细菌耐药性机理分析

细菌耐药性机理分析

卢嘉程 1142042005

抗生素的杀菌机理简介

?抑制细胞壁的合成

?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。

?改变细胞膜通透性

?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等)

?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死

?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素)

?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制

?使抗生素分解或失去活性

?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性

?改变抗生素的作用靶点

?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性

?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外

?改变代谢途径

?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

?将药物泵出细胞外

?有的细菌能通过主动运输的方式将进入细胞内的抗菌药物“泵”出胞外。

耐药性的扩散

?耐药基因的获得

?一是通过细菌自身产生突变获得,产生的耐药基因位于可能位于核DNA或者是质粒中。前者的耐药基因不易扩散但比较稳定,不容易丢失。而质粒中的耐药性基因会随着质粒的转移而转移,容易扩散也容易丢失

?二是从其他的菌株处得到了耐药质粒而获得耐药性。耐药基因通过质粒在细菌中的扩散,重组是“超级细菌”多重耐药性产生的主要原因。?“超级细菌”并不是之一种细菌,而是目前对拥有blaNDM-1质粒基因的细菌的统称。这类细菌对包括碳青霉烯类抗生素在内的几乎所有抗生素“免疫”,故被称为“超级细菌”

关于blaNDM-1质粒基因

?2008年1月,英国加的夫大学的医学微生物学教授Timothy R. Walsh 等人在瑞典一名患尿道感染的印度裔患者身上分离到可表达金属β-内酰胺酶 (Metallo-β-lactamase,MBL) 的肺炎克雷伯杆菌Klebsiella pneumoniae,出人意料的是此细菌中编码MBL的基因却和已知的几种MBL基因均不相同。该酶全长269个氨基酸,其分子大小约为27.5 kDa;它与目前发现的其他MBL相比,氨基酸序列的一致性不足33%,且在酶活性位点附近具有独特的氨基酸残基以及插入序列,并能与碳青霉烯类抗生素更紧密地接合。由于该名患者是在印度首都新德里接受治疗时被细菌感染的,于是研究者将这一新型金属β-内酰胺酶命名为新德里金属β-内酰胺酶 (New Delhi metallo-β-lactamase

1),即NDM-1,同时以blaNDM-1命名编码NDM-1的基因。

?这些细菌由于NDM-1及其他耐药基因的作用,对现今几乎所有类型的抗生素都具有耐药性。

耐药性的丢失

?细菌通过改变自身的结构和代谢途径来产生耐药机制,这是以牺牲体内一些不太重要的功能为代价的。在没有抗生素选择压的环境下。耐药菌并不占生存优势,反而还会由于不必要的耐药功能结构累赘而逐渐消亡。

?目前已有研究证明某些中药能部分消除细菌中的耐药质粒,降低耐药菌株的比例

?请关注我们的微生物创新型实验——双黄连、清开灵对消除耐药大肠质粒及ββ-内酰胺酶的影响

埃希菌R 质粒及

? By 王硕勋谢龑卢嘉程许路来孙宁宇

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

细菌耐药性的产生机制

福建金谷科技专栏 由福建金谷科技开发有限公司供搞细菌耐药性的产生机制 梅景良福建农林大学动物科学学院%"$$$# 随着磺胺药和抗生素等抗菌药物在临床上的广泛应用和长期使用,细菌等病原微生物的耐药株已逐年增多,导致抗菌药物的疗效越来越差。如对青霉素的耐药菌株,开始使用时仅有+,,近年来已达--,,有的报道认为在.$,以上。因此,细菌的耐药性问题已经成为细菌性疾病化学治疗中非常严重的一个问题,对细菌耐药性产生机制的研究在临床兽医学上具有极其重要的意义。本文简要地介绍了细菌耐药性的产生机制。 大家知道,自然界中存在的致病菌种类繁多,人们所使用的抗菌药物种类也很多,即使是同一种致病菌,对不同抗菌药其产生耐药性的机制也有可能存在很大的差别,因此,细菌耐药性的产生机制级为复杂。但是,通过大量的研究结果,人们发现细菌耐药性的生成只不过是细菌在生存中发挥其对药物的适应性或细菌偶然发生遗传基因突变所产生的后果。具体地说,细菌有可能是自发的,也有可能是在外界药物等因素的作用下发生了遗传基因的改变,产生了耐药基因,然后在耐药基因的介导下,进行/0*1的转录和蛋白质及酶的转译,从而导致细菌的形态结构和生理生化机能等发生了变化,使细菌获得了耐受抗菌药的能力。由此可见,遗传基因发生改变并产生耐药基因是细菌产生耐药性的第一步骤,在耐药基因介导下转录/0*1是细菌产生耐药性的第二步骤,以/0*1为模板转译合成蛋白质或酶,并最终导致细菌的形态结构和生理生化机能发生改变是细菌产生耐药性的第三步骤。当然,这三个步骤的划分是为了阐述的方便而人为界定的,其实这三个步骤是不可分的,因为细菌耐药性的产生是一个统一而完整的过程。 2细菌遗传基因发生变化细菌的遗传物质包括3*1和0*1两种,其中3*1主要存在于染色体上,也有少量3*1存在于质粒当中。不管是染色体中的3*1,还是质粒3*1,都能单独地进行准确地复制,将其遗传信息稳定地传给下一代。但是,细菌在生长繁殖过程中,也有可能受到一些外界因素影响或自发突变,使遗传物质发生改变,并有可能出现耐药基因,导致细菌的某些性状发生了改变,使细菌产生了耐药性。 根据引起细菌3*1遗传基因发生变化的原因不同,可将之分为三种情况:!天然存在耐药基因;"突变产生耐药基因;#质粒传递产生耐药基因。 2)2天然存在耐药基因这是在细菌与任何抗菌药接触之前就已经存在于染色体3*1或质粒3*1之种的遗传基因,它是细菌的遗传特征,由细菌的遗传信息所决定,一般是不会改变的。天然耐药基因的出现和存在与外界因素的影响无关,因此,天然存在的耐药基因所介导产生的细菌耐药性我们称之为先天耐药性。如对许多抗生素具有屏障作用的细菌细胞壁,就是先天耐药性的表现形式之一。 2)#突变产生耐药基因各种理化因素,如各种超短波辐射、高温诱变效应、低浓度诱变物质及细菌自身的代谢产物,尤其是过氧化氢的长时期综合作用,都可诱发细菌发生基因突变。除此之外,突变也可为细菌3*1在没有任何人为因素干扰条件下自发变化所产生。突变以后,新形成的突变基因中就有可能出现耐药基因。有人认为,自发突变是产生突变耐药基因的主要方式。2)%质粒传递耐药基因质粒是存在于染色体外的3*1。质粒常带有多种耐药基因而成为耐药质粒,它广泛存在于革兰氏阳性和革兰氏阴性细菌中,并可通过转化、转导、接合、转座等方式将耐药基因从耐药菌转移到敏感菌体内,由此而使敏感菌产生了耐药基因。 一般来说,先天存在的耐药基因所介导产生的先天耐药性是造成抗菌药具有不同抗菌谱最主要的原因,对细菌而言也是一种最重要的耐药性。由耐药质粒传递的耐药基因介导产生的耐药性由于具有横向传播性,可在短期内造成耐药菌的大量出现,因此,这种耐药性是人们在进行临床化学治疗中最为重要的一种耐药性。由突变耐药基因介导的耐药菌的生长和细胞分裂变慢,对其它细菌包括未发生突变的细菌的竞争力也变弱,因而突变产生的耐药性仅居次要地位。 #细菌/0*1发生变化细菌3*1遗传基因因变化而产生了耐药基因后,就可以耐药基因为模板进行转录,并形成相应的/0*1,这是细菌体内原先所没有的新的/0*1。新的/0*1是细菌产生耐药性所必需的,它是连接耐药基因和最终耐药性之间的桥梁。 这里需要说明的一点是,不同的耐药基因其转录/0*1的状态是不相同。有些细菌虽然具有耐药基因,但因其尚未进入转录状态,不能合成相应的/0*1,因此,细菌就不具备抵抗抗菌药的能力,即不具有耐药性。有些细菌从一开始,其耐药基因就处于不断转录之中,从而导致细菌产生了天然耐药性。另外,有些细菌则必需要有抗菌药的存在,其耐药基因才进入转录状态而产生耐药性,一旦抗菌药不再存在,其耐药基因的转录就停止,从而导致耐药性消失而恢复敏感性。因此,根据研究结果,现在一般认为,当细菌处于生长状态下,在任何特定时刻仅有大约",的基因组是处在高活性和转录之中,其它基因组或者沉默,或者以十分低

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。 2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M 型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M 型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

常见细菌的耐药趋势和控制修订稿

常见细菌的耐药趋势和 控制 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

常见细菌的耐药趋势和控制 北京大学第三医院宁永忠 细菌的耐药主要内容包括三个方面:一个是相关的基本知识;第二个是国内常见细菌耐药的现状和趋势;第三是耐药的控制。 一、相关的基本知识 首先我们来看一下基本的知识。第一我们来看一下微生物,微生物它就是肉眼看不见的一些微小的生物,它在微观的世界里有一个真实的存在。它会导致人类的感染,所以我们会称之为病原。目前临床上主要有四类微生物:病毒、细菌、真菌、寄生虫。这四大类微生物都出现了我们今天的主题--耐药,只不过它们的严重程度不一致而已。下面一个概念我们来看一下感染性疾病,它指的是微生物导致的有临床证据的这样一个疾病,这个临床证据包括症状、体征、免疫学反应和微生物学证据。在临床医学领域各个病种当中,感染性疾病的发病率最高。应该说我们所有的人都得过感染性疾病,感染性疾病很多时候还会表现为中、重度一个临床表现。这个时候是必须治疗的,因为不治疗预后不良,甚至会出现死亡。感染性疾病还有一个特点,就是有传播性,病原可以传播,感染性疾病的传播性甚至会影响到社会历史进程、影响到人类的行为和心理。这个是感染性疾病不同于其他临床医学病种的很重要的一个特征。刚才提到感染性疾病需要治疗,我们治疗用的特异性的药物就是抗微生物药物,它指的就是特异性的抑制、杀灭微生物的这样一些药物,在细菌领域里主要就是抗生素。目前抗微生物药物效力下降的主要的一个原因就是耐药,有些时候这个效力会完全消失。因此临床上治疗无效的时候,耐药是很主要的一个原因。 另外耐药涉及到的概念也比较多,比如说生物学耐药和临床耐药,环境介导的耐药和微生物介导的耐药,天然耐药和获得性耐药,这里面天然耐药和获得性耐药这一对概念比较重要,给大家展开说一下。天然耐药指的是这个菌种在鉴定到种的时候就可以明确的耐药,也就是说一个菌种内所有的菌株都具有的耐药的特点。这一类耐药特点,一般是人类在应用抗生素之前就已经存在的,是纯自然的情况下形成的一个耐药的特点。而获得性耐药,指的是这个基因在菌种的层面是不能够确定是否存在的,只有到具体的菌株的层面,同一个菌种内不同的菌株它的耐药性可能不同,有的菌株有这个耐药性,有的菌株没有这个耐药性。这一类耐药性基本上都是人类应用抗生素之后,在人类的抗生素使用的选择压力下产生的耐药。此外还有原发性耐药和继发性耐药,表型耐药和基因型耐药,交叉耐药和多重耐药,低水平耐药和高水平耐药,异质耐药性等等这些概念。

病原微生物第6章 细菌的耐药性习题与答案

第 6章细菌的耐药性 一、选择题 A型题 1、编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B . R 质粒 C. Vi 质粒 D. Col 质粒 E. K 质粒 2、固有耐药性的产生是由于: A. 染色体突变 B. 接合性 R 质粒介导 C. 非接合性 R 质粒介导 D. 转座因子介导 E.细菌种属特异性所决定 3、获得耐药性的产生原因不包括: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 非接合性 R质粒介导 D. 接合性 R质粒介导 E. 转座因子介导 4、关于 R 质粒的描述,下列哪项是错误的: A. R 质粒是耐药性质粒 B. R 质粒可通过接合方式传递 C. R 质粒在肠道菌中更为常见 D. R 质粒在呼吸道感染细菌中更为常见 E. R 质粒由 RTF 和 r 决定子组成 5、R 质粒决定的耐药性的特点不包括: A. 以多重耐药性较为常见 B. 可从宿主菌检出 R 质粒 C. 容易因质粒丢失成为敏感株 D. R 质粒的多重耐药性较稳定 E. 耐药性可经接合转移 6、细菌耐药性产生的机制不包括: A. 钝化酶的产生 B. 药物作用靶位的改变 C. 抗菌药物的使用导致细菌发生耐药性基因突变 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 X 型题 1、下列基因转移与重组的方式中,哪些与细菌的耐药性形成有关? A.转化 B.转导 C.接合 D.溶原性转换 E.原生质体融合 2、获得耐药性发生的原因: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 抗菌药物的使用 D. R 质粒介导 E. 转座因子介导 3、细菌耐药性的控制策略: A. 合理使用抗菌药物 B. 严格执行消毒隔离制度 C. 研制新抗菌药物 D. 研制质粒消除剂 E.采用抗菌药物的“轮休”措施 4、细菌耐药性产生的机制 A.抗菌药物的使用导致细菌发生耐药性基因突变 B. 药物作用靶位的改变 C. 钝化酶的产生 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 二、填空题 1、细菌耐药性产生的机制主要有,,和 。 2、引起细菌耐药的钝化酶主要有,, 和。 3、细菌耐药性的控制策略有,,,, 和。 三、名词解释 1、耐药性(drug resistance); 2、固有耐药性(intrinsic resistance); 3、获得耐药性(acquired resistance); 4、R质粒(resistance plasmid)。 四、问答题

常见致病菌耐药机制与应对措施

2014年第二季度细菌耐药监测结果预警与应对策略 由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。 12014年第2季度我院细菌耐药率及预警信息

备注:耐药率超过30%的抗菌药物,提示“预警抗菌药物”;耐药率超过40%的抗菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试 验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制 铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活

酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)怜内酰胺酶的产生 ①大肠埃希菌对P -内酰胺类抗菌药物耐药主要是由超广谱P -内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、 CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯 基。CTX-M 型ESBLs 呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA 型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA 型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpC怜内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与怜内酰胺环羧基部分共价结合,在水分子作用下导致怜内酰胺环开环,破坏0内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的0内酰胺酶对酶抑制剂药的耐药的0内酰胺酶(IRT)主要有TEM 系列衍变而来,又称为耐酶抑制剂TEM 系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1 )产抗菌药物灭活酶 ①0-内酰胺酶包括产超广谱0-内酰胺酶(ESBLs)、AmpC 酶、耐酶抑制剂0-内酰胺酶、碳青霉烯酶(KPC酶)及金属0内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

2017年1季度细菌耐药情况分析与对策报告

太和县人民医院2013年三季度细菌耐药情况分析与对策报告 一.标本送检及细菌检出情况 本季度细菌培养送检率为35.24%。微生物室共收到标本2068份,分离出病原菌496株,阳性率23.98%。其中革兰氏阴性菌412株、占83.06%,革兰氏阳性菌54株,占10.89%,白假丝酵母菌5株,占1.01%。科室分布前六位的是:重症医学科422例,儿科422例,肝胆外科112例,神经外科103例,呼吸内科80例,普外科62例,内分泌科59例。送检标本类型较多的依次是:痰581份、大便114份、尿液111份、渗出液111份、脓液75份、血液57份,阳性率最高的为血液,其它依次为:脓液、渗出液、痰液、尿液、大便。 标本中检出的常见菌如下:以肺炎克雷伯菌最多,其次是大肠埃希菌、产气肠杆菌、阴沟肠杆菌、铜绿假单胞菌、奇异变形杆菌。 共筛选出多重耐药菌20株,占总菌数的4.03%,其构成为:大肠埃希菌11株,占多重耐药菌菌株总数的55% 鲍曼不动杆菌3株,占多重耐药菌菌株总数的15%肺炎克雷伯菌2株,占多重耐药菌菌株总数的10%铜绿假单胞菌1 株,占多重耐药菌菌株总数的5%阴沟肠杆菌1株,占多重耐药菌菌株总数的5% 产气肠杆菌1株,占多重耐药菌菌株总数的5% 嗜麦芽寡食单胞菌1株,占多重耐药菌菌株总数的5% 第三季度主要标本类型分布情况 临床常见前几位病原菌 第三季度多重耐药菌菌株类型构成情况(%

二.常见临床分离细菌耐药情况与分析 1.革兰氏阳性菌 本次分离的革兰氏阳性菌较少,不具代表性,无法具体分析。 2.革兰氏阴性菌 本次分离出的大肠埃希菌对哌拉西林、头抱呋辛、头抱他啶耐药率高,应 暂停该类抗菌药物的临床应用;对庆大霉素、哌拉西林/他唑巴坦、头抱吡肟、 复合磺胺、环丙沙星的耐药率在50-75%之间,参照药敏实验结果选择用药;对氨苄西林/舒巴坦为中敏,提示医务人员慎重经验用药;对头抱西丁、阿米卡星耐药率在30-40%应及时将抗菌药物预警信息通报医务人员,对亚胺培南敏感性高。 本次分离的肺炎克雷伯菌对哌拉西林、头抱呋辛的耐药率高,根据细菌耐药预警机制,应暂停使用;对头抱唑林、头抱曲松、氨苄西林、氨苄西林/舒巴坦、头抱他啶、头抱吡肟、哌拉西林/他唑巴坦、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨曲南、庆大霉素耐药率在40-50% 之间,提示医务人员慎重经验用药;对环丙沙星耐药率在30-40%应及时将抗菌 药物预警信息通报医务人员;对头抱西丁、左氧沙星、阿米卡星、亚胺培南均敏感,是肺炎克雷伯菌的治疗用药。 本次分离的产气肠杆菌对哌拉西林、头抱西丁、头抱呋辛、庆大霉素、复合磺胺耐药率在50-75%之间,提示医务人员参照药敏实验结果用药;对氨苄西林、哌拉西林/他唑巴坦耐药率在40-50%之间,提示医务人员慎重经验用药;对氨苄西林/舒巴坦耐药率在30-40%应及时将抗菌药物预警信息通报医务人员;对阿米卡星、头抱他啶、环丙沙星、头抱吡肟、头抱曲松、亚胺培南、氨曲南均敏感,是产气肠杆菌的治疗用药。 本次分离的阴沟肠杆菌对哌拉西林的耐药率高,根据细菌耐药预警机制,应暂停使用,避免耐药范围的扩大;对头抱西丁、氨苄西林、哌拉西林/他唑巴 坦耐药率大于50%提示医务人员参照药敏实验结果用药;对氨苄西林/舒巴坦、头抱他啶、庆大霉素耐药率在40-50%之间,提示医务人员慎重经验用药;对头抱吡肟、复合磺胺耐药率在30-40%之间,应及时将抗菌药物预警信息通报医务人员。对环丙沙星、阿米卡星、亚胺培南、头抱呋辛、左氧沙星、氨曲南均敏感,是阴沟肠杆菌的治疗用药。 本次分离出的铜绿假单胞菌对头抱西丁、复合磺胺、哌拉西林/他唑巴坦 的耐药率大于75%按照细菌耐药预警机制,应暂停该类抗菌药物的在铜绿假单胞菌感染中的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复其的临床应用;对哌拉西林、

细菌耐药性监测及预警机制

细菌耐药性监测及预警机制 多重耐药菌感染已成为延长患者住院时间、增加医疗费用和导致患者死亡的重要原因。为了加强对多重耐药菌感染监控与细菌耐药预警,更好地为临床合理使用抗菌药物提供科学依据,依照卫生部卫办医政发(2011)5号《多重耐药菌医院感染预防与控制技术指南(试行)》、卫生部(卫生令第84号)《抗菌药物临床应用管理办法》及卫办医政发(2009)38号《关于抗菌药物临床使用管理有关问题的通知》的精神,结合我院具体情况,现就建立完善细菌耐药监测与预警机制相关工作要求如下,请科室立即遵照执行。 一、临床科室 (一)对多重耐药菌感染患者或定植高危患者要进行监测,高危患者:(如1、长期住院患者;2、在ICU内;3、高龄、营养不 良及慢性疾病病人;4、机体免疫低下;5、前期使用多种抗生 素;6、外科手术、创伤及烧伤;7、侵袭性诊断;8、使用呼 吸机;)通过对无感染症状患者的标本(如鼻试纸、咽试纸、 伤口、气道内、肛试纸或大便)进行培养、监测,发现MDRO 定植患者;及时采集有关标本送检,并追踪结果,以及时发现、 早期诊断多重耐药感染患者。属医院感染,应在24小时内填 《医院感染上报表》报告感控科。 (二)科内及科间告知制度: 1、主管医生发现或接到检验科室多重耐药菌感染病例报告,应立即开“特殊疾病护理”医嘱,报告科室主任及科室感控员。

2、感控员应在早交班上告知全科医护人员。 3、护士感控员落实消毒、隔离措施,并填报《耐药菌控制措施督查表》。 4、责任护士负责告知家属及陪护人员相关隔离常识。 5、主管医生根据患者治疗情况判断解除隔离的时机,如果患者转科/转院或死亡,护士做好多重耐药菌患者床单元的终末消毒。 6、转床、转科、送医技科室辅助检查或需要手术治疗时应告知相关科室的接诊医生或护士,做好消毒隔离。 7、感控员及时对耐药感染预防控制措施的有效性进行追踪总结。(三)科室短时间内发生特殊耐药表型或3例以上名称相同、耐药表型相同的耐药菌病例,应立即向感控科报告。班外时间、节假日报院总值班,院总值班通知感控看负责人。 (四)科室应按《多重耐药菌管理流程》落实相关院感防控措施。(五)应了解医院前五位目标细菌及科室(重点科室)前五位目标细菌名称及耐药率,根据细菌耐药性情况分析和耐药预警报 告,指导经验性使用抗菌药物。 二、检验科 (一)应及时对临床送检标本进行细菌培养及药敏,发现多重耐药菌应填写《多重耐药菌病人交接班登记本》并及时通知 临床科室,及感控科。 (二)一旦发现特殊耐药表型或短时间内某一病区有3例及以上某耐药表型相同病原菌,应立即通知感控科及相关临床

多种细菌耐药的分析

多种细菌耐药的分析

————————————————————————————————作者:————————————————————————————————日期:

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

大肠埃希菌 2 10 4 2 1 1 肺炎克雷伯 9 5 3 1 凝固酶阴性葡萄球菌 1 1 6 3 1 1 鲍氏不动杆菌 6 1 三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 科室 菌种 例数 院感部位 脑外 嗜麦芽窄食单胞菌 1 肺炎 骨二 MRSA 1 Ⅰ类表浅切口感染 普外东 肺炎克雷伯 1 Ⅱ类表浅切口感染 普外西 肺炎克雷伯 1 Ⅱ类深部切口感染 肝胆 肺炎克雷伯 呼吸机相关性肺炎 MRSA 1 Ⅰ类深部切口感染 心胸外科 阴沟肠杆菌 1 Ⅱ类腔隙感染 泌外 大肠埃希菌 3 Ⅱ类深部切口感染2例、泌尿道感染1例 肾内 肺炎克雷伯 1 肺炎 凝固酶阴性葡萄球菌 1 皮肤感染 血液肿瘤 凝固酶阴性葡萄球菌 1 败血症 神内西 流感嗜血杆菌 1 下呼吸道感染 ICU CR-AB 1 下呼吸道感染 肺炎克雷伯 1 下呼吸道感染 MRSA 1 血管相关性感染 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 2014年第二季度与第三季度常见多耐菌院内感染检出变化 1234567MRSA 肺炎克雷伯 阴沟肠杆菌 大肠埃希菌 屎肠球菌 CR-AB 2014第二季度2014第三季度 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例 66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

细菌耐药性

细菌耐药性 细菌耐药性(Resistance to Drug )又称抗药性,系指细菌对于抗菌药物作用的耐受性,耐药性一旦产生,药物的化疗作用就明显下降。耐药性根据其发生原因可分为获得耐药性和天然耐药性。 自然界中的病原体,如细菌的某一株也可存在天然耐药性。当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。目前认为后一种方式是产生耐药菌的主要原因。为了保持抗生素的有效性,应重视其合理使用。折叠 产生原因 细菌耐药性是细菌产细菌耐药性 的现象,产生原因是细菌在自身生存过程中的一种特殊表现形式。天然抗生素是细菌产生的次级代谢产物,用于抵御其他微生物,保护自身安全的化学物质。人类将细菌产生的这种物质制成抗菌药物用于杀灭感染的微生物,微生物接触到抗菌药,也会通过改变代谢途径或制造出相应的灭活物质抵抗抗菌药物。 分类

(intrins细菌耐药性 resistance)和获得性耐药(acquired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。如金黄色葡萄球菌产生β-内酰胺酶而耐药。细菌的获得性耐药可因不再接触抗生素而消失,也可由质粒将耐药基因转移个染色体而代代相传,成为固有耐药。 病理机制 细菌产生灭活抗细菌耐药性 酶使抗菌药物失活是耐药性产生的最重要机制之一,使抗菌药物作用于细菌之前即被酶破坏而失去抗菌作用。这些灭活酶可由质粒和染色体基因表达。β-内酰胺酶:由染色体或质粒介导。对β-内酰胺类抗生素耐药,使β-内酰胺环裂解而使该抗生素丧失抗菌作用。β-内酰胺酶的类型随着新抗生素在临床的应用迅速增长,详细机制见β-内酰胺类抗生素章。氨基苷类抗生素钝化酶:细菌在接触到氨基苷类抗生素后产生钝化酶使后者失去抗菌作用,常见的氨基苷类钝化酶有乙酰化酶、腺苷化酶和磷酸化酶,这些酶的基因经质粒介导合成,可以将乙酰基、腺苷酰基和磷酰基连接到氨基苷类的氨基或羟基上,使氨基甘类的结构改变而失去抗菌活性;其他酶类:细菌可产生氯霉素乙酰转移酶灭活氯霉素;产生酯酶灭活大环内酯类抗生素;金黄色葡糖球菌产生核苷转移酶灭活林可霉素。 2、抗菌药物作用靶位改变:由于改变了细胞内膜上与抗生素结合部位的靶蛋白,降低与抗生素的亲和力,使抗生素不能与其结合,导致抗菌的失败。如肺炎链球菌对青霉素的高度耐药就是通过此机制产生的;细菌与抗生素接触之后产生一种新的原来敏感菌没有的靶蛋

2014年我院细菌耐药性分析

2014年我院细菌耐药性分析 目的分析本院2014年1~12月的临床细菌分布及耐药性,为临床合理应用抗菌药物提供参考依据。方法回顾性分析本院2014年临床病原菌分布及耐药情况,采用WHONET 5.6软件统计分析。结果全年共分离出病原菌1698株,其中革兰氏阴性杆菌占64.9%,非发酵菌占8.8%,革兰氏阳性球菌占26.3%。肠杆菌科常见的大肠埃希菌、肺炎克雷伯菌、产酸克雷伯菌对哌拉西林他唑巴坦、头孢哌酮舒巴坦、碳青霉烯类的耐药率较低,非发酵菌铜绿假单胞菌对哌拉西林他唑巴坦、三代头孢的耐药率低,鲍曼不动杆菌对大多数抗菌药物的耐药率均较高,未发现对万古霉素耐药的葡萄球菌属和肠球菌属。结论监测结果对临床正确合理地应用抗菌药物、降低细菌耐药有积极意义。 标签:细菌耐药性;病原菌;抗菌药物;分析 细菌耐药是指长期应用抗菌药物后,细菌对抗菌药物的敏感性下降,从而使抗菌药物的疗效降低或消失。由于抗菌药物的广泛使用,临床病原菌的类型及抗菌药物的耐藥性发生很大变化,特别是多重耐药菌耐药水平的变迁,往往是导致临床经验性治疗失败的重要原因[1]。细菌耐药已成为全球医疗领域非常严峻的问题,为了解细菌耐药动态变化趋势、熟知病原菌耐药水平的变迁、指导临床医生对感染性疾病的治疗、及时预测感染性疾病的爆发及流行并制定相应细菌耐药防治策略,依据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》和《抗菌药物临床应用指导原则》等规定、要求,本研究对本院2014年的细菌耐药监测结果进行分析、总结,报告如下。 1 资料与方法 1.1 标本来源 2014年焦作市第二人民医院临床标本分离出的病原菌共1698株,排除同一患者相同部位的重复株。 1.2 仪器及试剂 病原菌的鉴定采用法国生物梅里埃公司VITEK-2细菌鉴定系统,抗菌药物敏感试验采用其配套的药敏卡,抗菌药物敏感性试验采用其配套的药敏卡,抗菌药物敏感性试验纸片和培养基为英国Oxoid公司产品。 1.3 细菌鉴定及药敏试验 细菌分离与鉴定按全国临床检验操作规程进行,采用VITEK-2细菌鉴定系统鉴定,药敏试验按照CLSI 2012年标准进行判定。质控菌株为大肠埃希菌、肺炎克雷伯菌、铜绿假单胞菌、鲍曼不动杆菌、产酸克雷伯菌、金黄色葡萄球菌、表皮葡萄球菌。

细菌耐药性监测和预警机制

细菌耐药性监测和预警 机制 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

细菌耐药性监测及预警机制 多重耐药菌感染已成为延长患者住院时间、增加医疗费用和导致患者死亡的重要原因。为了加强对多重耐药菌感染监控与细菌耐药预警,更好地为临床合理使用抗菌药物提供科学依据,依照卫生部卫办医政发(2011)5号《多重耐药菌医院感染预防与控制技术指南(试行)》、卫生部(卫生令第84号)《抗菌药物临床应用管理办法》及卫办医政发(2009)38号《关于抗菌药物临床使用管理有关问题的通知》的精神,结合我院具体情况,现就建立完善细菌耐药监测与预警机制相关工作要求如下,请科室立即遵照执行。 一、临床科室 (一)对多重耐药菌感染患者或定植高危患者要进行监测,高危患者:(如 1、长期住院患者; 2、在ICU内; 3、高龄、营养不良及慢性疾病病人; 4、机体免疫低下; 5、前期使用多种抗生素; 6、外科手术、创伤及烧伤; 7、侵袭性诊断;8、使用呼吸机;)通过对无感染症状患者的标本(如鼻 试纸、咽试纸、伤口、气道内、肛试纸或大便)进行培养、监测,发现MDRO定植患者;及时采集有关标本送检,并追踪结果,以及时发现、早期诊断多重耐药感染患者。属医院感染,应在24小时内填《医院感染上报表》报告感控科。 (二)科内及科间告知制度: 1、主管医生发现或接到检验科室多重耐药菌感染病例报告,应立即开“特殊疾病护理”医嘱,报告科室主任及科室感控员。 2、感控员应在早交班上告知全科医护人员。 3、护士感控员落实消毒、隔离措施,并填报《耐药菌控制措施督查表》。

4、责任护士负责告知家属及陪护人员相关隔离常识。 5、主管医生根据患者治疗情况判断解除隔离的时机,如果患者转科/转院或死亡,护士做好多重耐药菌患者床单元的终末消毒。 6、转床、转科、送医技科室辅助检查或需要手术治疗时应告知相关科室的接诊医生或护士,做好消毒隔离。 7、感控员及时对耐药感染预防控制措施的有效性进行追踪总结。 (三)科室短时间内发生特殊耐药表型或3例以上名称相同、耐药表型相同的耐药菌病例,应立即向感控科报告。班外时间、节假日报院总值班,院总值班通知感控看负责人。 (四)科室应按《多重耐药菌管理流程》落实相关院感防控措施。 (五)应了解医院前五位目标细菌及科室(重点科室)前五位目标细菌名称及耐药率,根据细菌耐药性情况分析和耐药预警报告,指导经验性使用抗菌药物。 二、检验科 (一)应及时对临床送检标本进行细菌培养及药敏,发现多重耐药菌应填写《多重耐药菌病人交接班登记本》并及时通知临床科室,及感控科。 (二)一旦发现特殊耐药表型或短时间内某一病区有3例及以上某耐药表型相同病原菌,应立即通知感控科及相关临床科室。 (三)每季度对全院及重点部门细菌耐药情况进行统计及趋势分析,提交感控科进行审核及发布。 三、医院感染管理科 (一)定期通过检验科提供的微生物检验报告单查看多重耐药菌检出情况,一旦发现多重耐药菌病例及时通知并指导相关科室做好接触隔离工作。

相关文档
最新文档