亲水性扩链剂对水性聚氨酯分散体性能的影响

亲水性扩链剂对水性聚氨酯分散体性能的影响
亲水性扩链剂对水性聚氨酯分散体性能的影响

亲水性扩链剂对水性聚氨酯分散体性能的影响

张伟

(福州大学化学化工学院,邮编350002)

引言

水性聚氨酯是水溶型、水分散型和水乳化型聚氨酯的统称。自20世纪60年代工业化以来,水性聚氨酯以其优良的性能和环境友好特性得以迅速发展。其在皮革涂饰、纺织涂层、玻璃纤维集束、涂料和粘合剂等领域的应用,也成为近年来研究的热点[1]。

水性聚氨酯材料主要由二异氰酸酯、大分子多元醇、亲水性扩链剂、中和剂、后扩链剂等组成。生产PU分散体的一般工艺流程为:多元醇减压蒸馏脱水后,加入多异氰酸酯,可选择是否加入催化剂,80~85℃下反应到NCO达到理论值,加入亲水性扩链剂,可选择是否加入其他扩链剂以及丙酮等溶剂,保温反应至NCO达到理论值后,降温至45~50℃,加入中和剂,搅拌0.5~1 h,将产品高速分散于水中同时加入扩链剂进行扩链,均匀分散稳定后,得到PU分散体产品[2,3]。

在上述工艺中,亲水性扩链剂的作用是在对端异氰酸酯基的聚氨酯预聚体进行扩链的同时,引入亲水性基团。根据亲水基团的类型,亲水性扩链剂可分为阴离子型扩链剂、阳离子型扩链剂和非离子性扩链剂。现在工业上最常用的是阴离子型扩链剂2,2-二羟甲基丙酸(DMPA)。

作为水性聚氨酯合成过程的重要组分,亲水型扩链剂的种类、用量、加入方式等将直接影响PU分散体系及其涂膜的性能。本文将通过分析亲水性扩链剂DMPA结构和性质,解释其对PU分散体性能的影响,并对比DMPA和DMBA两种不同亲水性扩链剂制得的PU分散体系。

1DMPA介绍

2,2-二羟甲基丙酸,又称α,α-双羟甲基丙酸,英文缩写为DMPA是一种多功能化合物,其结构如图1所示。

图1 DPMA结构式

它的结构是一种典型的新戊基结构,又是一种典型的二元醇结构。新戊基结构赋予它良好的耐热性、耐水解性和颜色稳定性。而作为带有羧基的二元醇,DMPA可以参加聚氨酯扩链反应,而在扩链反应中由于位阻效应和反应活性,羧基将被保存下来,可以转化为铵盐或碱金属盐而使聚氨酯有水溶性,使聚氨酯获得自乳化性能,因而使用DMPA可制造稳定性优良的自乳化型聚氨酯[4]。

2DMPA对PU分散体性能的影响

DMPA因其作为亲水基团引入组分,在大分子链段中的分布,用量直接影响分散体的粒径,从而影响分散体的性能,同时将其引入大分子体系中是作为刚性链段,DMPA用量也会影响涂膜的机械性能。

DMPA对粒径的影响

于海深[5]等考察了DMPA加入量的增加多粒径的影响。试验过程中,随着DMPA用量的增加,水性PUA乳液由乳白色不透明慢慢变成了半透明状,最后变成了溶液状泛红光。这是由于随着DMPA含量的增加,乳液的平均粒径发生了变化:一方面,从热力学的观点看,乳液中聚合物的总自由能G不变,即ΔG=γΔA,当DMPA用量增大(即—COOH量增大)时,聚合物的亲水性增大,必然导致聚合物与水的界面张力Y减小及聚合物表面积A增大,当聚合物质量一定时,则表现为粒径变小;另一方面,由于亲水性的增加而产生的颗粒水膨胀性能使粒径增大,这种膨胀性随亲水性的增大而愈发明显。因此,羧基含量和粒径的关系是综合因素影响的结果,总的效果是使乳胶粒的粒径随羧基的含量增大而减小。因而从外观上看,乳液变得透明。

DMPA含量对体系粘度的影响

纪学顺[6]等人研究各种因素对PU分散体系粘度的影响。在其研究的体系中,当w (DMPA)≤2.4%时,不能形成稳定的乳液,所以粘度测试数据有误差(偏大);当w(DMPA)>2.4%时,随着DMPA用量的增加,乳液外观呈现由乳白到透明有蓝光的变化趋势,乳液粘度也随之增大。这是由于预聚体分散在水中后,疏水的分子链段向内收缩形成乳液粒子

的核,带有羧基阴离子的亲水基团分布在乳胶粒表面朝向水中;由于粒子的布朗运动,正负离子相伴在粒子表面形成双电层,使得水合离子能够稳定地分散在水中,致使乳液稳定。随着亲水基团含量的增加,乳液外观发生明显的变化,这是WPU粒子粒径变化的宏观表现所致(即粒径大、阻碍了光线的通过,乳液外观呈发白现象;当分散粒子大小达到纳米级别时,光线可以绕过WPU粒子继续前进,乳液外观呈透明、蓝光现象)。

根据O Lorentz[7]的双电层理论,乳液的粘度不受分散粒子大小的影响,而是受水合粒子大小的影响。DMPA含量越高,预聚体成盐后与水形成水合离子稳定性就越高,同时水合离子的双电层厚度增加、体积增大且与水分子的相互作用力增强,导致体系的粘度增加。当DMPA含量较低时,乳液粘度随DMPA含量的增大而变化不明显,这可能与亲水性基团含量的增加会导致两个相反的结果有关。一方面亲水基团含量的增加导致亲水性增强,使粒子的粒径减小;另一方面,总离子浓度的增加,导致总双电层厚度的增加和粒子流体动力学体积的增加,致使粒子的粒径增大。此外,由于亲水性的增大而产生的颗粒水膨胀性也能使粒子的粒径明显增大。因此,当DMPA含量较低时,亲水基团含量的增加导致亲水性增强使粒子的粒径减小是主要因素,乳液粘度变化不明显,但当DMPA含量较高时,随着亲水基团含量的增加,双电层厚度增加和水溶胀性因素占主导地位,乳液的粘度明显增大。

2.3 DMPA用量对分散体稳定性的影响

图2 DMPA对分散体粒径的影响

朱宁香等[8]研究发现,随着亲水基含量的增大,分散体粒径减小,Zeta电位绝对值增大(如图2所示),两者提高了分散体的贮存、离心和稀释稳定性。这是因为当PU大分子中亲水基团含量不足时,抵抗大分子团聚的双电层较弱,如上图所示,Zeta电位较低,使分散体的粒径比较大,外观乳白浑浊;当DMPA用量增大时,PU大分子中亲水基团含量增大,Zeta电位增大,则分散体粒径减小,其贮存、稀释、离心稳定性增强。

2.4 DMPA的加入方式对分散体系的影响

张辉等[9]用聚醚型聚氨酯为目标产物,研究了一步法和两步法加入DMPA的方式对分散体系的影响。结果发现:二步法合成的乳液外观比一步法好,其乳液粒径小,但一步法的力学性能要优于二步法。这是因为DMPA与TDI的反应活性较聚醚多元醇大,采用一步法加料,DMPA优先于TDI反应,形成了较长的硬段及比较密集的亲水基团序列,使得分子链间含亲水基团的硬段之间的静电力和氢键作用加强,导致硬段过度密集,水分子难以融入硬段区域中;另一方面,离子的聚集度加强而软硬段相分离,使得涂膜具有良好的力学性能。二步法中聚醚先于TDI形成软硬段嵌段共聚物,之后加入的亲水性的离子基团被长的聚醚分子间隔地分布在分子链中,优于分子链中规则地分布着大量的亲水基团,使得分子整体的亲水性提高,粒径减小,因此乳液外观较一步法好。

2.5 DMPA对涂膜机械性能的影响

研究发现[9],随着DMPA含量的增加,涂膜的拉伸强度和剪切强度提高,断裂伸长率降低。这是由于PUA分子为软硬段嵌段共聚物,其中氨基甲酸酯键(或有少量脲键)构成硬段,多元醇构成软段,软硬段比例直接决定了其力学性能。小分子亲水扩链剂含量的增加,使得分子结构中硬段比例提高,分子内库伦力和氢键作用增强,从而导致拉伸强度和机械强度提高,而断裂伸长率降低。

2.6 DMPA对相转化行为的影响

图 3 不同DMPA含量的相转变行为

与其他体系的相反转一样,水性聚氨酯预聚物的加水乳化过程也要经历从W/O到O/W 的转变过程。张辉等[9]人研究发现,随着DMPA含量的增加,体系的相转变点后延(如图3所示),因为DMPA含量增加,硬段比例增大,随着体系离子化程度的提高,软硬段间

的极性差异增大,造成体系的相分离程度提高,同时微粒子点阵密度增加,需要更多的水才能使之完全解聚集,虽然,提高DMPA含量,可以改善乳液外观,提高涂膜力学性能等,但过高的含量不仅使耐水性变差,而且将导致相转变点后延,从而使乳化过程需要更多的水,而固含量大大降低。

3DMPA与DMBA分散体系性能的比较

DMPA是目前使用较广泛的亲水扩链剂,但DMPA熔点高(175~185℃),很难加热溶解,这就需加入溶剂如N-甲基吡咯烷酮(NMP)、丙酮等,NMP沸点高,制备PU 后很难除去,而DMPA在丙酮中的溶解度较小,在合成过程中需要加入大量的丙酮,脱酮过程麻烦且脱不干净,给生产过程带来安全隐患。

二羟甲基丁酸(DMBA)作为新一代的亲水性扩链剂,结构与DMPA相似,却能缩短了反应时间,降低能耗,节省能源,其产品性能优越,使水性聚氨酯分散体系在皮革涂饰、胶粘剂、涂料等方面得到更加广泛的应用[10]。

3.1溶解度方面

曾俊等[11]在实验中发现,DMBA与DMPA在聚合物多元醇中的溶解行为受聚合物多元醇相对分子质量影响较小,但二者的溶解温度有很大的差别。DMPA的溶解温度为145~150 ℃,低于此温度,又慢慢析出,而DMBA的溶解温度为80 ℃,一旦溶解,降低温度无析出现象。这由于DMBA的熔点较低(T m=108~113 ℃),而DMPA的熔点则较高(T m=175~188 ℃)。

3.2反应活性方面

在反应活性方面DMPA体系在6 h后仍有较强的NCO基吸收峰,此时仍可看到反应瓶中有少量未溶解的DMPA。而DMBA体系在5 h后NCO基吸收峰已不明显,这说明DMBA与NCO基反应较快。

图 4 DMPA与DMBA结构比较

这是因为,DMBA在聚合物多元醇中溶解温度为80 ℃,而体系反应温度也为80 ℃,

整个反应在均相体系中进行;其二是DMPA与DMBA在分子结构上的差异,DMBA由于碳链上增加一个亚甲基(—CH2),使羧基与羟基距离加大,羟基与异氰酸酯基反应的空间位阻减小(如图4所示)。

3.3机械强度方面

DMBA聚氨酯乳液胶膜的拉伸强度及断裂伸长率高于DMPA聚氨酯,但50%模量则较低。原因还是在于DMBA的分子结构,庞大的侧链—CH2COO—妨碍了聚氨酯硬段的聚集,硬段堆砌程度差,使硬段本身在软段基质中溶解程度偏高,硬段微区中硬段减少,这些因素会导致模量下降,然而,低模量会导致较大的断裂伸长,反过来较大的断裂伸长又会使软段进一步产生应力结晶,结果出现较高的拉伸强度。

4 结语

随着DMPA用量的增加,分散体的粒径总体减小,粒径分布变窄,稳定性增强,涂膜的拉伸强度和剪切强度提高,断裂伸长率降低。但DMPA含量过高将导致耐水性下降,相转变点后延,使乳化过程需要更多的水,固含量大大降低。

当DMPA含量较低时,乳液粘度随DMPA含量的增大而变化不明显,而当DMPA含量较高时,随着亲水基团含量的增加,双电层厚度增加和水溶胀性因素占主导地位,乳液的粘度明显增大。

DMBA作为新一代的亲水性扩链剂,结构与DMPA相似,却能缩短了反应时间,降低能耗,节省能源,其产品性能更加优越,但由于价格远高于DMPA,故工业应用较少。

参考文献

[1] 瞿金清, 陈焕钦. 高固含量水性聚氨酯分散体的合成[J]. 化工学报, 2003, 54(6): 868-871.

[2] 胡国文等. MMA/BA共聚物改性的水性聚氨酯的合成与表征[J]. 化工学报, 2007, 58(7): 1581-1586.

[3] 姜大伟等. PU/PA复合材料结构与性能的研究[J]. 中国皮革, 2005, 34(5):27-31.

[4] 许戈文. 水性聚氨酯材料[M]. 北京: 化学化工出版社, 2006.

[5] 于海深, 高丽华. 丙烯酸酯改性水性聚氨酯树脂合成工艺的研究[J]. 化学世界, 2009, (3): 149-152.

[6] 纪学顺等. 水性聚氨酯乳液粘度的影响因素研究[J]. 中国胶粘剂, 2008, 17(9): 14-17.

[7] Wen Ten-Chin, Wang Yeong-Jyh, Cheng Tsungtien, et al. The effect of DMPA units on ionic conductivity

of PEG-DMPA-IPDI waterborne polyurethane as single-ionelectrolytes[J]. Polymer, 1999, 40(14): 3979-3988.

[8] 朱宁香, 叶代勇, 陈焕钦. PUA复合分散体稳定性的影响因素[J]. 精细化工, 2008, 25(2): 186-191.

[9] 张辉, 沈慧芳, 陈焕钦. DMPA加料方式及含量对聚氨酯-丙烯酸酯复合乳液的影响[J]. 化学建材,

2005, 21(1): 6-8.

[10] 刘都宝等. 无溶剂型水性聚氨酯的合成及性能研究[J]. 安徽大学学报(自然科学版), 2008, 32(5):

75-78.

[11] 曾俊, 王武生等. DMBA与DMPA聚氨酯乳液主要性能比较[J]. 皮革化工, 1999, 16(5): 19-22.

亲水性扩链剂对水性聚氨酯分散体性能的影响

亲水性扩链剂对水性聚氨酯分散体性能的影响 张伟 (福州大学化学化工学院,邮编350002) 引言 水性聚氨酯是水溶型、水分散型和水乳化型聚氨酯的统称。自20世纪60年代工业化以来,水性聚氨酯以其优良的性能和环境友好特性得以迅速发展。其在皮革涂饰、纺织涂层、玻璃纤维集束、涂料和粘合剂等领域的应用,也成为近年来研究的热点[1]。 水性聚氨酯材料主要由二异氰酸酯、大分子多元醇、亲水性扩链剂、中和剂、后扩链剂等组成。生产PU分散体的一般工艺流程为:多元醇减压蒸馏脱水后,加入多异氰酸酯,可选择是否加入催化剂,80~85℃下反应到NCO达到理论值,加入亲水性扩链剂,可选择是否加入其他扩链剂以及丙酮等溶剂,保温反应至NCO达到理论值后,降温至45~50℃,加入中和剂,搅拌0.5~1 h,将产品高速分散于水中同时加入扩链剂进行扩链,均匀分散稳定后,得到PU分散体产品[2,3]。 在上述工艺中,亲水性扩链剂的作用是在对端异氰酸酯基的聚氨酯预聚体进行扩链的同时,引入亲水性基团。根据亲水基团的类型,亲水性扩链剂可分为阴离子型扩链剂、阳离子型扩链剂和非离子性扩链剂。现在工业上最常用的是阴离子型扩链剂2,2-二羟甲基丙酸(DMPA)。 作为水性聚氨酯合成过程的重要组分,亲水型扩链剂的种类、用量、加入方式等将直接影响PU分散体系及其涂膜的性能。本文将通过分析亲水性扩链剂DMPA结构和性质,解释其对PU分散体性能的影响,并对比DMPA和DMBA两种不同亲水性扩链剂制得的PU分散体系。 1DMPA介绍 2,2-二羟甲基丙酸,又称α,α-双羟甲基丙酸,英文缩写为DMPA是一种多功能化合物,其结构如图1所示。

水性聚氨酯性能优缺点

水性聚氨酯的优点: 聚氨酯的全名叫聚氨基甲酯。水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,其分子结构中含氨基甲酸酯基、脲键和离子键,内聚能高,粘结力强,且可通过改变软段长短和软硬段的比例调节聚氨酯性能。 水性聚氨酯乳液相比较与溶剂型聚氨酯具有以下优点: (1)由于水性聚氨酯以水作分散介质,加工过程无需有机溶剂,因此对环境无污染,对操作人员无健康危害,并且水性聚氨酯气味小、不易燃烧,加工过程安全可靠。 (2)水性聚氨酯体系中不含有毒的-NCO基团,由于水性聚氨酯无有毒有机溶剂,因此产品中无有毒溶剂残留,产品安全、环保,无出口限制。 (3)水性聚氨酯产品的透湿透汽性要远远好于同类的溶剂型聚氨酯产品,因为水性聚氨酯的亲水性强,因此和水的结合能力强,所以其产品具有很好的透湿透汽性。 (4)水作连续相,使得水性聚氨酯体系粘度与聚氨酯树脂分子量无关,且比固含量相同的溶剂型聚氨酯溶液粘度低,加工方便,易操作。 (5)水性聚氨酯的水性体系可以与其它水性乳液共混或共聚共混,可降低成本或得到性能更为多样化的聚氨酯乳液,因此能带来风格和性能各异的合成革产品,满足各类消费者的需求。 并且,由于近年来溶剂价格高涨和环保部门对有机溶剂使用和废物排放的严格限制,使水性聚氨酷取代溶剂型聚氨酷成为一个重要发展方向。 水性聚氨酯膜的优点: 水性聚氨酯树脂成膜好,粘接牢固,涂层耐酸、耐碱、耐寒、耐水,透气性好,耐屈挠,制成的成品手感丰满,质地柔软,舒适,具有不燃、无毒、无污染等优点。将成革的透氧气性、透湿性、低温耐曲折性、耐干湿擦性、耐老化性等,与溶剂型聚氨酯涂饰后的合成革进行了对比研究。结果表明,经水性聚氨酯涂饰的合成革的透氧量达到了4583.53 mg/(em3·h),为溶剂型的1.5倍,且透水汽量达到了615.53 mg/(cm3·h),约为溶剂型的8倍;低温耐曲折次数大于4万次,为溶剂型的2倍。采用水性聚氨酯替代传统的溶剂型聚氨酯完成合成革的

水性聚氨酯的分类

水性聚氨酯的分类 由于聚氨酯原料和配方的多样性,水性聚氨酯开发40年左右的时间,人们已研究出许多种制备方法和制备配方。水性聚氨酯品种繁多,可以按多种方法分类。 1.以外观分 水性聚氨酯可分为聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。实际应用最多的是聚氨酯乳液及分散液,本书中统称为水性聚氨酯或聚氨酯乳液,其外观分类如表5所示。 表5 水性聚氨酯形态分类 2.按使用形式分 水性聚氨酯胶粘剂按使用形式可分为单组分及双组分两类。可直接使用,或无需交联剂即可得到所需使用性能的水性聚氨酯称为单组分水性聚氨酯胶粘剂。若单独使用不能获得所需的性能,必须添加交联剂;或者一般单组分水性聚氨酯添加交联剂后能提高粘接性能,在这些情况中,水性聚氨酯主剂和交联剂二者就组成双组分体系。 3.以亲水性基团的性质分 根据聚氨酯分子侧链或主链上是否含有离子基团,即是否属离子键聚合物(离聚物),水性聚氨酯可分为阴离子型、阳离子型、非离子型。含阴、阳离子的水性聚氨酯又称为离聚物型水性聚氨酯。 (1)阴离子型水性聚氨酯又可细分为磺酸型、羧酸型,以侧链含离子基团的居多。大多数水性聚氨酯以含羧基扩链剂或含磺酸盐扩链剂引人羧基离子及磺酸离子。 (2)阳离子型水性聚氨酯一般是指主链或侧链上含有铵离子(一般为季铵离子)或锍离子的水性聚氨酯,绝大多数情况是季铵阳离子。而主链含铵离子的水性聚氨酯的制备一般以采用含叔胺基团扩链剂为主,叔胺以及仲胺经酸或烷基化试剂的作用,形成亲水的铵离子。还可通过含氨基的聚氨酯与环氧氯丙烷及酸反应而形成铵离子。 (3)非离子型水性聚氨酯,即分子中不含离子基团的水性聚氨酯。非离子型水性聚氨酯的制备方法有:①普通聚氨酯预聚体或聚氨酯有机溶液在乳化剂存在下进行高剪切力强制乳化;②制成分子中含有非离子型亲水性链段或亲水性基团,亲水性链段一般是中低分子量聚氧化乙烯,亲水性基团一般是羟甲基。 (4)混合型聚氨酯树脂分子结构中同时具有离于型及非离子型亲水基团或链段。 4.以聚氨酯原料分 按主要低聚物多元醇类型可分为聚醚型、聚酯型及聚烯烃型等,分别指采用聚醚多元醇、聚酯多元醇、聚丁二烯二醇等作为低聚物多元醇而制成的水性聚氨酯。还有聚醚-聚酯、聚醚—聚丁二烯等混合以聚氨酯的异氰酸酯原料分,可分为芳香族异氰酸酯型、脂肪族异氰酸酯型、脂环族异氰酸酯型。按具体原料还可细分,如TDI型、HDI型,等等。 5.按聚氨酯树脂的整体结构划分 (1)按原料及结构可分为聚氨酯乳液、乙烯基聚氨酯乳液、多异氰酸酯乳液、封闭型聚氨酯

水性聚氨酯配制方法

1.低聚物多元醇:聚醚二醇、聚酯二醇、聚醚三醇、聚丁二烯二二醇、丙烯酸酯多元醇等 水性聚氨酯胶粘剂制备中常用的低聚物多元醇一般以聚醚二醇、聚酯二醇居多,有时还使用聚醚三醇、低支化度聚酯多元醇、聚碳酸酯二醇等小品种低聚物多元醇。聚醚型聚氨酯低温柔顺性好,耐水性较好,且常用的聚氧化丙烯二醇(PPG)的价格比聚酯二醇低,因此,我国的水性聚氨酯研制开发大多以聚氧化丙烯二醇为主要低聚物多元醇原料。由聚四氢呋喃醚二醇制得的聚氨酯机械强度及耐水解性均较好,惟其价格较高,限制了它的广泛应用。 聚酯型聚氨酯强度高、粘接力好,但由于聚酯本身的耐水解性能比聚醚差,故采用一般原料制得的聚酯型水性聚氨酯,其贮存稳定期较短。但通过采用耐水解性聚酯多元醇,可以提高水性聚氨酯胶粘剂的耐水解性。国外的聚氨酯乳液胶粘剂及涂料的主流产品是聚酯型的。脂肪族非规整结构聚酯的柔顺性也较好,规整结构的结晶性聚酯二醇制备的单组分聚氨酯乳液胶粘剂,胶层经热活化粘接,初始强度较高。而芳香族聚酯多元醇制成的水性聚氨酯对金属、RET等材料的粘接力高,内聚强度大。 其他低聚物二醇如聚碳酸酯二醇、聚己内酯二醇、聚丁二烯二醇、丙烯酸酯多元醇等,都可用于水性聚氨酯胶粘剂的制备。聚碳酸酯型聚氨酯耐水解、耐候、耐热性好,易结晶,由于价格高,限制了它的广泛应用。 2.异氰酸酯:TDI、MDI、IPDI、HDI等 制备聚氨酯乳液常用的二异氰酸酯有TDI、MDI等芳香族二异氰酸酯,以及TDI、MDI、HDI:MDI等脂肪族、脂环族二异氰酸酯。由脂肪族或脂环族二异氰酸酯制成的聚氨酯,耐水解性比芳香族二异氰酸酯制成的聚氨酯好,因而水性聚氨酯产品的贮存稳定性好。国外高品质的聚酯型水性聚氨酯一般均采用脂肪族或脂环族异氰酸酯原料制成,而我国受原料品种及价格的限制,大多数仅用TDI为二异氰酸酯原料。 多亚甲基多苯基多异氰酸酯一般用于制备乙烯基聚氨酯乳液和异氰酸酯乳液。 3.扩链剂:1,4—丁二醇、乙二醇、己二醇、乙二胺等 水性聚氨酯制备中常常使用扩链剂,其中可引入离子基团的亲水性扩链剂有多种,除了这类特种扩链剂外,经常还使用1,4—丁二醇、乙二醇、一缩二乙二醇、己二醇、乙二胺、二亚乙基三胺等扩链剂。由于胺与异氰酸酯的反应活性比水高,可将二胺扩链剂混合于水中或制成酮亚胺,在乳化分散的同时进行扩链反应。 4.水:蒸馏水、离子水 水是水性聚氨酯胶粘剂的主要介质,为了防止自来水中的Ca2+、寸+等杂质对阴离子型水性聚氨酯稳定性的影响,用于制备水性聚氨酯胶粘剂的水一般是蒸馏水或去离子水。除了用作聚氨酯的溶剂或分散介质,水还是重要的反应性原料,合成水性聚氨酯目前以预聚体法为主,在聚氨酯预聚体分散与水的同时,水也参与扩链。由于水或二胺的扩链,实际上大多数水性聚氨酯是聚氨酯—脲乳液(分散液),聚氨酯—脲比纯聚氨酯有更大的内聚力和粘接力,脲键的耐水性比氨酯键好。

聚氨酯产品扩链剂简介

聚氨酯产品扩链剂简介 在聚氨酯发泡过程中,扩链剂运用的好坏有时直接影响泡沫性能,影响制品质量。 聚氨酯是由刚性链段和柔性链段组成的嵌段共聚物;刚性链段和柔性链段的构成,除与异氰酸酯和聚醇主剂有关,同时扩链剂的选择和使用对它们的形成也有着直接影响。 扩链剂是指能促使分子链延伸、扩展的化合物。在聚合物生成中,主要为双官能团的化学品。在聚氨酯材料的合成中,扩链剂具有以下功能: (1)低分子二元或三元或四元化合物能使聚氨酯反应体系迅速地进行扩链和交联。 (2)它们具有能与反应体系进行化学反应的特性基团,分子量低,反应活泼,对异氰酸酯和聚醇体系构成较强的反应竞争几率,它们能极其有效地调节反应体系的反应速度;可以使用不同品种的交联剂及用量,调节反应物粘度增长等工艺参数,使之适应加工的要求。 (3)利用扩链剂参与反应并进入聚合物主链中,可以将扩链剂分子中的某些特性基团结构引入聚氨酯主链中,能影响聚氨酯的某些性能。 一、扩链剂的分类 按扩链剂的化学结构基本可分为醇类化合物和胺类化合物,其官能基均为2或小于4。随着聚氨酯工业的高速发展,扩链剂的新品种也在迅速增加,但实际大量使用的仍然是二醇或二胺类低分子化合物。具体分类如下: 多元醇类:乙二醇、丙二醇、1,4-丁二醇、一缩二乙二醇、丙三醇、三羟甲基丙烷等 脂环醇类:1,4-环己二醇、氢化双酚A

芳醇类:二亚甲基苯基二醇、对苯二酚双-β-羟乙基醚、间苯二酚羟基醚 醇胺类:二乙醇胺、三乙醇胺、甲基二乙醇胺 二胺类:二乙基甲苯二胺、3,5-二甲硫基甲苯二胺 其他:α-甘油烯丙基醚、缩水甘油烯丙基醚、过氧化二异丙苯、硫磺 二、多元醇类扩链剂 二元醇类扩链剂的品种较多,主要有1,4-丁二醇、乙二醇、丙二醇、一缩二乙二醇、新戊二醇等。三元醇化合物有丙三醇、三羟甲基丙烷(TMP)等。 在聚氨酯泡沫体的合成中,使用最多的是1,4-丁二醇。聚氨酯基本是(A-B)x 类型的线型结构的嵌段共聚物,其软链段由聚醇大分子构成,硬链段是由二异氰酸酯与低分子二醇反应构成,而1,4-丁二醇具有适中的碳-碳链长度,能使软、硬链段产生微区向分离,使氨基甲酸酯硬链段的结晶性更好,即使得MDI-1,4丁二醇硬链能较好地定向;结晶和定向排列使聚合物分子间更容易形成氢链,意味着能产生较好的有序结晶,结晶的阻旋作用和聚合物链段迁移,最终表现出聚合物具有优异的韧性和硬度。 以脂肪醇类为主的扩链剂,在泡沫类产品中,主要用于高回弹软泡、半硬泡、RIM硬泡以及微孔弹性体等制品的生产中,它们不仅参与反应,具有扩链和交联作用,调节泡沫体结构和开孔率,提高产品的回弹性、刚性和力学性能,同时它还能降低原料组分粘度,改善原料各组分的相溶性。 脂肪醇类扩链剂在聚氨酯弹性体、涂料等产品中,尤其是MDI基PUR产品中,是应用极广的扩链剂。在新开发的醇类扩链剂中,值得提出简称为HQEE和HER的两种带有芳环的二醇扩链剂。 在脂肪醇类扩链剂中,除二官能基化合物以外,还经常使用三官能或四官能基化合物。常用有三羟甲基丙烷和季戊四醇等。它们在与异氰酸酯反应生成氨基甲酸酯基团使分子链增长的同时,还会在生成的分子链中引出支链的反应点,使聚合物

聚氨酯分散体

1.为什么使用聚氨酯分散体? 水性聚氨酯分散体(PUDs)含有极低或不含任何挥发性有机物(VOC),而且为配方设计师提供了多种减少和消除溶剂配方的选择。同时这种基于聚氨酯分散体技术的配方也符合许多国家和地区日益严格的环境法规。 向聚氨酯分散体技术的转型不会影响传统配方的技术性能,因为聚氨酯分散体也能满足传统配方绝大部分的技术要求。 聚氨酯分散体为何如此独特? ?低溶剂用量(或者在很多种情况不含溶剂) ?气味小 ?分子量大,粘度低 ?单组分(1K)应用可有多种选择 ?低温干燥 ?优异的聚氨酯性能 聚氨酯分散体,在木器、水泥、金属、塑料、纸张、纺织品和橡胶以及其它高性能基材上具有卓越的涂覆性和附着性。 2.环保解决方案 此挥发性有机物(VOCs)在涂料工业上的大量使用,让人们越来越关注这些物质对环境造成的影响。许多国家和地区的环境权威部门已经加强对VOC水平的限制,同时制定法律限制某些溶剂(如NMP)的使用。这些限制希望在将来变得会越来越严格。 配方设计师们目前所面临的挑战就是在不降低技术性能,并保证产量的基础上,开发出可替换的分散体体系。 水性的聚氨酯分散体为这种严苛的问题提供了解决方案。B ayhydrol?、Baybond? 和Impranil?等系列分散体产品,可以被用来调制1K 或2K的高性能且对环境友好的聚氨酯涂料。 a)低气味配方

传统上,大多数传统涂料含有极高的VOCs(挥发性有机物),导致在使用时散发出强烈的溶剂气味。这些VOCs不仅使空气质量变差,而且还有可能造成对健康环境的潜在危害。如今,替代的生产技术和原材料可以开发出低VOC甚至无VOC的涂料体系,这样就可充分限制有害气味的散发。 很多情况下,仅少量的低气味助溶剂需要被添加到基于聚氨酯分散体(PUDs)的涂料中。这样就使得低VOC且低气味的配方也能达到很高的化学和机械性能。在很多应用环境中,比如水泥表面或木地板表面修整,使用低气味聚氨酯分散体的涂料可提供显著的好处: ?在常规工作时间施工,减少了对施工建筑物内居住者的影响 ?操作更加安全 ?保持良好的空气质量 ?符合大多数严格的环境法规要求,同时确保了工人的安全 水性聚氨酯分散体从本质上来说十分适合低气味涂料配方体系,同时还能保持极高的性能标准。 b)无NMP 很多聚氨酯分散体含有N-甲基吡咯烷酮(NMP),因为在生产过程它是一种必需的组分,同时有利于促进成膜。加利福尼亚65号决议和欧洲相关法规规定,产品中必须标明NMP的含量。以欧洲为例,产品中NMP含量超过5%就必须标明为刺激和有毒物质。从涂料配方中除去NMP是全球涂料工业的发展趋势。 基于丙酮工艺开发出了新一代高性能且不含任何溶剂的聚氨酯分散体。该工艺用丙酮取代NMP,并在生产工艺最后阶段去除丙酮。Bayhydrol?系列产品目前还包括许多无溶剂的聚氨酯分散体。任何溶剂可能被应用的唯一原因,就是它会对成膜性能有帮助。 在许多情况下,无NMP配方的总溶剂含量远低于常规配方。 c)符合VOC法规 世界各地的涂料配方设计师都在不断地寻找既可以显著降低挥发性有机物(VOC)含量又保持高性能水平的方法。水性涂料配方设计师用聚氨酯分散体来调制既符合VOC又具有与高VOC含量的同类产品一样性能的涂料。

水性聚氨酯扩链剂

水性聚氨酯扩链剂-二甲基戊二胺介绍 扩链剂简介 扩链剂又称链增长剂,是能与线型聚合物链上的官能团反应而使分子链扩展、分子量增大的物质。对聚氨酯胶黏剂和密封剂的合成非常重要,直接影响产品的力学性能和工艺性能。扩链剂为含羟基或氨基的低分子质量多官能团的醇类或胺类化合物。 在聚氨酯生产中必要的试剂,聚氨酯是由含二异腈酸酯基的脂肪族和芳香族单体与含有二元或多元醇的聚酯或聚醚反应形成的预聚物,应用时加入扩链剂使树脂成形。 扩链剂的原理是:在生产中,常用一些含活泼氢的化合物与异氰酸酯端基预聚物反应,致使分子链扩散延长,从而实现树脂的固化成形。 水性聚氨酯扩链剂 本文推荐得水性聚氨酯扩链剂是Invista公司生产的DytekA【学名:2-甲基戊二胺】 2-甲基戊二胺DytekA水性聚氨酯扩链剂,能通过碳链上第五碳原子甲基支链化胺类化合,使得其衍生物具有独特性能,如低粘

度、高弹性和娘好相容性能。使用二元酸,Dytek A生产高分子量多元胺的聚合物和共聚物,该类化合物,同用己二胺类化合物所制备的聚合物和共聚物相比,其具有熔点低、结晶度小性能;其树脂类中许多产品是透明的。 水性聚氨酯扩链剂二元胺[Dytek A]能够使聚氨类热熔性粘合剂的弹性得到改善,延长其空中暴露时间,这两个伯胺官能团具有不同反应活性。用本聚氨酯扩链剂二元胺[Dytek A]所生产的环氧树脂具有低的加合粘度,并能够通过其弹性来促进改善树脂的配方。 水性聚氨酯扩链剂主要运用2个领域 一个是用做环氧树脂固化剂,起到固化作用; 另一个就是作为水性聚氨酯扩链剂,能极大提高产品的弹性。 DytekA作为水性聚氨酯扩链剂在同类产品中表现更佳,特别适用于氨纶领域,能显著改善产品质量,这是我们特别推荐的氨纶扩链剂。

水性聚氨酯的制备及分散性能

伊朗聚合物杂志14(2),2005,163-167 摘要 聚氨酯分散体,水性聚氨酯;接枝聚氨酯;粒度;聚乙二醇单甲醚。 利用相对亲水多元醇合成一种新型的聚合物,这种聚合物作为水 性分散聚氨酯.这种聚合物以聚己内酯二醇(卡帕225),甲苯二异氰酸酯(TDI)为原料,1,4 -丁烷二醇(丁二醇)为扩链剂,用二月桂酸二丁基锡催化。在氢化钠(NaH的)的存在下用聚氯化乙烯(乙二醇单甲醚)(PEGMME)制备了接枝聚氨酯。氯化PEGMME还可以在干燥的甲苯中通过PEGMME与亚硫酰氯反应制得。用水性聚氨酯的FTIR和1H核磁共振对接枝聚氨酯进行了表征。对非离子型亲水段PEGMME不同分子量的影响进行了研究。粒子大小和分散液的粘度进行了系统的分析。结果发现,通过提高嫁接PEGMME分子量,聚氨酯粒径分散降低,粘度增加。 简介 由于环境因素,水性聚氨酯(PU)乳液已被广泛应用于涂料和胶粘剂上。水性聚氨酯是以水为介质,聚氨酯粒子分散其中的二元胶体体系。传统的聚氨酯不溶于水溶性介质中,因为制造该介质的主干结构中水,离子和/或部分非离子型亲水基应该是分散的。水性聚氨酯分散体的先锋工程已经由工业实验室进行研究。所以对乳液粒径及铸膜物理性能的详细数据,很少在公开文献报道。粒度由内部和外部因素决定。然而,在具体的应用中,还存在着一个最佳的粒度,因此,粒度的控制关键是化学成分的控制。在本文中,水性聚氨酯的制备是基于聚己内酯二醇(卡帕225),甲苯二异氰酸酯(TDI)及1,4 -丁

烷与聚(乙二醇单甲醚)与聚(乙二醇单甲醚)(PEGMME)不同分子量的二醇分散结构嫁接进行了描述。作为一种粒度和粘度上的非离子亲水性链段,对不同分子量PEGMME的影响进行了研究。 实验准备 实验材料 聚合物(乙二醇单甲醚)(PEGMME,Fluka公司)(兆瓦= 350,550,750,2000,5000)在80℃下真空干燥整夜。聚己内酯二醇(卡帕225 Introx化学品),与1,4 -丁烷二醇(BDO的,默克公司)在真空状态下干燥。Toluenediisocyanate(TDI,默克公司)在使用前需经真空蒸馏。利用二月桂酸二丁基锡(DBT的,默克公司)作为催化剂。DBT和氢化钠(60﹪的NaH矿物油,Akzochemie公司)不需要进一步净化。二甲基甲酰胺(DMF,默克公司)需要通过分子筛(4A°)干燥和新鲜蒸馏后使用。 反应过程 反应在一个500毫升的圆底烧瓶中进行,并配有四口烧瓶机械搅拌器和氮气进口,冷凝器,吸管插座。反应需要在恒温精度为± 0.5℃油浴中进行。压强控制在卡帕225(200克)使其向正反应方向进行,边搅拌边将其加热到60℃。维持温度在60℃,将TDI(52.2克)和DBT(数滴)添加到混合物中。反应进行大约4小时后,添加BDO (18克)进行扩链,此扩连反应需维持一小时。在氮气氛围中,将制备聚氨酯的5%二甲基甲酰胺(DMF)溶液于-5至0℃处理15分钟,用stoeichiometric数量的氢化钠对其所含的NH - COO –进行标

水性聚氨酯的一个配方

水性聚氨酯的一个配方 环氧树脂工业级国产NMPAN- 甲基-2-吡咯烷酮分析纯国产Acetone丙酮分析纯国产DEG一缩二乙二醇分析纯国产去离子水自制实验装置反应装置:三口烧瓶、回流冷凝管、滴液漏斗、温度计搅拌装置:单相串联电动搅拌机搅拌桨,自制高速分散机,进口加热装置:电炉、触点温度计、加热锅检测仪器NDJ-1 型旋转黏度仪,国产Nicolet MAGNA-IR550 型红外光谱仪,进口MINITEST 测厚仪,德国XLL-100A 型拉力试验机,国产AG-I 电子万能实验机,进口涂膜附着力测定仪,QF2-Ⅱ,天津实验机厂涂膜柔韧性测定器,QTX-1, 天津实验机厂涂膜冲击试验器, R1J3-3K1,天津材料试验厂涂膜杯突试验器,QBU-60,日本偏光显微镜,OLYMPUS BX51,进口表面张力测定仪,dataphsics DCAT21,进口实验原理水性聚氨酯的制备一般包含两个主要步骤:(1)由低聚物多元醇与异氰酸酯类化合物,形成高分子量的聚氨酯或中高分子量的聚氨酯预聚体;(2)在剪切力作用下于水中分散。利用二羟甲基丙酸对预聚物进行亲水改性,在聚氨酯分子链上引入离子基团,使其实现自乳化,得到贮存稳定、性能良好的水性聚氨酯。水性聚氨酯的合成概述将甲苯二异氰酸酯装入配有温度计、搅拌器1L 的三口烧瓶中,向烧瓶中滴加聚醚多元醇和二羟甲基丙酸,于70-80℃左右反应约3 小时,反应过程中可用丙酮调节体系的黏度。最后用正二丁胺法滴定异氰酸根的浓

度。所得的亲水改性聚氨酯预聚体用一缩二乙二醇扩链约1-2 小时,最后降温至室温,用溶有三乙胺的去离子水在高速分散机上乳化,可得到淡黄色、半透明的水性聚氨酯分散体。

改性水性聚氨酯及其粘接性能

改性水性聚氨酯及其粘接性能 综述了水性聚氨酯的改性方法,包括环氧树脂改性、丙烯酸酯改性、有机硅改性、有机氟改性、纳米材料改性、复合改性。比较了各种改性方法的优缺点,指出了水性聚氨酯胶粘剂所存在的问题,展望了水性聚氨酯胶粘剂改性发展趋势。 标签:水性聚氨酯(WPU);胶粘剂;改性 聚氨酯(PU)是在高分子链的主链上含有重复的氨基甲酸酯键结构单元(—NHCOO—)的高分子化合物,具有成膜强度高、柔韧性好、粘附力强,良好的耐磨、耐水、耐化学药品等优点,广泛应用于涂料、胶粘剂、油墨等领域[1~4]。随着环境保护压力的增大,溶剂型聚氨酯胶粘剂应用受到限制。WPU胶粘剂具有不燃、气味小、不污染环境、节能等优点[5~7],正面临前所未有的发展机遇。 1 水性聚氨酯改性 WPU主要是线性热塑性高分子,由于分子间缺乏交联,分子质量较低,所以WPU存在干燥速度慢、耐水耐溶剂性差和胶膜力学强度低等缺点[8,9]。为了改善WPU胶的综合性能,扩大应用领域,必须对其进行改性。 1.1 环氧树脂改性 环氧树脂具有一系列优良的性能[10]。用环氧树脂改性WPU可以形成各种性能新颖的材料。环氧树脂改性方式主要有3种:机械共混、接枝共聚和环氧开环共聚。 Fu等[11]以1,4-丁二醇(BDO)和二羟甲基丙酸(DMPA)为扩链剂,合成了环氧树脂改性WPU乳液。实验结果表明,当环氧树脂E20质量分数为8%时,改性乳液具有更好的综合性能,胶膜的机械性能和热稳定性更好。由此环氧树脂改性的WPU乳液制得的胶粘剂能够满足汽车内饰胶的需求。 Xi等[12]以甲苯二异氰酸酯(TDI)和聚丙烯乙二醇2000(PPG)为原料与环氧树脂反应制备互穿聚合物网络PU胶粘剂。考查了环氧树脂含量对PU胶的形态结构、导电性、热稳定性和粘接性能的影响。结果表明,环氧树脂能改善PU胶的形态结构,提高胶膜的热稳定性和粘接强度。 1.2 丙烯酸酯改性 利用丙烯酸酯改性聚氨酯乳液主要有物理共混和共聚改性2种方法。其中共聚乳液制备方法包括:①共混交联法,即PU乳液和PA乳液共混后,外加交联剂进行交联;②乳液共聚法[13],一般在聚氨酯链中引入不饱和双键,再利用双

水性聚氨酯的制法

水性聚氨酯的制法 资料来源:https://www.360docs.net/doc/065771501.html, 1、溶液法(亦称丙酮法) 把端异氰酸基预聚体溶于低沸点能与水互溶的溶剂中(丙酮最常用,因此此方法亦称丙酮法),与亲水性官能基的化合物反应,生成聚氨酯离聚物,加水搅拌实现相转移,蒸馏法回收丙酮,得水性聚氨酯乳液。 此法是目前最常用、最重要的方法,步骤复便且重现性好。几乎所有的线型聚氨酯都可以用此法植入离子体,再分散于水相中成为水分散液。其分散液粒径为0.03~0.5μm,粒度可变范围较广,可为不透明或半透明或乳白色热塑性聚氨酯乳液。 2、预聚体分散法 此过程不需要大量溶剂,避免了回收溶剂的麻烦,同时也符合低VOC和无VOC未来环保要求的趋势。此工艺过程的第一步也是先合成端-NCO基预聚体,再植入离子基,使成为离子性齐聚物,加水并强烈搅拌,此间,聚氨酯预聚体形成水分散液和端-NCO基与水进行的扩链反应同时发生。加入二元胺作扩链剂可以减少-NCO与水反应的几率,最终生成聚氨酯-脲水分散液。此法较丙酮法简单,无须溶剂回收工序,节能,但产品性能稍差于丙酮法。通常是把预聚体在强烈搅拌下加入水中分散,如果-NCO活性较低或者使用高剪切力混合分散装置也可以反加料分散,即把水加入预聚体中。此法制得乳液粒径为0.1~0.5μm,且可制得具有不同交联度的聚氨酯乳液。 3、熔融分散法 将聚酯或聚醚二醇、叔胺和异氰酸酯在熔融状态下制备预聚体,用过量尿素终止使生成亲水性的双缩二脲离聚物,再将其在甲醛水溶液中分散,使发生羟甲基化反应,生成羟甲基双缩二脲聚氨酯齐聚物,用水稀释即可得聚氨酯双脲乳液。实际上是在低pH值情况下,分散相之间的缩聚反应从而达到扩链和交联的目的。此法反应较易控制,不需溶剂,同时也不要求高效混合装置,可制成粒径为0.03~10μm之间的分散胶粒,分散液稳定,适宜大规模工业化生产,能制备委员长中交联度的聚氨酯乳液。 此外,水性聚氨酯的制备方法还有酮亚胺法(Ketimine)、酮吖嗪法(Ketazine)。此两种方法分别用酮亚胺(酮与二胺的缩合物)和酮吖嗪(酮和肼的缩合物)作潜扩链剂,在一般条

新型亲水性压敏胶应用前景广

新型亲水性压敏胶应用前景广 来源:上海技术交易网 天津大学化工学院高分子科学与工程系的研究人员开发出用于经皮给药系统的新型亲 水性聚氨酯压敏胶和聚乙烯基吡咯烷酮系列的水凝胶型压敏胶。据该课题组成员董岸杰介绍,这种亲水性压敏胶具有粘贴性好,致敏性和刺激性小,与中药浸膏、提取液或微粉相容性好,制备工艺简单,无环境污染等优点,在中药透皮吸收制剂研究中应用前景广阔。亲水性压敏胶成为“主流” 据了解,传统类型的压敏胶,如天然橡胶、聚异丁烯、硅橡胶、聚丙烯酸酯类等虽然在经皮给药系统中得到大量的应用,但它们的疏水性较强,难以满足提高药物经皮释放速率的需求。并且,它们在皮肤上长时间地贴附会产生积水现象,在揭去时会有疼痛感和残留,也不易清洗。其中,聚丙烯酸酯类压敏胶因残留单体问题,常引起皮肤过敏反应。 以往的研究发现,亲水性聚合物共混膜或水凝胶以其特有的织态结构和亲水性,不仅在药物负载和控制药物释放方面展现出优异的性能,而且还具有优于疏水性压敏胶的皮肤相容性、药物相容性、促进药物经皮渗透等性能。另外,经皮给药系统对压敏胶的皮肤黏结强度要求不高,也为亲水性压敏胶的发展提供了可行性。因此,近年来,具有亲水性特点的新型压敏胶已经成为经皮给药系统压敏胶发展的“主流”。 据研究人员介绍,目前亲水性压敏胶的制备途径主要有三: 一、对传统疏水性压敏胶进行亲水改性。即通过加入亲水性成分、引入带亲水性官能团的聚合单体等,赋予压敏胶一定的亲水性,同时保留其耐水性的特点。 二、通过聚合物分子设计,直接制备新型的经皮给药系统用压敏胶。如通过调节聚合物软段和硬段的比例及交联程度,制备适用于医药行业应用的亲水性聚氨酯。研究表明,用过量的异氰酸酯(二异氰酸酯和多异氰酸酯的混合物)与环氧乙烷和环氧丙烷的共聚物反应可制备出至少一端是以异氰酸根封端的预聚体,将其与含有-OH 或"NH2等活性反应基团的组分进行适当的交联,调节聚合物的亲水性、水汽渗透性,以及调整聚合物黏性和弹性的关系,可获得玻璃化转变温度小于-30[&-(]~的亲水性聚氨酯压敏胶。 三、基于氢键或静电相互作用,采用水溶性聚合物与液体增塑剂共混方法形成压敏胶体系。如聚乙烯基吡咯烷酮、聚乙烯醇等与甘油、低分子量聚乙二醇通过氢键交联制备的压敏胶,平衡含水量为8%~11%,具有吸收皮肤中水分的能力。国外这种类型的压敏胶已经得到开发应用,国内也有很多研究人员采用进口亲水性压敏胶进行透皮吸收制剂的研究开发。 但是,研究也表明,这些亲水性压敏胶用在中药品种上,往往存在黏性不足问题。原因是中药经皮给药系统载药量较高,严重影响了压敏胶的黏性。 用两步法制备新产品 记者在会议中了解到,天津大学化工学院的研究人员采用后两种途径开发出的新型亲水性压敏胶为中药经皮给药系统的开发带来了新希望。据该课题组的董岸杰介绍,他们采用两步法制备出亲水性聚氨酯压敏胶。在制备过程中,研究人员先将聚合物多元醇与过量的二异氰酸酯反应生成端-NCO基团的预聚体,然后将其与扩链剂或交联剂反应制备出性能优良的亲水性聚氨酯压敏胶(HPU-PSA)。研究表明,通过共混亲水性聚合物的方法可以调节HPU-PSA的亲水性。压敏’胶性能试验表明,HPU-PSA具有适宜的黏附性,且对中药浸膏载药量大,药物经皮释放速率高于橡胶膏.而且还具有很好的反复揭贴性(HPU—PSA在不锈钢板上初次和反复揭贴50次后的剥离强度分别为11和8牛顿)。HPU-PSA 在试验者手臂上贴附48小时,没有明显的刺激性。揭掉后可观察到皮肤表面轻微变白,而没有发生浸渍现象.这说明该压敏胶具有较好的吸水性和水汽透过性。 据介绍。最近发展起来的以水凝胶压敏胶为基质的巴布膏剂型很受欢迎,因水凝胶压敏胶含水量高,可与多种药物结合,表现出很好的药物相容性,并具有很高的经皮传递速率。 该课题组开发了聚维酮(PVP)/聚乙二醇(PEG)/明胶系列、PVP/聚酯/甘油系列、PVP/PVA/甘油系列等水凝胶体系的压敏胶。研究表明,这几种亲水性压敏胶粘l贴性好、剥离适宜、揭去无残留且无疼痛感、致敏性和刺激性小:稳定性高、释药速度快;由于该胶以水为介质,与中药浸膏、提取液或微粉有很好的相容性,载药量高;制备工艺简

脂环族阴离子水性聚氨酯分散体的结构及表征

脂环族阴离子水性聚氨酯分散体的结构及表征 柴淑玲1 ,杨莉燕2 ,谭惠民3  (1.山东轻工业学院轻化与环境工程学院,济南250100; 2.北京石油化工学院材料与化工学院,北京102617; 3.北京理工大学材料科学与工程学院,北京100081) 摘 要:以异佛二酮二异氰酸酯(I P D I )为原料,采用内乳化法合成了不同羧基含量的阴离子水性聚氨酯分散液,利用FT -I R 、DSC 、TE M 、TG A 、XRD 对其结构进行了表征。结果表明,所合成的水性聚氨酯中氢键主要存在于硬段的亚氨基与硬段的氨酯羰基和脲羰基之间。在-100~220℃的温度范围内出现了2个玻璃化转变,其热分解主要经历了两个阶段。随着羧基质量分数增加,水性聚氨酯硬段与硬段间的氢键增加,软段的玻璃化温度向低温方向移动,硬段的玻璃化温度向高温方向移动,其胶束粒子的平均粒径变小。 关键词:水性聚氨酯;氢键结构;粒子结构;羧基含量;热分析 中图分类号:T Q 62017 文献标识码:A 文章编号:0253-4312(2007)07-0057-04 作者简介:柴淑玲(1965—),女,博士,副教授,主要从事高分子材料合成与应用研究。 Stucture and Characteri zati on of Cycloali phati c Aqueous Polyurethane D ispersi on Chai Shuling 1 ,Yang L iyan 2 ,Tan Hui m in 3 (1.School of L ight Che m istry and Environm ental Engineering,Shandong Institute of L ight Industry,J inan 250100,China;School of M aterial and Che m ical Engineering,B eijing Institute of Petroche m ical Technology,B eijing 102617,China; 3.School of M aterial Science and Engineering,B eijing Institute of Technology,B eijing 100081,China ) Abstract:The title ani onic aqueous polyurethane dis persi ons with different carboxyl a mounts were syn 2 thesized thr ough self -e mulsifying method fr om cycl oali phatic is ophor one diis ocyanate (I P D I ).The struc 2tures of aqueous dis persi onswere characterized by FT -I R,DSC,TE M ,TG A and XRD.The results showed that the hydr ogen bond in the ani onic aqueous polyurethane syste m ,mainly existed bet w een —NH of hard seg ments and —NHCOO —or —NHCONH —of hard seg ments .The aqueous polyurethane are a t w o phase structure syste m s:t w o glass transiti ons were f ound in the range of -100~220℃.Its heat decompositi on al 2s o exhibited t w o stages .And with increase of carboxyl gr oup a mounts,the hydr ogen bonds in hard seg ments are increased,the glass transiti on te mperature of s oft seg ments moved t owards the l ower te mperature,but the glass transiti on te mperature of hard seg ments moved t owards the higher te mperature,the average dia meters of m icelle particles are decreased . Key W ords:aqueous polyurethane;hydr ogen bond;particle structure;carboxyl gr oup a mount;heat analysis 0 引 言 水性聚氨酯与溶剂型聚氨酯相比,具有不燃、无毒、不污染环境,节能易加工等优点。水性聚氨酯广泛应用于印刷、印染、橡胶、造纸、粘合剂等行业,使用领域不断扩大。国外在水性聚氨酯方面的研究较为成熟 [1-3] ,已经有1000多个专利, 而国内由于受原料品种及价格等因素的影响,对水性聚氨酯的研究还很不充分,主要局限在以T D I 为原料的水性聚氨酯的研究方面 [4] ,关于以脂环族二异氰酸酯为原料合成的纳米 级水性聚氨酯的研究较少,尤其是其氢键结构、相结构等。本文以脂环族二异氰酸酯-异佛二酮二异氰酸酯(I P D I )为原 料,合成了水性聚氨酯分散体,主要研究羧基含量对其胶束粒子和膜的结构的影响。 1 实验部分 1.1 原料 异佛二酮二异氰酸酯(I P D I ):工业级,德国进口,重蒸后 使用;聚氧化丙烯多元醇(PPG ):工业级,天津石油化工三厂,平均数均相对分子质量为2000或3000,平均官能度为2或3;聚四氢呋喃二醇(PT MG ):工业品,美国进口,数均相对分子质量为1000;二羟甲基丙酸(DMP A ):工业级,北京林氏精化新材料有限公司;二月桂酸二丁基锡(T -12):分析纯,北京益利 57第37卷第7期涂料工业 Vol .37 No .7 2007年7月P A I N T &COATI N GS I N DUSTRY Jul .2007

水性聚氨酯胶解析(一)

水性聚氨酯胶解析(一) 2009-11-21 23:08 水性聚氨酯胶解析 水性聚氨酯胶的发展概况 水性聚氨酯胶粘剂是指聚氨酯溶于水或分散于水中而形成的胶粘剂,有人也称水性聚氨酯为水系聚氨酯或水基聚氨酯。依其外观和粒径,将水性聚氨酯分为三类:聚氨酯水溶液(粒径<0.001um,外观透明)、聚氨酯分散液(粒径0.001-0.1 um,外观半透明)、聚氨酯乳液(粒径>0.1 ,外观白浊)。但习惯上后两类在有关文献资料中又统称为聚氨酯乳液或聚氨酯分散液,区分并不严格。实际应用中,水性聚氨酯以聚氨酯乳液或分散液居多,水溶液少。 由于聚氨酯类胶粘剂具有软硬度等性能可调节性好以及耐低温、柔韧性好、粘接强度大等优点,用途越来越广。目前聚氨酯胶粘剂以溶剂型为主。有机溶剂易燃易爆、易挥发、气味大、使用时造成空气污染,具有或多或少的毒性。近10多年来,保护地球环境舆论压力与日俱增,一些发达国家制订了消防法规及溶剂法规,这些因素促使世界各国聚氨酯材料研究人员花费相当大的精力进行水性聚氨酯胶粘剂的开发。 水性聚氨酯以水为基本介质,具有不燃、气味小、不污染环境、节能、操作加工方便等优点,已受到人们的重视。 聚氨酯从30年代开始发展,而在50年代就有少量水性聚氨酯的研究,如1953年Du Pont公司的研究人员将端异氰酸酯基团聚氨酯预聚体的甲苯溶液分散于水,用二元胺扩链,合成了聚氨酯乳液。当时,聚氨酯材料科学刚刚起步,水性聚氨酯还未受到重视,到了六、七十年代,对水性聚氨酯的研究开发才开始

迅速发展,1967年首次出现于美国市场,1972年已能大批量生产。70-80年代,美、德、日等国的一些水性聚氨酯产品已从试制阶段发展为实际生产和应用,一些公司有多种牌号的水性聚氨酯产品供应,如德国Bayer公司的磺酸型阴离子聚氨酯乳液ImPranil和Dispercoll KA等系列、Hoechst公司的Acrym系列、美国Wyandotte化学公司的X及E等系列,日本大日本油墨公司的Hydran HW 及AP系列、日本公司的聚氨酯乳液CVC36及水性乙烯基聚氨酯胶粘剂CU系列、日本光洋产业公司的水性乙烯基聚氨酯胶粘剂KR系列等等。 在水性类胶粘剂中,我国目前仍以聚丙烯酸酯类乳液胶、聚乙烯醋酸乙烯类乳液胶、水性三醛树脂等胶粘剂为主。有柔韧性好等特点,有较大的发展前途。水性聚氨酯胶粘剂的性能特点 1.与溶剂型聚氨酯胶粘剂相比,水性聚氨酯胶粘剂除了上述的无溶剂臭味、无污染等优点外,还具有下述特点。 (1)大多数水性聚氨酯胶粘剂中不含NCO基团,因而主要是靠分子内极性基团产生内聚力和粘附力进行固化。而溶剂型或无溶剂单组分及双组分聚氨酯胶粘剂可充分利用NCO的反应、在粘接固化过程中增强粘接性能。水性聚氨酯中含有羧基、羟基等基团,适宜条件下可参与反应,使胶粘剂产生交联。 (2)除了外加的高分子增稠剂外,影响水性聚氨酯粘度的重要因素还有离子电荷、核壳结构、乳液粒径等。?聚合物分子上的离子及反离子(指溶液中的与聚氨酯主链、侧链中所含的离子基团极性相反的自由离子)越多,粘度越大;而固体含量(浓度)、聚氨酯树脂的分子量、交联剂等因素对水性聚氨酯粘度的影响并不明显,这有利于聚氨酯的高分子量化,以提高胶粘剂的内聚强度。与之相比,溶剂型聚氨酯胶粘剂的粘度的主要影响因素有聚氨酯的分子量、支化度、胶的浓

聚氨酯分散体

1.为什么使用聚氨酯分散体? I ------------- - 水性聚氨酯分散体(PUDs)含有极低或不含任何挥发性有机物(VOC),而且为配方设计师提供了多种减少和消除溶剂配方的选择。同时这种基于聚氨酯分散体技术的配方也符合许多国家和地区日益严格的环境法规。 向聚氨酯分散体技术的转型不会影响传统配方的技术性能,因为聚氨酯分散体也能满足传统配方绝大部分的技术要求。 聚氨酯分散体为何如此独特? 低溶剂用量(或者在很多种情况不含溶剂)气味小 分子量大,粘度低 单组分(1K)应用可有多种选择低温干燥 优异的聚氨酯性能 聚氨酯分散体,在木器、水泥、金属、塑料、纸张、纺织品和橡胶以及其它高性能基材上具有卓越的涂覆性和附着性。 2■环保解决方案 此挥发性有机物(VOCs)在涂料工业上的大量使用,让人们越来越关注这些物质对环境造成的影响。许多国家和地区的环境权威部门已经加强对VOC水平的限制,同时制定法 律限制某些溶剂(如NMP)的使用。这些限制希望在将来变得会越来越严格。 配方设计师们目前所面临的挑战就是在不降低技术性能,并保证产量的基础上,开发出可替换的分散体体系。 水性的聚氨酯分散体为这种严苛的问题提供了解决方案。Bayhydrol?、Baybond?和Impranil?等系列分散体产品,可以被用来调制1K或2K的高性能且对环境友好的聚氨酯涂料。 a)低气味配方传统上,大多数传统涂料含有极高的VOCs(挥发性有机物),导致在使用时散发出强烈的溶剂气味。这些VOCs不仅使空气质量变差,而且还有可能造成对健康环境的潜在危害。如今,替代的生产技术和原材料可以开发出低VOC甚至无VOC的涂料体系,这样就可充分限制有害气味的散发。 很多情况下,仅少量的低气味助溶剂需要被添加到基于聚氨酯分散体(PUDs)的涂料中。这样就使得低VOC且低气味的配方也能达到很高的化学和机械性能。在很多应用环境中,比如水泥表面或木地板表面修整,使用低气味聚氨酯分散体的涂料可提供显著的好处: 在常规工作时间施工,减少了对施工建筑物内居住者的影响操作更加安全 保持良好的空气质量

亲水扩链剂对超支化水性聚氨酯皮革涂饰剂成膜性能的影响-

文章编号:1001-9731(2015)13-13130-09 亲水扩链剂对超支化水性聚氨酯皮革涂饰剂成膜性能的影响? 王学川,任静,强涛涛 (陕西农产品加工技术研究院,西安710021) 摘要:超支化聚氨酯具有粘度低二溶解能力增强二成膜性能好二良好的耐水性二热稳定性二物理机械性能 等优点,所以在理论和应用上超支化聚氨酯逐渐成为 皮革涂饰领域研究的热点三首先,以二乙醇胺(DEA)和丁二酸酐为原料,甲醇为溶剂,合成一种新型羧酸型 亲水单体(DMCA),优化得到DMCA的最佳条件为温度0?,n(DEA)?n(丁二酸酐)=1?1.2,时间为80min,甲醇用量为300mL/mol(DEA),在最佳条件下DMCA的转化率为86.18%三采用红外(FT-IR)二核磁(1H NMR)二X射线衍射(XRD)二热重(TG)二元素分析等手段对DMCA进行结构和性能的表征三其次,以DEA二丙烯酸甲酯(MA)二三羟甲基丙烷(TMP)为主要原料,甲醇为溶剂,采用有核 一步法 制备端羟基超支化聚合物(HPAE)三最后,以一代端羟基超支化聚合物为代表,将其与聚四氢呋喃(PTMG, M n=1000)二异佛尔酮二异氰酸酯(IPDI)二1,4-丁二醇为主要原料,使用羧酸型单体二羟甲基丙酸(DMPA)二二羟甲基丁酸(DMBA)二自制羧酸型单体(DMCA)为亲水扩链剂分别合成3种超支化水性聚氨酯皮革涂饰剂三通过红外光谱(FT-IR)二扫描电镜(SEM)二原子力显微镜(AFM)二乳液粒径二热重(TG)二示差热分析(DSC)等现代仪器对3种涂饰剂结构和性质进行表征,并对3种薄膜的物理机械性能二薄膜接触角二耐热耐水耐溶剂性能进行对比研究三 关键词:超支化聚合物;亲水扩链剂;超支化水性聚氨酯;DMCA 中图分类号: TQ323.8文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.13.028 1引言 水性聚氨酯(WPU)是以水代替有机溶剂作为分散介质,其分散液中不含或含有极少量有机溶剂的聚氨酯[1],具有优异的耐寒性二机械性能二无毒等特点,作为涂料或黏合剂在织物二皮革二制鞋等领域获得了广泛的应用,并呈现出逐步取代溶剂型聚氨酯的趋势[2-6]三聚氨酯类的高分子材料是由刚性链段和柔性链段组成的嵌段共聚物,而扩链剂的选择和使用对刚性链段和柔性链段的形成有着直接的影响三扩链剂是指促使分 子链延伸二扩展的化合物三在聚氨酯聚合物的生成中, 主要为双官能团的化学品[7]三亲水性扩链剂结合到聚氨酯分子中,能使聚氨酯链段上带有能被离子化的功 能性基团,从而使分子链具有亲水性,能较好地分散于 水相中[8]三阴离子水性聚氨酯有很好的综合性能,在国内多以二羟甲基丙酸(DMPA)作为扩链剂合成羧酸型水性聚氨酯,也有以二羟甲基丁酸(DMBA)为扩链剂合成水性聚氨酯[7]三 超支化聚合物是一类高度支化的二具有三维椭球 状立体构造的大分子,内部不仅具有空腔,同时又由于 分子表面分散着大量活性官能团,因而其性质不同于 具有类似结构单元的线性聚合物[9-10]三超支化聚合物因具有很低的熔体黏度二良好的流变性二溶解性及成膜性等独特的物理化学性质而备受瞩目[11]三已经发现超支化聚合物可以应用于添加剂二药物和基因载体二大分子嵌段二纳米技术和超分子科学等领域[12-17]三超支化聚氨酯在一定程度上改变了常规聚氨酯网状结构的空间构型,形成了具有支化结构的椭球形聚氨酯[6],使其具有良好的热稳定性[18]二耐水及物理力学性能[19-22]三本文以丁二酸酐和二乙醇胺为主要原料,合成出了一种羧酸型单体(DMCA),并以DMPA二DMBA二DMCA为亲水扩链剂制备出了3种超支化水性聚氨酯三 2实验 2.1实验试剂与设备 二乙醇胺,AR,成都市科龙化工试剂厂;丙烯酸甲酯,AR,天津科密欧化学试剂开发中心;无水甲醇, AR,天津化学试剂六厂;三羟甲基丙烷,AR,天津化学试剂六厂;对甲苯磺酸,AR,天津巴斯夫化工有限公司;聚四氢呋喃二醇1000(PTMG1000),CP,阿拉丁试剂(上海)有限公司;异佛尔酮二异氰酸酯(IPDI),CP,上海笛柏化学品技术有限公司;丁二酸酐,AR,天津科密欧化学试剂开发中心;二羟甲基丙酸(DMPA,质量分数98%),阿拉丁试剂(上海)有限公司;二羟甲基丁酸(DMBA,质量分数98%),阿拉丁试剂(上海)有 0313 12015年第13期(46)卷 ?基金项目:国家自然科学基金资助项目(21276151);陕西省科技厅科技计划资助项目(2011SZS007);陕西省重点科技创新团队资助项目(2013KCT-08);陕西科技大学科研创新团队资助项目(TD12-04) 收到初稿日期:2014-09-11收到修改稿日期:2015-03-05通讯作者:王学川,E-mail:wan g xc@sust.edu.cn 作者简介:王学川(1963-),男,山西芮城人,博士,教授,博士生导师,主要从事环境友好材料合成与作用机理方面研究三

相关文档
最新文档