间达不到设定值,积分器起作用,进行修正积分的特点就是随时间延长而增大、在可预见的时间里,温度按趋势将达到设定值时,积分将起作用防止过冲! 微分:用来修正很小的振荡、方法就是按比例、微分、积分的顺序调、一次调一个值、调到振荡范围最小为止、再调下一个量、调完后再重复精调一次、要求不就是很严格、 先复习一下P、I、D的作用,P就就是比例控制,就是一种放大(或缩小)的作用,它的控制优点就就是:误差一旦产生,控制器立即就有控制作用,使被控量朝着减小误差方向变化,控制作用的强弱取决于比例系数Kp。举个例子:如果您煮的牛奶迅速沸腾了(您的火开的太大了),您就会立马把火关小,关小多少就取决于经验了(这就就是人脑的优越性了),这个过程就就是一个比例控制。缺点就是对于具有自平衡性的被控对象存在静态误差,加大Kp可以减小静差,但Kp过大时,会导致控制系统的动态性能变坏,甚至出现不稳定。所谓自平衡性就是指系统阶跃响应的终值为一有限值,举个例子:您用10%的功率去加热一块铁,铁最终保持在50度左右,这就就是一个自平衡对象,那静差就是怎样出现的呢?比例控制就是通过比例系数与误差的乘积来对系统进行闭环控制的,当控制的结果越接近目标的时候,误差也就越小,同时比例系数与误差的乘积(控制作用)也在减小,当误差等于0时控制作用也为0,这就就是我们最终希望的控制效果(误差=0),但就是对于一个自平衡对象来说这一时刻就是不会持续的。就像此时您把功率降为0,铁就是不会维持50度的(不考虑理想状态下),铁的温度开始下降了,误差又出现了(本人文采不就是很好,废这么多话相信大家应该明白了!)。也就就是比例控制最终会维持一个输出值来使系统处于一个固定状态,既然又输出,误差也就不等于0了,这个误差就就是静差。

基于DS18B20的多点温度测量系统(毕业设计)

目录 中文摘要......................................................................................................... III 英文摘要......................................................................................................... I V 1 绪论. (1) 1.1课题来源 (1) 1.2课题研究的目的意义 (1) 1.3国内外现状及水平 (2) 1.4课题研究内容 (2) 2 系统方案设计 (3) 2.1基于模拟温度传感器设计方案 (3) 2.2基于数字温度传感器设计方案 (4) 2.3方案论证 (4) 3 电路设计 (6) 3.1工作原理 (6) 3.2DS18B20与单片机接口技术 (7) 3.3键盘电路设计 (14) 3.4显示电路设计 (15) 3.5报警电路设计 (16) 3.6电源电路设计 (17) 4 程序设计 (18) 4.1系统资源分配 (18) 4.2系统流程设计 (18) 4.3程序设计 (24) 5 系统仿真 (34) 5.1PROTEUS仿真环境介绍 (34) 5.2原理图绘制 (35) 5.3程序加载 (35) 5.4系统仿真 (36) 5.5仿真结果分析 ............................................................................................... 错误!未定义书签。 6 PCB板设计 (39) 6.1PCB板设计 (39)

LCD1602和DS18B20显示温度

您研究一下以下这个程序,然后就可以加上时间功能.多做一点就能多学一点. 开机时对DS18B20进行检测,如果DS18B20检测不正常,LCD1602显示:DS18B20 ERROR PLEASE CHECK 蜂鸣器报警。 DS18B20检测正常,LCD1602显示: DS18B20 OK TEMP: 100.8℃ 如果温度值高位为0,将不显示出来。 你可以通过拔插DS18B20查看DS18B20的检测功能。 /* ME300B单片机开发系统演示程序- DS18B20温度显示*/ /* LCD1602显示*/ /* 作者:gguoqing */ /*Copyright(C)伟纳电子https://www.360docs.net/doc/054699764.html, All Rights Reserved */ /*******************************************************************/ #include < reg51.h > #include < intrins.h > #define uchar unsigned char #define uint unsigned int sbit DQ = P3^3 ; //定义DS18B20端口DQ sbit BEEP=P3^7 ; //蜂鸣器驱动线 bit presence ; sbit LCD_RS = P2^0 ; sbit LCD_RW = P2^1 ; sbit LCD_EN = P2^2 ; uchar code cdis1[ ] = {" DS18B20 OK "} ; uchar code cdis2[ ] = {" TEMP: . C "} ; uchar code cdis3[ ] = {" DS18B20 ERR0R "} ; uchar code cdis4[ ] = {" PLEASE CHECK "} ; unsigned char data temp_data[2] = {0x00,0x00} ; unsigned char data display[5] = {0x00,0x00,0x00,0x00,0x00} ; unsigned char code ditab[16] = {0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,

DS18B20与数码管温度显示C程序

#include #define uchar unsigned char #define uint unsigned int sbit DQ=P1^4;//ds18b20与单片机连接口 unsigned char code str[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x39};//共阴数码管字码表 unsigned char code str1[]={0x0bf,0x86,0x0db,0x0cf,0x0e6,0x0ed,0x0fd,0x87,0x0ff,0x0ef,0x39};//个位带小数点字码表 unsigned char code wei[]={0x0fe,0x0fd,0x0fb,0x0f7}; uchar data disdata[5]; uint tvalue;//温度值 uchar tflag;//温度正负标志 /******************************ds1820程序***************************************/ void delay_18B20(unsigned int i)//延时1微秒 { while(i--); } void ds1820rst()/*ds1820复位*/ { unsigned char x=0; DQ = 1; //DQ复位 delay_18B20(4); //延时 DQ = 0; //DQ拉低 delay_18B20(100); //精确延时大于480us DQ = 1; //拉高 delay_18B20(40); } uchar ds1820rd()/*读数据*/ { unsigned char i=0; unsigned char dat = 0; for (i=8;i>0;i--) { DQ = 0; //给脉冲信号 dat>>=1; DQ = 1; //给脉冲信号 if(DQ) dat|=0x80; delay_18B20(10);

温控参数及调试

超高精度智能温度控制仪表 特点:本温度控制仪表为高精测量仪表,可以分度0.1反映实际温度,同时可以串联多个热电偶以获得单位容积内较为平均的温度反映值。实现了快速,稳定,高精度的温度测控,是您自动化控制的得力助手。 参数及调试步骤(暂停状态中) 按住SET键约3秒钟,进入调试状态。数码管显示参数代码0500,. (按UP/DOWN键到所需调试的参数代码),按SET进入参数内容(按UP/DOWN键到所需的参数内容),按SET键保存,参数代码自动+1,退

参数详解(以出厂值为例) 0500:当前温度值将0501设为0可显示 0501:可设定范围0-22,可显示对应参数内容 0502:设定1号输出温度上限值 0503、0504、0505:设定1号时间上限 0506:设定1号输出偏差,如:SE02设定为2000,SE06设定为100,SE03设定为0,SE04设定为20,SE05设定为0,那么当温度到达或大于2000+100=210.0度时1号输出,当温度低于于2000-100=190.0度时1号停止输出,当系统时间大于20分钟时1号一直输出。 0507、0508、0509、0510、0511:功能等同于03-06 0512、0513、0514、0515、0516:功能等同于03-06 0517:温度修正值,如:当前温度显示为-2.7,实际温度为21度,那么两者之间相差23.7度,0517应该设置为237。 0518:这是本温度控制仪表的特殊地方,可以串联多个热电偶放置在不同位置以获得单位容积内平均温度,热电偶串联方式+——+——。 本温度控制仪表设置了TTL通讯,通讯方式为2400,8bit,无校验,无停止位, 发送方式为(01 06然后将参数0-19顺序发出)为满足不同客户的特定需求,我们可以为客户特定开发专用功能 2

DS18B20测温流程图

主程序流程图:

DS18B20程序流程图: 程序按数据手册的时序图编写子函数模块: 1、DS18B20复位函数:resetDS18B20(void) 2、写一位的函数:WriteBit (unsigned char wb) 3、读一位的函数:unsigned char ReadBit (void) 4、读一个字节的函数:unsigned char readByteDS18B20(void) 即将位读取的时序循环8次。 5、写一个字节的函数:void writeByteDS18B20(unsigned char Data)。即将位写入的时序循环8次。 6、first和next函数流程图:

1、端口初始化子函数; 2、串口初始化; 3、串口发送一个字符函数:void USART_Putchar(unsigned char send_char) 4、串口发送数组函数:void UsartTransmit(unsigned char *data, unsigned char len) 5、串口发送字符串函数:void USART1_Putstr(char *s) 即通过字符串长度控制USART_Putchar函数的循环次数。6、串口发送字符串子程序(带有换行符): void USART1_Puts(char *s) 7、串口接收字符串函数:unsigned char getchar1(void) 8、串口接收中断子程序:void USART_RXT(void)流程图

1、 数据打包子函数:void Packet_Data(void) 2、

基于DS18B20的lcd1602的温度检测系统

1.1、来源 在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。温度无时无刻不在,同样也时时刻刻都在变化,为了让人们能更直观的看出此时此刻此地的实时温度,我就利用了单片机来完成这一功能。 1.2、意义 温度的检测与控制在现代经济与社会中有举足轻重的地位,与我们的生活息息相关,密不可分,越发占有一席之地。例如在储粮仓库、智能楼宇、空调控制及其他的工农业生产和科学研究中应用广泛。在温度的检测与控制方面,DS18B20小型温度检测系统及其数字温度传感器有许多突出的优点,其通过单总线与单片机连接,系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度检测,因此对于我们来设计并研究基于DS18B20的温度检测系统有主要的现实意义,从一方面讲这不仅对于工农业的发展,更对于国防的巩固与建设起到重要的作用;另一方面,本设计能够在一定程度上提高自己的单片机开发能力。 1.3、目的 (1)本实验要实现的是通过DS18B20温度传感器采集温度并在LCD上显示,并学会使用单片机控制DS18B20此类单总线器件,并对数字温度传感器DS18B0进行时序分析。 (2)更进一步了解LCD1602的应用。 (3)掌握单片机与PC的远程通信。 2、课题承担人员及分工说明 *********:(1)主要负责电路板的制作、焊接与调试。 (2)电路的仿真。 (3)温度主要程序的编写与调试。 **********:(1)Protel画板,材料的收集。 (2)串口的调试与程序编写。 (3)VB界面的设计和上位机程序的编写。 二、课题总体设计说明 1、说明总体开发计划和课题所达到的功能目标和技术指标 1.1、总体开发计划 1.1.1、基本功能 (1)以数字传感器DS1820作为前端采集温度,经过单片机处理后,将外部的温度显示在液晶屏上。 (2)可用通过独立式按键来设定温度的上限值和下限值,当坏境温度超过上限值或低于下限值时蜂鸣器会自动报警,并在液晶屏上提示温度大于上限值或温度小于下限值。 (3)当单片机检测到DS18B20存在时会在在LCD1602上显示“DS18B20 Succes”,反之则显示“DS18B20 is Wrong,TEMP is No on”。 1.1.2、扩展功能 以数字传感器DS1820作为前端采集温度,经过单片机处理后,再通过串口通信,把实

DS18B20温度读取及显示讲解学习

D S18B20温度读取及 显示

DS18B20温度读取及显示 #include #define uchar unsigned char #define uint unsigned int #define wela P2 #define dula P0 uchar code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,0x7f,0x6f}; sbit DS=P3^7; void delay6us(uchar z){ while(z--); } void delayms(uchar z){ uchar i,j; for(i=0;i

void init(){ uchar presence=1; while(presence){ DS=0; delay6us(80);//延时480us以上 DS=1; delay6us(15); if(DS==0){ presence=0; while(DS==0); } else presence=1; } } uchar ds_read(){ uchar byt,bi; uchar i; for(i=0;i<8;i++){ DS=0; delay6us(1); DS=1; delay6us(1); bi=DS; byt=(byt>>1)|(bi<<7); delay6us(11); } return byt; } void ds_write(uchar ch){ uchar i; for(i=0;i<8;i++){ DS=0; delay6us(1); DS=ch&0x01; delay6us(11); DS=1; delay6us(1); ch>>=1; }

DS18B20温度检测及其液晶显示程序

DS18B20温度检测及其液晶显示 #include //包含单片机寄存器的头文件 #include //包含_nop_()函数定义的头文件 unsigned char code digit[10]={"0123456789"}; //定义字符数组显示数字 unsigned char code Str[]={"Test by DS18B20"}; //说明显示的是温度 unsigned char code Error[]={"Error!Check!"}; //说明没有检测到DS18B20 unsigned char code Temp[]={"Temp:"}; //说明显示的是温度 unsigned char code Cent[]={"Cent"}; //温度单位 /****************************************************************************** * 以下是对液晶模块的操作程序 ******************************************************************************* / sbit RS=P2^0; //寄存器选择位,将RS位定义为P2.0引脚 sbit RW=P2^1; //读写选择位,将RW位定义为P2.1引脚 sbit E=P2^2; //使能信号位,将E位定义为P2.2引脚 sbit BF=P0^7; //忙碌标志位,,将BF位定义为P0.7引脚 /***************************************************** 函数功能:延时1ms (3j+2)*i=(3×33+2)×10=1010(微秒),可以认为是1毫秒 ***************************************************/ void delay1ms() { unsigned char i,j; for(i=0;i<10;i++) for(j=0;j<33;j++) ; } /***************************************************** 函数功能:延时若干毫秒 入口参数:n ***************************************************/ void delaynms(unsigned char n) { unsigned char i; for(i=0;i

相关文档
最新文档