γ射线的吸收

γ射线的吸收
γ射线的吸收

1.3 γ射线的吸收

一、【实验目的】

1. 了解γ射线在物质中的吸收规律。

2. 掌握测量γ吸收系数的基本方法。

二、【实验原理】

1. 窄束 γ射线在物质中的吸收规律。

γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。

准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的

减弱服从指数衰减规律,即:

x x e I I μ-=0 (1)

其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度,

μ为

线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式

求得线性吸收系数 μ值。

为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟合来求解。则:

x I I x μ-=0ln ln (2)

由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数

μ都有贡献,

可得:

p c ph μμμμ++= (3)

式中 ph μ为光电效应的贡献,

c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们

的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体

内部组织病变的诊断和治疗,如

x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示

铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。

为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式:

m m x x e I I μ-=0 (4)

式中x m =x·ρ,称为质量厚度,单位是g/cm 2。

半吸收厚度x 1/2:

物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得:

μ2

ln 2

1=

x (5)

显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。

三、【实验内容与要求】

1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。

5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。

6.把高压降至最低值,关断电源。

7.用最小二乘法求出 吸收系数μ及半吸收厚度d?

四、【数据处理】

Pb

y轴为强度的对数,x轴为厚度

由上图得μ=1.0891cm2/g , =ln2/μ=0.636g/cm2

2.Cu样品

编号 1 2 3 4 1+4 厚度 1.020 1.460 2.000 2.430 3.450 计数5328 4878 4348 3848 3283 5268 4791 4249 3858 3365 平均计数5298 4835 4299 3853 3324 扣本底计数2871 2408 1872 1426 897

Cu

上图得μ=0.4881cm2/g , =ln2/μ=1.4201g/cm2

3.Al样品

编号 1 2 3 4 1+4 厚度 1.022 1.478 1.950 2.452 3.474 计数6734 6547 6271 5830 5451 6693 6543 6174 5805 5389 平均计数6714 6545 6223 5818 5420 扣本底计数4287 4118 3796 3391 2993

Al

上图得μ=0.154cm2/g , =ln2/μ=4.5010g/cm2

五、【思考题】

(1)设铅的μ=1.0/cm,铝的μ=0.2/cm,为了使γ辐射强度降为原来的1/10,所需防护层厚度各为多少厘米?

答:由exp(-μx)=1/10,得对于铅需厚度为2.3026cm。对于铝需厚度为11.5130cm。

(2)待测的透射后γ光子的能量与入射光子的能量是否相同?为什么?

答:我们试验中用到的γ射线能量为0.662MeV,小于正负电子对产生的阀值1.02MeV,故γ射线会与晶体发生光电效应和康普顿散射,这样作用过后的光子有可能再被探测器探测到,能量就发生了变化。

(3)实验布置中,为什么要把放射源、准直孔、探测器中心保持在同一条直线上?

答:因为得到射线吸收公式的前提条件是射线朝着同一个方向传播,而实验中用到的放射源发出的γ射线的方向不定,所以要用准直孔来筛选出一个方向的射线,当然为了能探测出射线,探测器要在准直孔与放射源组成的那条直线上。

(4)何为半吸收厚度?其值与哪些因素有关?

答:定义为使入射γ射线强度减弱为原来的一半所需要吸收物质的厚度。

影响半吸收厚度的因素有很多,首先材料本身的性质决定了半吸收厚度的大小,另外,入射γ射线的能量也影响半吸收厚度,对于晶体,晶格取向以及入射方向能影响半吸收厚度。

爆破安全距离计算76471

爆破安全距离计算 Blasting safety distance calculation. 爆破中产生对人、设备、建筑物的主要危险有:爆破地震、空气冲击波、水中爆破冲击波、飞石、殉爆、有毒气体(炮烟)、噪音等,因此,必须做好安全措施,并保证足够的安全距离;而且,为了防止杂散电流、静电、射频电引起雷管、炸药的早爆事故,亦应做好安全工作。 1、爆破震动安全距离计算 选用GB6722-2003《爆破安全规程》确定公式:R=α/1'3)/(V KK Q ?。 R —爆破震动安全距离 Q —一次所允许起爆的最大装药量或毫秒延期起爆时的单段最大装药量 K 、α—与爆破点地形、地质等条件有关的系数和衰减指数,见表1-1 K '—修正系数(在拆除爆破中引入此系数),K '=0.25~1,近爆源且临空面少时取大值,反之取小值 V —周围房屋安全允许震动速度,见表1-2 表1-1爆区不同岩性的K 、a 值 岩性 K a 坚硬岩石 50~150 1.3~1.5 中硬岩石 150~250 1.5~1.8 软岩石 250~350 1.8~2 表1-2爆破地震安全速度(V )值 建筑(构)物 V (cm/s ) 土窑洞、土坯房、毛石房屋 1 一般砖房、非抗震的大型砖块建筑物 2~3 钢筋混凝土框架房屋 5

水工隧道 10 交通隧道 15 矿山巷道 围岩不稳定有良好支护 10 围岩中等稳定有良好支护 20 围岩稳定无支护 30 2、爆破空气冲击波安全距离计算 R K Q =,m 式中:R —爆破空气冲击波安全距离,m ; Q —装药量,kg ; K —与装药条件和爆破程度有关的系数。如表2-1。 表2-1系数(K )值 破坏程度 安全级别 裸露药包 全埋药包 完全无损 1 50~150 10~50 偶然破坏玻璃 2 10~50 5~10 玻璃全破坏、门窗局部破坏 3 5~10 2~5 隔墙、门、窗、板棚破坏 4 2~ 5 1~2 砖石结构破坏 5 1.5~2 1.5~1 全部破坏 6 1.5 __ 注:炸药库的设置,空气冲击波对建筑物和人员安全距离,也按此式计算。 根据《爆破安全规程》规定:露天裸露爆破时,一次爆破的装药量不得大于20kg ,并应按下式确定爆破空气冲击波对在掩体内避炮作业人员的安全距离。 325R Q =,m 式中:R —空气冲击波对掩体内人员的安全距离,m Q —一次爆破的装药量,kg 。

伽马射线的吸收实验报告

(3 ) 实验3:伽马射线的吸收 实验目的 1 ? 了解 射线在物质中的吸收规律。 2。测量 射线在不同物质中的吸收系数。 3?学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量 60 Co (或 137 CS)的 射线在一组吸收片(铅、 铜、或铝) 中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1.窄束射线在物质中的衰减规律 射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当 射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的 射线,通常称为窄束 射线。单能的窄束 射线在穿过物质时, 其强度就会减弱,这种现象称为 射线的吸收。 射线强度的衰减服从指数规律,即 =1 性吸收系数(P= σr N ,单位为Cm )。显然μ的大小反映了物质吸收 Y 射线能力的 大小。 由于在相同的实验条件下, 某一时刻的计数率 n 总是与该时刻的 射线强度I 成正 比,因此I 与X 的关系也可以用 n 与X 的关系来代替。由式我们可以得到 —X n = n °e (2 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直 线的斜率的绝对值就是线性吸收系数 J . r NX I o e ∣°e'x 其中∣o ,∣分别是穿过物质前、后的 射线强度,X 是射线穿过的物质的厚度(单位 为cm ), σr 是三种效应截面之和, N 是吸收物质单位体积中的原子数, J 是物质的线 In n=l n n °- J X

10 计 ?104 専 ,LO3 IO1 厚反。K 图1 γ???S??X 由于射线与物质相互作用的三种效应的截面都是随入射射线的能量E和吸收物质的原子序数Z而变化,因此单能射线的线性吸收系数是物质的原子序数 Z和能量E L f的函数. 式中^Ph、%、”p分别为光电、康普顿、电子对效应的线性吸收系数。其中 物质对射线的吸收系数也可以用质量吸收系数^m来表示。

γ射线的吸收

1.3 γ射线的吸收 一、【实验目的】 1. 了解γ射线在物质中的吸收规律。 2. 掌握测量γ吸收系数的基本方法。 二、【实验原理】 1. 窄束 γ射线在物质中的吸收规律。 γ射线在穿过物质时,会与物质发生多种作用,主要有光电效应,康普顿效应和电子对效应,作用的结果使 γ射线的强度减弱。 准直成平行束的 γ射线称为窄束 γ射线,单能窄束 γ射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: x x e I I μ-=0 (1) 其中 0I 为入射 γ射线强度, x I 为透射 γ射线强度,x 为 γ射线穿透的样品厚度, μ为 线性吸收系数。用实验的方法测得透射率 0/I I T x =与厚度 x 的关系曲线,便可根据(1)式 求得线性吸收系数 μ值。 为了减小测量误差,提高测量结果精度。实验上常先测得多组 x I 与 x 的值,再用曲线拟合来求解。则: x I I x μ-=0ln ln (2) 由于 γ射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 μ都有贡献, 可得: p c ph μμμμ++= (3) 式中 ph μ为光电效应的贡献, c μ为康普顿效应的贡献, p μ为电子对效应的贡献。它们 的值不但与 γ光子的能量E r 有关,而且还与材料的原子序数、原子密度或分子密度有关。对于能量相同的 γ射线不同的材料、 μ也有不同的值。医疗上正是根据这一原理,来实现对人体 内部组织病变的诊断和治疗,如 x 光透视, x 光CT 技术,对肿瘤的放射性治疗等。图1表示 铅、锡、铜、铝材料对 γ射线的线性吸收系数μ随能量E γ变化关系。

图中横座标以 γ光子的能量 υh 与电子静止能量mc 2的比值为单位,由图可见,对于铅低能 γ射线只有光电效应和康普顿效应,对高能 γ射线,以电子对效应为主。 为了使用上的方便,定义μm =μ/ρ为质量吸收系数,ρ为材料的质量密度。则(1)式可改写成如下的形式: m m x x e I I μ-=0 (4) 式中x m =x·ρ,称为质量厚度,单位是g/cm 2。 半吸收厚度x 1/2: 物质对 γ射线的吸收能力也常用半吸收厚度来表示,其定义为使入射 γ射线强度减弱到一半所需要吸收物质的厚度。由(1)式可得: μ2 ln 2 1= x (5) 显然也与材料的性质和 γ射线的能量有关。图2表示铝、铅的半吸收厚度与E γ的关系。若用实验方法测得半吸收厚度,则可根据(4)求得材料的线性吸收系数μ值。 三、【实验内容与要求】 1.按图3检查测量装置,调整探测器位置,使放射源、准直孔、探测器具有同一条中心线。 2.打开微机多道系统的电源,使微机进入多道分析器工作状态(UMS )。 3.选择合适的高压值及放大倍数,使在显示器上得到一个正确的60Co γ能谱。 4.测量不同吸收片厚度x 的60Co 的能谱,并从能谱上计算出所要的积分计数 x I 。 5.测量完毕,取出放射源,在相同条件下,测量本底计数 b I 。

射线检测及基础知识总结

基础知识 力学性能指标有:强度、硬度、塑性、韧性 应力腐蚀脆性断裂;由于拉应力与介质腐蚀联合作用引起的低应力脆性断裂叫做应力腐蚀。应力腐蚀产生的必要条件:1元件承受拉应力的作用2具有与材料种类相匹配的特定腐蚀介质环境3材料对应力腐蚀的敏感程度。对钢材而言应力腐蚀的敏感性与的成分、组织及热处理情况有关。 热处理是将固态金属及合金按预定要求进行加热,保温和冷却,以改变其内部组织,从而获得所要求性能的一种工艺过程。 热处理的基本工艺过程加热,保温和冷却三个阶段构成的,温度和时间是影响热处理的主要因素 处理工艺分:退火、正火、淬火、回火、化学热处理 退火目的:均匀组织、降低硬度、消除内应力、改善切削加工性能。 消除应力退火目的消除焊接过程中产生的内应力、扩散焊缝的氢,提高焊缝抗裂性和韧性,改善焊缝和热影响区的组织,稳定结构形状。 正火主要目的细化晶粒,均匀组织,降低内应力 承压类特种设备常用材料应具有的特点1足够的强度2良好的韧性3良好的加工工艺性能4良好的低倍组织和表面质量5良好的耐高温性6良好的抗腐蚀性能。 药皮的作用:稳弧作用、保护作用、冶金作用、掺合金作用、改善焊接工艺性能。 手工电弧焊的焊接规范:焊接电流、电弧电压、焊条直径、焊接速度、焊接层数。 坡口的形式的选择要考虑以下因素:①.保证焊透 ②.充填焊缝部位的金属要尽量少③.便于施焊,改善劳动条件④、应尽量减少焊接变形量。 焊接变形和应力的形成:1、焊件上的温度分布不均匀 2、熔敷金属的收缩 3、金属组织的转变 4、焊件的刚性拘束 焊接应力的控制措施:1.合理的装配与焊接顺序 2.焊前预热 消除焊接应力的方法:1、热处理法2、机械法3、振动法 控制焊接质量的工艺措施1预热2焊接能量参数3多层焊多道焊4紧急后热5焊条烘烤和坡口清洁 焊后热处理有利作用1减轻残余应力2改善组织,降低淬硬性3减少扩散氢 低合金钢的焊接特点1热影响区的淬硬倾向比较大 2容易出现冷裂纹 产生冷裂纹的主要原因;1氢的聚集2淬硬组织 3 焊接应力大奥氏体不锈钢的焊接时,防止或减少晶间腐蚀的主要措施 1使焊缝形成双相组织2严格控制含碳量3添加稳定剂 4焊后热处理5采用正确的焊接工艺 奥氏体不锈钢的焊接时,防止产生热裂纹的主要措施; 1在焊缝中加入形成铁素体的元素2减少母材和焊缝的含碳量3严格控制焊接规范 锅炉定义:利用各种燃料、电或其它能源,将所盛装的液体加热到一定参数,并承载一定压力的密闭设备,其范围规定为容积大于或等于30L的承压蒸汽锅炉;出口水压大于或等于(表压),且额定功率大于或等于的承压热水锅炉;有机热载体锅炉。2,锅炉的特点1连续工作;2高压、高温、工作条件恶劣;3具有爆炸危险性;4破坏性极大。 锅炉的主要参数容量、压力、温度 锅炉的三大附件安全阀、压力表、水位计 压力容器的含义:盛装气体或液体。承受一定压力的密闭设备,其范围规定为最高工作压力Pw≥,且压力与容积的乘积≥Mpa·L 的气体,液化气体或最高温度≥标准沸点的液体的固定式容器和移动式容器;盛装公称工作压力≥,且压力与容积的乘积≥·L的气体,液化气体和标准沸点≤60度的液体的气瓶,医用氧舱等,可以认为这个规定是对压力容器作出的最权威的定义。 影响压力容器设计的主要工艺参数1压力2温度3直径 压力管道的定义:指利用一定的压力,用于输送气体或液体的管状设备,其范围规定为最高工作压力大于或等于(表压)的气体,液化气体,蒸汽介质或可燃,易燃,有毒,有腐蚀性,最高工作温度高于或等于标准沸点的液体介质,且公称直径大于25mm的管道。无损检测的定义在不损坏工件的前提下,以物理或化学方法为手段,借助先进的技术和设备器材,对工件的内部及表面的结构,性质,状态进行检查和测试的方法称为无损检测。 无损检测的目的1保证产品质量2保障使用安全3改进制造工艺4降低生产成本 无损检测的应用特点1无损检测要与破坏性检测相结合2正确选用实施无损检测的时机3选用最恰当的无损检测方法4综合应用各种无损检测方法 射线照相应用了射线的那些性质1在真空中以光速直线传播;2不带电,不受电场和磁场的影响;3不可见,具有极大的能量,能穿透可见光不能穿透的物体;4在穿透物质的过程中,会与物质发生复杂的物理和化学作用, 射线检测知识 X射线和γ射线的相同点:1、都是电磁波,本质相同;2、都具有反射,折射等光学性质;3都能使胶片感光;4都是电离辐射能对人和生物造成危害;5穿过物体时具有相同的衰减规律. X射线和γ射线的不同点1产生方式不同;2能量不同:X--可控,可调,取决于管电压;γ--不可控,不可调,取决于源的性质;3强度不同:X--可控,可调,取决于U,i, Z;γ--随时间变化;4波谱形式不同 射线检测的优点1可直接得到缺陷的直观图象,检测结果缺陷形象直观,定性,定量,定位准确;2检测结果可以长期保存;3检测灵敏度高;4工业TV可实现自动检测,效率高 射线检测的局限性;1不能检出与射线方向垂直的面状缺陷;如钢板的分层;2不适用于钎焊,摩擦焊,爆炸焊,锻件,轧制等方法加工的构件;3检测周期长,成本高4对人体有害,需要采取防护措施。 影响缺陷检出率的因素:1底片像质计灵敏度2工艺参数选择的正确性(透照方向、焦距等)3良好的观片条件4评片人员的判断能力 如何提高照片灵敏度:1选择低能射线2降低散射线3选择合适的透照角度4选择适合的胶片5选择适合的显影条件6增大底片黑度7选择适合的焦距8屏与片贴紧些9选择合适的曝光量 影响射线照片灵敏度的主要因素:1射线能量2焦距3增感屏4胶片类型5控制散射线6暗室处理 影响射线照相灵敏度的三大要素射线照相对比度(缺陷影像与其周围背景的黑度差);射线照相不清晰度(影像轮廓边缘黑度过渡区的宽度)射线照相颗粒度(影像黑度的不均匀程度)

球罐γ射线检测安全距离计算

球罐γ射线检测安全距离计算 一、前言 γ源射线是球罐工程施工中常用无损检测手段,γ源辐射射线穿过空气时能使空气的分子发生电离,辐射作用于生物体时能造成电离辐射,这种电离作用能够杀伤生物细胞,破坏生物组织,造成生物体的细胞、组织、器官等损伤,引起病理反应,称为辐射生物效应。因此,为保障射线作业人员自身及公众的健康和安全,要求在施工作业前要对γ射线施工作业现场进行γ射线检测安全距离的测定,以确保作业人员及公众不受γ射线电离辐射伤害。本文仅以某项目空分装置中524m3中压氮气球罐γ源射线检测施工为例,对γ射线在施工现场使用的安全性进行探讨。 二、球罐探伤条件及γ射线源选择 1、球罐参数简介 该空分装置524m3中压氮气球罐内直径10000 mm,球壳板材质07MnCrMoVR,球壳名义厚度42mm,属Ⅲ类压力容器;球罐本体球壳板组对对焊缝220米,球罐组焊完毕按要求需对该部分焊缝进行100% 射线探伤检测。该球罐无损检测由某检测有限公司负责施工,现场采用γ射线全景曝光技术透照(返修位置使用χ射线透照)。 2、γ射线源选择及使用时间 γ射线源选用铱192,2007年7月20日测量活度为:120.2±2居里;铱192射线源使用时间为2007年7月21日至2007年7月25日。 三、γ射线防护区域划分 1、γ射线源放置在球罐中心,进行γ射线全景曝光;进行探伤作业前,必须先将工作场所划分为控制区和监督区2个安全防护区,安全防护区要放置警戒灯,有专业人员警戒监护。 2、监督区位于控制区外,允许有关人员在此区活动,培训人员或探访者也可进入该区域。其边界外空气比释动能率应不大于2.5μGy·h-1,边界处应有"当心,电离辐射"警示标识,公众不得进入该区域。 3、控制区专业人员控制范围,只允许专业探伤作业操作人员在此区活动,边界外空气比释动能率应不大于40μGy·h-1。在其边界必须悬挂清晰可见的"禁止进入放射性工作场所"警示标识。未经许可人员不得进入该范围。 四、控制区、监督区的距离计算

X射线在物质中的衰减

第四节X射线在物质中的衰减

扩散衰减 引起X 射线在物质内传播过程中的强度减弱,包括传播过程中扩散衰减和吸收衰减两方面 对于均匀介质中的X 射线源在空间各个方向辐射时,若不考虑介质的吸收,与普通点光源一样,在半径不同的球面上,X 射线的减弱遵守反平方规律即: 212221r r I I 式中I 1,I 2分别为r 1和r 2的球面上X 射线的强度。 吸收衰减X 射线通过物质时,与物质发生相互作用过程中由于吸收和散射导致入射方向X 射线强度减少。 适用于真空

一、单能X 射线在物质中的衰减规律 单能窄束X 射线在物质中的衰减规律可表示为 0x I I e μ-=X 射线强度衰减到其初始值一半时所需某种物质的衰减厚度定义为半价层(half-value layer, HVL). 1. 衰减规律 2. 半价层μ 693 .0=HVL 3. 宽束X 射线宽束X 射线就是指含有散射线成分的X 射线束。

线性衰减系数,不是一个常数,而是与吸收体的厚度,面积,形状,探测器和吸收体间的距离以及光子的能量有关。 是积累因子,描述了散射光子 对辐射衰减的影响 x e BI I μ-=01-34

n s s n n N N N N N N N B n +=+==1n N 为物质中所考虑那一点的未经相互作用原射线光子计数率;1-35 物理意义:其大小反映了在考虑那一点散射光子对光子数的贡献。对宽束而言B>1,理想窄束条件下B=1. B 近似计算: s N 为物质中所考虑那一点的散射线光子计数率; 1B x μ=+

二、连续X 射线在物质中的衰减规律 一般情况下,X 射线束是由能量连续分布的光子组成。当穿过一定厚度的物质时,各能量成分衰减的情况并不一样,它不遵守单一的指数衰减规律,因此连续X 射线的衰减规律比单能X 射线复杂的多。理论上连续能谱窄束X 射线的衰减可由下式描述 12n I I I I =+++ 1201020n x x x n I e I e I e μμμ---=+++ 式中,I 1、I 2、……I n 表示各种能量X 射线束的透过强度;I 01、I 02、……I 0n 表示各种能量X 射线束的入射强度; x 为吸收物质层的厚度。 1μ2μn μ、、……表示各种能量X 射线1. 连续X 射线的衰减规律

射线检测工作技术总结

射线检测技术工作总结 广州声华科技有限公司 徐业叶 2010.08.08

一、个人简介 徐业叶,男,1980年7月出生,2002年本科毕业于湘潭工学院金属材料与工程专业。2002年至2003年在广东省东莞市威尔锅炉厂从事无损检测工作,2003年至今在广州声华科技有限公司从事无损检测工作,先后取得国家质量监督检验检役总局发的射线、超声、磁粉、渗透Ⅱ级资格证书。 二、工作情况 在公司工作期间,本人主要从事现场检测、工程管理工作,包括根据现场情况编制检测工艺卡、制定检测方案并参与检测及出具检测报告。主要参与或负责的射线检测项目有广东云浮电厂、国华台电、石油储罐、火力发电厂脱硫项目的射线检测及各种特种设备制造安装射线检测等。 三、技术工作总结 《对小径管透照布置的探讨》 探讨小径管透照布置对裂纹检出的影响以及本人对标准的理解,由于本人知识有限,对不妥及不对之处请老师加以指正,谢谢! (一)实际工作暴露的问题及改进办法 检测对象:管焊接接头炉管材质:9Cr-1Mo-V-Nb 规格为:Φ89×8 mm及Φ60×6mm两种 检测执行标准:JB/T4730.2-2005

技术等级:AB级合格级别:Ⅱ级 一开始,因在预制阶段,条件较好,所以按JB/T4730.2-2005标准规定采用椭圆成像法,相隔90度透照2次,发现了少量的根部裂纹;后用垂直透照重叠成像法,相隔120度透照3次,对上述检测方法检测过的焊接接头进行重复检测时在根部发现了大量的根部裂纹。为了检出根部的裂纹,采用垂直透照重叠成像法,相隔120度透照3次更好,但这样做与JB/T4730.2-2005标准的4.1.4条有冲突,为此进行分析: (二)小径管经常采用倾斜透照椭圆成像的原因 小径管通常是指外直经D O小于或等于100mm的管子,在射线检测中倾斜透照椭圆成像通常是首选.小径管采用倾斜透照椭圆成像可以将源侧和胶片侧焊缝影像分开便于影像的评定及缺陷的定位返修,而且在大多数条件下有较少透照次数,这样既可以减少成本又可以提高检测效率保证工程进度.小径管采用倾斜透照椭圆成像检测工艺优化的体现,应是质量、费用、进度及返修定位相互平衡的共同结果.实践证明此方法确实是一种行之有效的透照方法,在可以实施的情况下也确应采用.垂直透照重叠成像的方法对于根部裂纹、根部未熔合、根部未焊透等根部面状缺陷的检出率较高,但发现缺陷后由于分不清是源侧还是胶片侧,无法对缺陷准确定位而造成返修时不利.焊缝表面的不规则也会对影像的评定造成一定的影响,此外在检测成本、检测进度上也略逊于倾斜透照,常常作为倾斜透照的一种补充方法加以应用.综上原因在射线检测中经常采用倾

γ能谱及γ射线的吸收.

3系08级 姓名:方一 日期:6月12日 PB08206045 实验题目: γ 能谱及γ射线的吸收 实验目的: 学习闪烁γ谱仪的工作原理和实验方法,研究吸收片对γ射线的吸收规律。 实验原理: γ射线与物质的相互作用 γ射线与物质原子之间的相互作用主要有三种方式:光电效应、康普顿散射、电子对效应。 1)光电效应 当能量γE 的入射γ光子与物质中原子的束缚电子相互作用时,光子可以把全部能量转移给某个束缚电子,使电子脱离原子束缚而发射出去,光子本身消失,发射出去的电子称为光电子,这种过程称为光电效应.发射出光电子的动能 i e B E E -=γ (1) i B 为束缚电子所在壳层的结合能。原子内层电子脱离原子后留下空位形成激发 原子,其外部壳层的电子会填补空位并放出特征X 射线。例如L 层电子跃迁到K 层,放出该原子的K 系特征X 射线。 2)康普顿效应 γ光子与自由静止的电子发生碰撞,而将一部分能量转移给电子,使电子成为反冲电子,γ光子被散射改变了原来的能量和方向。计算给出反冲电子的动 能为 ) cos 1(1) cos 1()cos 1(2 02 02θθθγγ γγ-+ =-+-=E c m E E c m E E e (2)

式中20c m 为电子静止质量,角度θ是γ光子的散射角,见图2.2.1-2所示。由图看出反冲电子以角度φ出射,φ与θ间有以下关系: 2tan 1cot 20θ ?γ???? ??+=c m E (3) 由式(2)给出,当 180=θ时,反冲电子的动能e E 有最大值: γ γE c m E E 212 0max += (4) 这说明康普顿效应产生的反冲电子的能量有一上限最大值,称为康普顿边界E C 。 3)电子对效应 当γ光子能量大于202c m 时,γ光子从原子核旁边经过并受到核的库仑场作用,可能转化为一个正电子和一个负电子,称为电子对效应。此时光子能量可表示为两个电子的动能与静止能量之和,如 202c m E E E e e ++=- + γ (5) 其中MeV c m 02.1220=。 综上所述,γ光子与物质相遇时,通过与物质原子发生光电效应、康普顿效应或电子对效应而损失能量,其结果是产生次级带电粒子,如光电子、反冲电子或正负电子对。次级带电粒子的能量与入射γ光子的能量直接相关,因此,可通过测量次级带电粒子的能量求得γ光子的能量。 闪烁γ能谱仪 2.1、闪烁谱仪的结构框图及各部分的功能 闪烁谱仪的结构框图示于图2.2.1-3中,它可分为闪烁探头、 供电与信号放

爆破安全距离计算

爆破安全距离计算 一、一般规定 各种爆破、爆破器材销毁以及爆破器材仓库意外爆炸时,爆炸源与人员和其他保护对象之间的安全距离,应按各种爆破效应(地震、冲击波、个别飞散物等)分别核定并取最大值。 二、爆破地震安全距离 (一)一般建筑物和构筑物的爆破地震安全性应满足安全震动速度的要求,主要类型的建(构)筑物地面质点的安全震动速度规定如下: 1、土窑洞、土坯房、毛石房屋 1.0 cm/s V—地震安全速度,cm/s; m—药量指数,取1/3; K、α—与爆破点地形、地质等条件有关的系数和衰减指数,可按表1选取。或由试验确定。 表1 爆区不同岩性的K、α值 (三)在特殊建(构)筑物附近或爆破条件复杂地区进行爆破时,必须进行必要的爆

破地震效应的监测或专门试验,以确定被保护物的安全性。 三、爆破冲击波安全距离 (一)露天裸露爆破时,一次爆破的炸药量不得大于20kg,并应按式(2)确定空气冲击波对掩体内避炮作业人员的安全距离。 —空气冲击波对掩体内人员的最小安全距离,m; 式中:R k Q—一次爆破的炸药量,kg;秒延期爆破时,Q按各延期段中最大药量计算; 3)计算。 式中:R—水中冲击波的最小安全距离,m; Q—一次起爆的炸药量,kg; —系数,按表4选取。 K 表4 K 值 (六)在水深大于30m的水域内进行水下爆破,水中冲击波安全距离,通过实测和试

验研安确定。 (七)在重要水工、港口设施附近或其它复杂环境中进行水下爆破,应进行测试和邀请专家研究确定安全距离。 四、个别飞散物安全距离 爆破(抛掷爆破除外)时,个别飞散物对人员的安全距离不得小于表5的规定; 对设备或建筑物的安全距离,应由设计确定。 表6 ③为防止船舶、木筏驶进危险区。应在上、下游最小安全距离以外设封锁线和信号。 ④当爆破器置于钻井内深度大于50m时,最小安全距离可缩小至20m。 表6 地面爆破器材库或药堆至住宅区或村庄边缘的最小外部距离 注:表中距离适用于平坦地形,当遇到下列几种特定地形时,其数值可适当增减; ① 当危险建筑物紧靠20~30m高的山脚下布置。山的坡度为10~25度时,危险建筑

γ射线的吸收实验报告

丫射线的吸收 一、实验目的: 1. 了解丫射线在物质中的吸收规律。 2. 掌握测量丫吸收系数的基本方法。 、实验原理: 1. 窄束丫射线在物质中的吸收规律。 Y 射线在穿过物质时, 会与物质发生多种作用, 主要有光电效应,康普顿效应和电子对 效应,作用 的结果使 Y 射线的强度减弱。 准直成平行束的 丫射线称为窄束 Y 射线,单能窄束 Y 射线在穿过物质时,其强度的 减弱服从指数衰减规律,即: ⑴ 其中|0为入射Y 射线强度,|x 为透射Y 射线强度,X 为Y 射线 穿透的样品厚度, 卩为 T ^I x /1 。与厚度X 的关系曲线,便可根据(1)式 内部组织病变的诊断和治疗,如 x 光透视,x 光CT 技术,对肿瘤的放射性治疗等。图 1表示 铅、锡、铜、铝材料对 丫射线的线性吸收系数 □随能量E 线性吸收系数。用实验的方法测得透射率 求得线性吸收系数 4值。 为了减小测量误差,提高测量结果精度。 合来求解。 实验上常先测得多组 | x 与X 的值,再用曲线拟 则: In I x =I n 10 — A x 由于 可得: Y 射线与物质主要发生三种相互作用,三种相互作用对线性吸收系数 (2) 4都有贡献, ? ph 为光电效应的贡献, 巴为康普顿效应的贡献, 丫光子的能量E r 有关,而且还与材料的原子序数、 能量相同的 Y 射线不同的材料、 4也有不同的值。医疗上正是根据这一原理,来实现对人体 式中 的值不但与 LI P 为电子对效应的贡献。它们 原子密度或分子密度有关。对于 Y 变化关系。

hU出、谢.册、粗时*斯维的吗临的氏痰

图中横座标以 Y 光子的能量 h u 与电子静止能量 mc 2 的比值为单位,由图可见,对于铅低 能Y 射线只有光电效应和康普顿效应,对高能 Y 射线,以电子对效应为主。 为了使用上的方便,定义 卩m =卩/p 为质量吸收系数,P 为材料的质量密度。则(1)式可 改写成如下的形式: I X = 10e"m 式中X m =X P ,称为质量厚度,单位是 半吸收厚度X i/2: 物质对Y 射线的吸收能力也常用半吸收厚度来表示, 其定义为使入射 Y 射线强度减弱到一 半所需要吸收物质的厚度。由(1 )式可得: In 2 三、实验内容与要求 g/cm 2 。 显然也与材料的性质和 Y 射线的能量有关。 图 2表示铝、铅的半吸收厚度与 E 下的关系。 若用实验方法测得半吸收厚度, 则可根据( 4) 求得材料的线性吸收系数 卩值。 1. 按图3检查测量装置, 调整探测器位置, 使放射源、准直孔、 探测器具有同一条中心线。 2. 打开微机多道系统的电源,使微机进入多道分析器工作状态( 3. 4. 5. 选择合适的高压值及放大倍数,使在显示器上得到一个正确的 测量不同吸收片厚度 x 的60 Co 的能谱,并从能谱上计算出所要的积分计数 I b 。 测量完毕,取出放射源,在相同条件下,测量本底计数 V,, UMS )。 60 Co Y 能谱。 1 x 。 6?把高压降至最低值,关断电源。 7?用最小二乘法求出 丫吸收系数 卩及半吸收厚度d ? 阳3半吸收1^.15和丫貼线能 就的爻衆 2. 百 ■岂蟄里密券 主 Mt ilLf S 零 jfi 打卬机

焊缝X射线检测及其结果的评判方法综述

焊缝X射线检测及其结果的评判方法综述 周正干, 滕升华, 江 巍, 李和平 (北京航空航天大学机械工程及自动化学院,100083 北京) 摘 要:分析了焊缝X射线检测方法的现状,指出了目前存在的主要问题;介绍了焊缝X射线检测结果的人工评定和计算机辅助评定方法,论述了国内外焊缝X 射线检测结果计算机辅助识别的研究现状。研究结果表明,X射线数字实时成像技术是焊缝射线 检测的发展方向,焊缝射线数字图像的计算机自动分析与识别技术是射线实时成像技 术成功应用的基础。 关键词:无损检测;图像处理;模式识别;焊接 中图分类号:TP391.6 文献标识码:A 文章编号:0253-360X(20002)03-85-04周正干0 序 言 目前,焊接已作为一种基本工艺方法,应用于航 空、航天、舰船、桥梁、车辆、锅炉、电机、电子、冶金、 能源、石油化工、矿山机械、起重机械、建筑及国防等 各个工业部门[1]。由于焊接过程中各种参数的影 响,焊缝有时不可避免地会出现熔合不良、裂纹、气 孔、夹渣、夹钨、未熔合和未焊透等缺陷。为了保证 焊接构件的产品质量,必须对其中的焊缝进行有效 的无损检测和评价。射线检测是常规无损检测的重要方法之一,是保证焊接质量的重要技术,其检测结果将作为焊缝缺陷分析和质量评定的重要判定依据[2]。对X射线检测结果的评定方法有两种:人工评定和计算机辅助评定。当人工评定检测结果时,评定人员的工作量大,眼睛易受强光损伤,效率较低,而且缺陷分析受评定人员的技术素质、经验以及外界条件的影响,结果往往会因人而异 。采用计算机对X射线检测结果进行分析和识别,可以大大提高工作效率,有效地克服人工评定中由于评判人员技术素质和经验差异以及外界条件的不同而引起的误判或漏判,使评判过程客观化、科学化和规范化。 1 焊缝X射线的检测方法 目前,焊缝X射线检测最常用的方法是胶片照相法。X射线胶片照相的成像质量较高,能正确提供焊缝缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便等缺点。随着电子技术及计算机技术的发展,一 收稿日期:2001-11-01种新兴的X射线检测技术———基于X射线图像增强器(X ray image intensifier)的实时成像技术(Ra2 dioscopy)应运而生,其工作原理如图1所示,图2是一种典型的图像增强器。X射线图像增强实时成像检测技术的出现使焊缝X射线检测的效率大大提高。但是,与胶片照相法相比,由于图像增强实时成像法成像环节较多,信噪比低,图像容易产生畸变,故成像质量相对较低,检测结果的图像对比度和空间分辨率均不是很高。 图1 图像增强实时成像检测系统原理图 Fig.1 Sketch of im age2intensifier2b ased radioscopy system 为了解决上述问题,20世纪90年代末出现了X 射线数字实时成像检测技术(Digital radioscopy,DR),亦称为X射线数字照相(Digital radiography,DR),其工作原理如图3所示。X射线数字实时成像系统中使用的平板探测器(Flat panel detector)如图4所示,其像元尺寸最小可达0.127mm,因而成像质量及分辨率明显优于X射线图像增强器系统,几乎可与胶片照相媲美,同时还克服了胶片照相中 第23卷 第3期2002年6月 焊接学报 TRANS ACTI ONS OF THE CHI NA WE LDI NG I NSTIT UTI ON Vol.23 No.3 June 2002

物质对伽马射线的吸收实验报告

近代物理实验报告指导教师:得分: 实验时间: 2009 年 12 月 14 日,第十六周,周一,第 5-8 节 实验者:班级材料0705 学号 5 姓名童凌炜 同组者:班级材料0705 学号 7 姓名车宏龙 实验地点:综合楼 507 实验条件:室内温度℃,相对湿度 %,室内气压 实验题目:物质对伽马射线的吸收 实验仪器:(注明规格和型号) 射线放射源;闪烁探头;高压电源;放大器;多道脉冲幅度分析器;吸收片若干。 仪器组成如下图所示: 实验目的: 1.了解掌握射线与物质相互作用的性质和特点 2.学习掌握物质对射线的吸收规律 3.测量射线在不同物质中的吸收系数 4. 实验原理简述: 当原子核发生α和β衰变时,通常衰变到原子 核的激发态,由于处于激发态的原子核是不稳定的, 它要向低激发态跃迁,同时往往放出γ光子,这一现 象称为γ衰变。γ光子会与下列带电体发生相互作 用,原子中的束缚电子,自由电子,库伦场及核子。 这些类型的相互作用可以导致下列三种过程的一种发生:光子完全吸收、弹性散射、非弹性散射。如右所示为为γ射线与物质相互作用的示意图

图中的三种状况分别为: 1. 低能时以光电效应为主。 2. 光子可以被原子或单个电子散射到另一方向,其能量可损失也可不损失。 3. 若入射光子的能量超过,则电子对的生成成为可能 从上面的讨论可以清楚地看到,当γ光子穿过吸收物质时,通过与物质原子发生光电效应、康普顿效应和电子对效应能量损失,γ射线一旦与吸收物质原子发生这三种相互作用,原来能量为的光子就消失,或散射后能量改变、偏离原来的入射方向;总之,一旦发生相互作用,就从原来的入射束中移去。γ射线穿过物质是,强度逐渐减弱,按指数规律衰减,不与物质发生相互作用的光子穿过吸收层,其能量保持不变,因而没有射程概念可言,但可用“半吸收厚度”来表示γ射线对物质的穿透情况。 本实验研究的主要是窄束γ射线在物质中的吸收规律。所谓窄束γ射线是指不包括散射成分的射线束通过吸收后的光子,仅由未经相互作用或未经碰撞的光子组成。射线束有一定宽度,只要没有散射光子,就可称之为“窄束”。 射线强度随物质厚度的衰减服从指数规律,即x e I I μ-=0 I 和0I 分别是穿透物质前后的γ射线强度;x 是γ射线穿过物质的厚度是光电、康普顿、电子对三种 效应截面之和;N 是吸收物质单位体积中的原子数;μ是物质的吸收系数, 反映了物质吸γ收射线能力的大小, 并且可以分解成这样几项: p c ph μμμμ++= γ射线与物质相互作用的三种效应的截面都随入射γ射线的能量γE 和吸收物质的原子序数Z 而改变。 如右所示, 图中给出了铅对γ射线的吸收系数与γ射线能量的线性关系图。 实际中通常用质量厚度)(2 -??=cm g x R m ρ来表示 吸收体的厚度,以消除密度的影响, 则射线强度的表达式修改为:ρ μ/0)(m R m e I R I -= 计数率N 总是与该时刻的射线强度成正比,因此可得:0InN R InN m +- =ρ μ 将对数形式的吸收曲线表达为图像, 得到这样的一条直线, 如右图所示. 并且可以从这条直线的斜率求出

安全光栅标准安全距离计算实例

安全距离(S)= 人体接近速度 × 响应时间 + 附加距离(该距离随传感器的检测能力的不同而变化) 人体的检测 S = K × T + C40 < d ≦ 70 K = 1600 mm/s(接近速度[ 假定为人的步行速度]) T = 机器停止所需的最长时间+ 光栅响应时间 C = 850 mm(穿过距离[ 与人手臂标准长度相符的值]) 手和手指的检测 S=K × T + 8(d - 14) d ≦ 40 K = 2000 mm/s(接近速度[ 假定手的穿过速度]) T = 机器停止所需的最长时间+ 光栅响应时间 d = 光栅检测能力 注:如果S 大于或等于500 mm,则以K 值等于1600 再次进行计算。如果再次计算得出的S 值小于或等于500 mm,则将S 值设置为 500 mm。 机器停止所需的最长时间与安全距离之间的关系 公式中的T 值由下面两个参数构成。 T = 机器停止所需的最长时间+ 光栅响应时间(ON OFF) 当K(穿过速度)= 2000 mm/s 时例如,使用GL-R08H 光栅(其响应时间为0.0069 s)时 S = 2000 mm/s ×(机器停止所需的最长时间+ 0.0069 s) + C 如上文所示,将机器停止所需的最长时间乘以穿过速度(2000 mm/s),因此,即使机器停止所需的最长时间只增加1 秒,安全距离也会增加(2000 mm/s × 1 s = 2000 mm)。光栅响应时间每增加1 ms,安全距离会相应增加2 mm。

公式:S = K × T + C ?S: 最小距离(mm;见下图)≥ 100 mm ?K: 从基于人体接近速度(mm/s)得出的数据中提取的参数 ?T: 整个系统停止性能(s)T = t1(GL-R 系列最长响应时间)+ t2(机器停止所需的最长时间) ?C:穿过距离(mm) 当d ≤ 40: 8 × (d - 14) , C ≥ 0 当40 < d ≤ 70: 850 ?d: GL-R 系列的检测能力(mm) 计算示例 (1)-1 使用GL-R60H (检测能力d = 25 mm 且光轴数为60)时 条件: 工业应用 K = 2000 mm/s t1(GL-R60H 响应时间)= 0.0157 s t2(机器停止所需的最长时间)= 0.1 s C = 8 × (25 - 14) = 88 mm S = K × T + C = 2000 ×(0.1157)+ 88 = 319.4mm 如果S 大于500 mm,则以K 值等于1600 mm/s 再次进行计算。如果再次计算得出的S 值小于或等于500,则应将S 值设置为500。 计算示例 (1)-2 使用GL-R08L (检测能力d = 45 mm 且光轴数为8)时 条件:工业应用 K = 1600 mm/s t1(GL-R08L 响应时间)= 0.0069 s

伽马射线的吸收实验报告

实验3:伽马射线的吸收 实验目的 1. 了解γ射线在物质中的吸收规律。 2. 测量γ射线在不同物质中的吸收系数。 3. 学习正确安排实验条件的方法。 内容 1. 选择良好的实验条件,测量60Co (或137Cs )的γ射线在一组吸收片(铅、 铜、或铝)中的吸收曲线,并由半吸收厚度定出线性吸收系数。 2. 用最小二乘直线拟合的方法求线性吸收系数。 原理 1. 窄束γ射线在物质中的衰减规律 γ射线与物质发生相互作用时,主要有三种效应:光电效应、康普顿效应 和电子对效应(当γ射线能量大于1.02MeV 时,才有可能产生电子对效应)。 准直成平行束的γ射线,通常称为窄束γ射线。单能的窄束γ射线在穿过物质时,其强度就会减弱,这种现象称为γ射线的吸收。γ射线强度的衰减服从指数规律,即 x Nx e I e I I r μσ--==00 ( 1 ) 其中I I ,0分别是穿过物质前、后的γ射线强度,x 是γ射线穿过的物质的厚度(单位为cm ),r σ是三种效应截面之和,N 是吸收物质单位体积中的原子数,μ是物质的线性吸收系数(N r σμ=,单位为1 =cm )。显然μ的大小反映了物质吸收γ射线能力的大小。 由于在相同的实验条件下,某一时刻的计数率n 总是与该时刻的γ射线强度I 成正比,因此I 与x 的关系也可以用n 与x 的关系来代替。由式我们可以得到 x e n n μ-=0 ( 2 ) ㏑n=㏑n 0-x μ ( 3 ) 可见,如果在半对数坐标纸上绘制吸收曲线,那末这条吸收曲线就是一条直线,该直

线的斜率的绝对值就是线性吸收系数μ。 由于γ射线与物质相互作用的三种效应的截面都是随入射γ射线的能量γE 和吸收 物质的原子序数Z 而变化,因此单能γ射线的线性吸收系数μ是物质的原子序数Z 和能量γE 的函数。 p c ph μμμμ++= ( 4 ) 式中ph μ、c μ、p μ分别为光电、康普顿、电子对效应的线性吸收系数。其中 5 Z ph ∝μ Z c ∝μ ( 5 ) 2 Z p ∝μ 图2给出了铅、锡、铜、铝对γ射线的线性吸收系数与γ射线能量的关系曲线。 物质对γ射线的吸收系数也可以用质量吸收系数m μ来表示。

初、中级射线检测计算公式

1、最短波长公式:min min λνhc h eV == V 4.12m in =λ (能量公式)h 普朗克常数 2、连续谱中最大强度对应的波长与最短波长之间近似有下述关系: min 5.1λλ=IM 3、连续谱射线的总强度I :2ZiV K I i T = Ki 为比例常数、Z 靶原子序数、i 管电流/管电压 4、连续谱X 射线的转换效率η; ZV K i =η 5、放射性原子核的衰变公式:T e N N λ-=0 λ衰变常数T 时间 6、半衰期公式:(重要公式)放射性原子核数目因衰变减少至原来数目一半时所需的时间 λ 693 .02 1= T 2 1 /0 2 T T N N = 2 1T/T 0)2 1(N N =λ为衰变常数 N 为剩余的原子核数N0为原有原子核数 T 为所用时间 7:单色窄束射线的衰减规律:T e I I μ-=0 T 为透照厚度 I 为穿透后辐射强度 0I 为原辐射强度 8、线衰减系数μ:3 3λρμZ K = T I I ) /l n (0= μ T 为透照厚度 I 为穿透后辐射强度 I 为原辐射强度 K 康普顿系数、ρ混合物密度、Z 原子序数 9、半价层: μ μ 693 .02 ln 2 1= = T μ为线衰减系数 10、半价层计算公式:穿过物体后的射线强度为入射强度一半时的穿透厚度 11、影响半值层T1/2的因素: 3 32 1693.02 ln λρμ Z K T = = K 康普顿系数、ρ混合物密度、Z 原子序数 12、宽束多色射线强度衰减规律:T e n I I μ-+=)1(0 n 为散射比 I 透射强度、I0初始强度μ为平均衰减系数T 厚度 13、主因对比度公式:n T I I +?=?1μ散射比n= I s / I p 主因对比度跟透照厚度、衰减系数和散射比有关 14、胶片梯度G 公式 :E D E E D tga G lg /' 1lg 1lg 1 '??=-== D1黑度值、E1为对应曝光量、E1’切线与横轴交点曝光量G 为梯度或反差系数 15、黑度D :照射光强度与穿过底片的透射光强之比常用对数值D L L 100= L L D 0lg = L 透射光强L0照射光强 宽容度L :L=10lgE2-lgE1=E2/E1 E1、E2相对曝光量 相对灵敏度K :K=d/T*100% d 射线可认到最细线直径、T 被检工件穿透厚度 16、射线照相对比度公式:ΔD=-0.434 G μΔT/(1 + n ),G 梯度μ衰减系数ΔT 缺陷尺寸n 散射比 17、射线照相几何不清晰度:Ug = df ×L2/L1=df ×L2/(F-L2) df 焦点尺寸、L1焦点至工件表面距离、L2工件表面至胶片距离、F 焦距 固有不清晰度:Ui=0.0013(kV)0.79 焦距F =L1+L2 L1为交点、L2为透照厚度。 18、X 射线曝光量:E=it γ射线曝光量:E=At 19、平方反比定律:从一点源发出的辐射,强度I 与距离F 的平方成反比 I1/I2=(F2/F1)2 20、X 射线照相的曝光因子:Ψ=i t/F 2= i 1t 1/F 11= i 2t 2/F 22=……= i n t n /F n 2 i 为管电流、F 为焦距t 为曝光时间 γ射线照相的曝光因子:Ψ=A t/F 2= A 1 t 1/F 12= A 2t 2/F 22=……= A n t n /F n 2曝光因子与强度、曝光时间和焦距有关 19、透照厚度比K :K 值与横向裂纹检出角θ的关系:K=1/Cos θ θ=cos -1(1/K) 20 、一次透照长度L 3: L 3= 2L 1tan θ L1为焦距 21、直缝单壁单影: 底片的有效评定长度: L eff =L 3+ΔL 搭接长度ΔL =L2L3/L1 L2为工件表面到胶片距离 纵缝作双壁单投影:底片的有效评定长度应为:leff=ΔL+L3′+ΔL L3′胶片侧焊缝等分长度 22、环缝单壁外照法N=360218000 αα = α=θ-η θ=cos-1 [ 1120 +-()K T D K ] η= sin-1( D D L 0 01 2+sin θ ) K=1.1 θ=cos-1 [ 1.121.0D D T +] 当D 0>>T 时,θ≈cos -1K-1 K=1.1 θ=24.62 L3=πD0/N ; L'3=π*DI/N ΔL ≈2T ·tan θ Leff =ΔL /2+L3+ΔL /2 α:与AB/2对应的圆心角; θ:最大失真角或横裂检出角; η- -有效半辐射角; K- 透照厚度比; T- 工件厚度; D0--- 容器外直径 Di -容器内直径 23、利用曝光曲线求非钢材的曝光量 射线等效系数(φm 表示)是指在一定管电压下,达到相同射线吸收效果(或者说获得相同底片黑度)的基准材料厚度To 与被检材料厚度Tm 之比,即: φm=T 0/T m 24、椭圆成像法偏心距 L 0=(b +q )L 1/ L 2=(F-D 0-Δh)(b+q)/( D 0+Δh)=[焦距-(外径+焊缝余高)]×(焊缝宽度+开口 n I I )2 1 (0=2 1 T T n = 2 1 )2 1(0T T I I =2 1 ) 2 1(0T T I I =

相关文档
最新文档