如何合理地选择工业相机

如何合理地选择工业相机
如何合理地选择工业相机

如何合理地选择工业相机

在机器视觉、工业影像等实际应用中应该如何选择工业相机呢?

1、模拟相机&&数字相机

模拟相机必须带数字采集卡,标准的模拟相机分辨率很低,另外帧率也是固定的。这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。

2、相机分辨率

根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。

应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳(我见过最多的人抱着亚像素不放说要做到零点几的亚像素,那么就不用这么高分辨率的相机了。比如他们说如果做到0.1个像素,就是一个缺陷对应0.1个像素,缺陷的大小是由像素点个数来计算的,试问0.1个像素的面积怎么来表示?这些人以亚像素来忽悠人,往往说明了他们的没有常识性)。换言之,我们仅仅是用来做测量用,那么采用亚像素算法,130万像素的相机也能基本上满足需求,但有时因为边缘清晰度的影响,在提取边缘的时候,随便偏移一个像素,那么精度就受到了极大的影响。故我们选择300万的相机的话,还可以允许提取的边缘偏离3个像素左右,这就很好的保证了测量的精度。

3、CCD&&CMOS

如果要求拍摄的物体是运动的,要处理的对象也是实时运动的物体,那么当然选择CCD 芯片的相机为最适宜。但有的厂商生产的CMOS相机如果采用帧曝光的方式的话,也可以当作CCD来使用的。又假如物体运动的速度很慢,在我们设定的相机曝光时间范围内,物体运动的距离很小,换算成像素大小也就在一两个像素内,那么选择CMOS相机也是合适的。因为在曝光时间内,一两个像素的偏差人眼根本看不出来(如果不是做测量用的话),但超过2个像素的偏差,物体拍出来的图像就有拖影,这样就不能选择CMOS相机了。

4、彩色&&黑白

如果我们要处理的是与图像颜色有关,那当然是采用彩色相机,否则建议你用黑白的,因为黑白的同样分辨率的相机,精度比彩色高,尤其是在看图像边缘的时候,黑白的效果更好。

5、帧率

根据要检测的速度,选择相机的帧率一定要大于或等于检测速度,等于的情况就是你处理图像的时间一定要快,一定要在相机的曝光和传输的时间内完成。

6、线阵&&面阵

对于检测精度要求很高,面阵相机的分辨率达不到要求的情况下,当然线阵相机是必然的一个选择。

7、传输接口

根据传输的距离、稳定性、传输的数据大小(带宽)选择USB、1394、Camerlink、百兆/千兆网接口的相机。

8、CCD靶面

靶面尺寸的大小会影响到镜头焦距的长短,在相同视角下,靶面尺寸越大,焦距越长。

在选择相机时,特别是对拍摄角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。因此在选择CCD尺寸时,要结合镜头的焦距、视场角一起选择,一般而言,选择CCD靶面要结合物理安装的空间来决定镜头的工作距离是否在安装空间范围内,要求镜头的尺寸一定要大于或等于相机的靶面尺寸。

工业相机选型方法

工业相机选型方法 工业相机,选择TEO. 工业相机选型方法 工业相机又被叫做摄像机,对比与传统的民用相机而言,工业相机在图像稳定性、抗干扰能力和传能能力方面有着更大更高的优势,是组成机器视觉系统的关键部分,工业相机的性能好坏决定着机器视觉系统的稳定性。那么我们在相机选型方面如何更好地选择工业相机呢, 第一、我们要明确我们需要什么样的工业相机,所以要先确定好所需要检测的产品的精度要求;确定好检测物体的速度包括它是动态的还是静态的;确定好工业相机取景的视野大小。 第二、我们要能确定好硬件的类型。工业相机的性能硬件参数影响非常大,所以在我们确定硬件类型前,我们先看下几个重要的参数: 1.相机传输方式。目前市面上相机传输方式有很多各有优缺点:(1)USB接口相机,优点:帧率高,性价比高,不需要占据PCI插槽,缺点就是太占CPU;(2)模拟相机,优点:稳定,性价比高,缺点就是帧率太低;(3)1394相机接口,优点:不占系统CPU的运行,帧频高,缺点是价格昂贵,还需要PCI插槽。 2.相面像素大小的确定。目前虽然市场上的软件在精度上一般是没有误差的,也就是我们所说的亚像素,但是在硬件方面的误差还是不可避免的。所以现在机器视觉系统在市场上都是保证误差保持在通过“精度=视野(长或宽)?相机像素(长或宽)”这样一个公式计算出来的一个像素数值上。 3.相机的触发方式选择。(1)软件触发模式:在对动态检测的时候以及产品通过连续运动触发信号的时候可以选择;(2)硬件触发模式:对高速动态检测以及产品通

过高速运动触发信号的时候选择;(1)连续采集模式:对静态检测以及产品连续运动不能够触发信号的时候可以选择。 工业相机有着多种多样的类别,所以如何选择工业相机非常重要。根据不同行业的不同应用,我们需要选购适合应用的工业相机。

工业相机镜头的基础知识20160727

工业相机镜头的基础知识 1、工业镜头的接口 物镜的接口尺寸是有国际标准的,共有三种接口型式,即F型、C型、CS型。F型接口是通用型接口,一般适用于焦距大于25mm的镜头;而当物镜的焦距约小于25mm时,因物镜的尺寸不大,便采用C型或CS型接口。 C接口和CS接口的区别 ?C与CS接口的区别在于镜头与摄像机接触面至镜头焦平面(摄像机CCD光电感应器应处的位置)的距离不同,C型接口此距离为17.5mm., CS型接口此距离为12.5mm.。?C型镜头与C型摄像机,CS型镜头与CS型摄像机可以配合使用。C型镜头与CS型摄像机之间增加一个 5mm的C/CS转接环可以配合使用。CS型镜头与C型摄像机无法配合使用。 2、工业镜头的基本参数 视场(Field of view, 即FOV,也叫视野范围) : 指观测物体的可视范围,也就是充满相机采集芯片的物体部分。(视场范围是选型中必须要了解的) 工作距离(Working Distance,即WD):

指从镜头前部到受检验物体的距离。即清晰成像的表面距离(选型必须要了解的问题,工作距离是否可调?包括是否有安装空间等) 分辨率: 图像系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。§ 景深 (Depth of view,即DOF): 物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力 (需要了解客户对景深是否有特殊要求?)

图1:镜头基本参数示意图 感光芯片尺寸: 相机感光芯片的有效区域尺寸,一般指水平尺寸。这个参数对于决定合适的镜头缩放比例以 获取想要的视场非常重要。镜头主要缩放比例(PMAG) 由感光芯片的尺寸和视场的比率来定义。虽然基本参数包括感光芯片的尺寸和视场,但PMAG却不属于基本参数。 焦距(f)焦距, 是光学系统中衡量光的聚集或发散的度量方式,指从透镜的光心到光聚集之焦点的距离。亦是照相机中,从镜片中心到底片或CCD等成像平面的距离。(需要记住的公式) f={工作距离/视野范围长边(或短边)}X CCD长边(或短) 焦距大小的影响情况: 焦距越小,景深越大;焦距越小,畸变越大;焦距越小,渐晕现象越严重,使像差边缘的照 度降低;

怎么选择合适的工业相机

怎么选择合适的工业相机 工业自动化给我们带来了很大的作用,不论是从产量效率还是从质量上都有了很大的提高,例如工业相机,那么我们在购买工业相机的时候,需要注意哪些问题?怎么才能选择一台合适的工业相机?怎么选呢?小编整理了以下几点: 【第一】相机的接口要与镜头匹配。 【第二】传感器的尺寸与类型。相机的传感器尺寸应小于等于镜头支持的尺寸。CCD 的成像质量优于CMOS,但是其成本也远高于CMOS。同样分辨率的传感器,优先选择传感器尺寸大的,有利于成像质量的提高;如果要求拍摄的物体是运动的,要处理的对象也是实时运动的物体,那么当然选择CCD芯片的相机为最适宜。但有的厂商生产的CMOS相机如果采用帧曝光的方式的话,也可以当作CCD来使用的。又假如物体运动的速度很慢,在我们设定的相机曝光时间范围内,物体运动的距离很小,换算成像素大小也就在一两个像素内,那么选择CMOS相机也是合适的。因为在曝光时间内,一两个像素的偏差人眼根本看不出来(如果不是做测量用的话),但超过2个像素的偏差,物体拍出来的图像就有拖影,这样就不能选择CMOS相机了。 【第三】合适的分辨率,根据系统的需求来选择相机分辨率的大小,通常系统的像素精度等于视场(长或宽)除以相机分辨率(长或宽)。如视场为10mm×7.5mm,使用130万像素的相机,则相机分辨率为1280×960Pixel,则像素精度为10mm÷1280Pixel=0.0078mm/Pixel;下面以一个应用案例来分析。假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳。

工业相机安装使用说明书

工业相机 安装使用说明书文件版本:V1.2

目录 1产品简介 (3) 2程序的安装 (4) 3演示软件的使用方法 (8) 3.1菜单栏 (9) 3.2工具栏 (9) 3.3视频预览区 (11) 3.4状态栏 (12) 4相机DirectShow接口的使用方法 (13) 5相机TWAIN接口的使用方法 (17) 在Photoshop中使用TWAIN接口捕获图像 (17) 在Scope photo中使用TWAIN接口捕获图像 (19) 在Image-Pro Plus中使用TWAIN接口捕获图像 (21) 6相机Halcon接口的使用方法 (22) 7相机Labview接口的使用方法 (27) 8如何使用相机SDK进行二次开发 (29)

1产品简介 我公司工业相机有如下特点: 1,统一的SDK接口。我公司USB2.0、USB3.0、千兆网、1394接口的CCD、CMOS相机,都使用同一套SDK、演示平台,您无需关心不同型 号、接口的相机带来的差异。 2,完美支持一台电脑接多个相机。用户或者开发人员可以在配置界面中方便修改指定相机的名称,用来区分多相机,相机名称修改后,无论接在哪台 电脑、无论是使用DSHOW、TWAIN、还是SDK接口,都会显示为您修改 后的名字,您无需再为一台电脑接多个相机难以区分而烦恼。 3,相机支持4组参数保存与加载,同时,支持从文件中加载参数,方便量产。支持多种不同的参数加载模式,可以按照相机的名称、唯一序列号、 或者型号来进行加载,以满足您不同的使用场合需求。 4,提供丰富的图像处理接口,算法关键部分采用硬件加速功能,有效提升图像质量的同时降低CPU占用率。 5,支持多种第三方软件接口。目前已经支持的接口有DirectShow、 TWAIN、Halcon、Labview、OpenCV、OCX。 6,所有相机均支持时间戳功能,能够准确记录图像采集的时间点,录像文件能够准确还原拍摄时的时间。 7,提供中英文两个版本,可动态切换。 8,人性化的相机配置界面。相机配置按功能归类,方便操作,并且不同的软件接口下都采用同样的配置界面,无论您使用哪种软件接口,都能快速的 熟悉相机的操作。 9,提供OEM、ODM服务,支持软件定制(PID,VID,设备名,文件名等),支持硬件PCB定制、增加输入、输出IO等,同时承接各种CMOS、CCD相 机的订制开发。

工业摄像头选用简述

工业摄像头选用简述 1、精度要求与工业摄像头分辨率 虽然现在网上随处可见诸如怎么选择工业摄像头的这些文章,但感觉还是比较零碎,各执一词,维视图像根据这多的工业项目经验,总结了一些简单实用的方法,现描述给大家,希望对大家在工业摄像头(至于这里说的工业摄像头和我们的工业相机有什么区别,维视图像已在其北京公司官网上做过详细论述,这里就不多讲了)的选择上有一些实际的帮助。 MV-E系列工业数字摄像头 当我们面对一个新的项目,首先要考虑选用什么样的工业摄像头。而在考虑选用哪一款工业摄像头时,则先要考虑的是分辨率,这是因为工业摄像头的分辨率会直接影响到整个机器视觉系统的计算精度。而衡量系统精度的标准,就是我们常常听到的像素值――CCD芯片上像素所对应的实际长度。 像素值的计算公式如下: 像素值(X方向)=视野范围(X方向)÷ CCD芯片像素数量(X方向) 像素值(Y方向)=视野范围(Y方向)÷ CCD芯片像素数量(Y方向) 这个像素值越小,系统的计算精度就越高。 回来本小节的中心问题上来:对于一个有具体精度要求的项目,该如何确定相机的分辨率为多少才适合?计算相机分辨率的公式如下: 分辨率(X方向)=视野范围(X方向)÷理论像素值(X方向) 分辨率(Y方向)=视野范围(Y方向)÷理论像素值(Y方向)理论像素值指的是,根据项目精度的要求,通过推算得出的像素值在理论上所应该达到的数值。即像素值只有达到这一数值,才能确保系统的计算精度符合要求。 为了让大家容易理解,我们以一个实际项目为例。现在有客户要用我们的机器视觉系统

测量某一种工件上小孔的间距,该工件大小为50×40MM,测量精度要求达到0.1MM。由以上条件,我们可以将0.1MM假定为理论像素值(有关理论像素值的推算,另题讨论)。也就是说,只要像素值能达到0.1MM,我们就可以肯定这个项目在测量精度方面能够满足客户的要求。根据上面计算相机分辨率的公式: 50(X方向视野范围)÷ 0.1(X方向理论像素值)= 500(X方向分辨率) 40(Y方向视野范围)÷ 0.1(Y方向理论像素值)= 400(Y方向分辨率)通过上面的计算我们知道,只要相机的分辨率高于500×400,就是适合此项目的相机,比如MV-EM040M这款相机的分辨率是640×480便能适合这个例子的精度要求。 2、速度要求与工业摄像头成像速度及快门速度匹配 除了精度要求外,速度上的要求也是我们常常要面对的问题之一。系统速度的快慢取决于整个视觉系统运行的时间,包括两部分:成像时间、运算时间。成像时间,指从系统收到外来触发信号起,到图像到达计算机内存为止;运算时间,指从图像到达计算机内存起,到系统输出运算结果为止。 通过《工业相机硬件的基本构成及技术参数》的讨论,我们已经知道,标准CCD摄像头是以一个固定速度,在不间断地拍照。CCIR格式的相机,CCD芯片的成像时间大约需要40毫秒。也就是说,系统至少要等40毫秒的时间(等待摄像头的扫描指针回到CCD的起始点),才能对系统所要的图像进行“拍照”。因此,如果普通标准工业摄像头的成像时间,不能达到我们系统速度要求的时候。我们就要考虑选用,具有“异步拍照”功能的工业摄像头――随时能够终止当前扫描,并将指针重置到CCD起始位置。 MV系列工业模拟相机 除了使用“板卡触发”功能及“异步拍照”功能,可以缩短成像时间外。还可以提高相机的快门速度,即缩短CCD芯片图像获取的时间。一般相机快门速度的缺省值为自动模式,如有特殊需要,可在相机里手动设置快门速度。最高可达万分之一秒。不过,在提高快门速度的同时,相应地要加强光源的亮度。 近几年市场上的工业数字摄像头技术已非常成熟,USB2.0\USB3.0\GigE千兆网\1394

如何合理地选择工业相机

如何合理地选择工业相机 在机器视觉、工业影像等实际应用中应该如何选择工业相机呢? 1、模拟相机&&数字相机 模拟相机必须带数字采集卡,标准的模拟相机分辨率很低,另外帧率也是固定的。这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。 2、相机分辨率 根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。 应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少于120万像素,但市面上常见的是130万像素的相机,因此一般而言是选用130万像素的相机。但实际问题是,如果一个像素对应一个缺陷的话,那么这样的系统一定会极不稳定,因为随便的一个干扰像素点都可能被误认为缺陷,所以我们为了提高系统的精准度和稳定性,最好取缺陷的面积在3到4个像素以上,这样我们选择的相机也就在130万乘3以上,即最低不能少于300万像素,通常采用300万像素的相机为最佳(我见过最多的人抱着亚像素不放说要做到零点几的亚像素,那么就不用这么高分辨率的相机了。比如他们说如果做到0.1个像素,就是一个缺陷对应0.1个像素,缺陷的大小是由像素点个数来计算的,试问0.1个像素的面积怎么来表示?这些人以亚像素来忽悠人,往往说明了他们的没有常识性)。换言之,我们仅仅是用来做测量用,那么采用亚像素算法,130万像素的相机也能基本上满足需求,但有时因为边缘清晰度的影响,在提取边缘的时候,随便偏移一个像素,那么精度就受到了极大的影响。故我们选择300万的相机的话,还可以允许提取的边缘偏离3个像素左右,这就很好的保证了测量的精度。

工业相机接口介绍

工业相机接口标准详解 来源:本站作者:admin 点击:517 面对市面上出现的越来越多的工业相机品牌,各相机厂商都给出了大量的相机参数,例如:相机接口、芯片类型、量子效应、帧率等。一般非行业内人士,在面对这些参数时往往会无所适从。湖南科天健光电技术有限公司根据长期的相机使用经验,同时结合这么多年和客户接触的情况,为大家总结出目前使用比较广泛的工业相机接口知识! 目前,工业相机数据传输接口方式有很多种,包括CoaxPress、CameraLink接口、USB接口、Gige接口等。 其主要性能比较如下表所示:

USB2.0 USB 即“Universal Serial Bus ”,中文名称为通用串行总线。这是近几年逐步在PC 领域广为应用的新型接口技术。USB2.0则可以达到速度480Mbps,并且可以向下兼容USB1.1。 这几年,随着大量支持USB的个人电脑的普及,USB逐步成为个人电脑的标准接口已经是大势所趋。在主机端,最新推出的个人电脑几乎100%支持USB;而在外设端,使用USB接口的设备也与日俱增,例如数码相机、扫描仪、游戏杆、磁带和软驱、图像设备、打印机、键盘、鼠标等等。 2000年制定的USB 2.0标准是真正的USB 2.0,被称为USB 2.0的高速(High-speed)版本,理论传输速度为480 Mbps,即60 MB/s,但实际传输速度一般不超过30 MB/s,采用这种标准的USB设备也比较多。USB电缆的长度在不加级连装置的情况下为小于5m。 USB3.0 USB3.0 ——也被认为是SuperSpeedUSB——为那些与PC或音频/高频设备相连接的各种设备提供了一个标准接口。只是个硬件设备,计算机内只有安装USB3.0相关的硬件设备后才可以使用USB3.0相关的功能!从键盘到高吞吐量磁盘驱动器,各种器件都能够采用这种低成本接口进行平稳运行的即插即用连接,用户基本不用花太多心思在上面。新的USB 3.0在保持与USB 2.0的兼容性的同时,还提供了下面的几项增强功能: (1)极大提高了带宽——高达5Gbps全双工(USB2.0则为480Mbps半双工) (2)实现了更好的电源管理 (3)能够使主机为器件提供更多的功率,从而实现USB——充电电池、LED照明和迷你风扇等应用。 (4)能够使主机更快地识别器件

工业相机镜头主要参数

工业相机镜头主要参数 在机器视觉系统中,工业相机镜头通常与光源、相机一起构成一个完整的图像采集系统,因此工业相机镜头的选择受到整个系统要求的制约。下面迪奥科技为您讲解工业相机镜头的参数与选型: 工业相机镜头主要参数: 1.焦距(FocalLength) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris)用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm/F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(SensorSize) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount)镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth ofField,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7.工作距离(Workingdistance,WD)镜头第一个工作面到被测物体的距离。 8.视野范围(Field ofView,FOV) 相机实际拍到区域的尺寸。 9.光学放大倍数(Magnification,?)CCD/FOV,即芯片尺寸除以视野范围。 10.数值孔径(Numerical Aperture,NA)数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sina/2。数

工业相机的原理及选择

工业相机的原理及选择 随着工业4.0的到来,机器视觉系统在智能制造领域的应用越来越广泛,相机、镜头是机器视觉的重要组成部分,合适的相机和镜头决定了系统应用的好坏。因此,选择合适的工业相机与镜头非常重要,本文主要介绍如何选择合适的工业相机和对应的镜头。 小孔成像原理 由光源A发出的一束光线通过一个小孔后,在孔后面的屏幕上就会留下一个光斑。同理光源B也会在屏幕上形成一个光斑,如果A和B离得足够远,它们在屏幕上的光斑也分开比较远,这就得到了物体AB的一个比较清晰的像。 凸透镜成像原理

由光源发出的一束光线,经过透镜的折射作用后方向和发散度都出现变化,在像平面上形成一个新的交点,即像点。 工业相机结构和成像过程 被摄物通过镜头汇聚光线,使机身内部的感光材料(就是传统的胶片,或者说现在数码时代说的ccd、cmos)感知光线,然后通过相应的光电或者化学反应,让影像清晰的留在感光材料上,并通过光电技术存储在存储卡上。光线通过镜头后,在机身内有一个五棱镜,光线通过反复折射后,将影像还原成了正的。如下图所示。 工业相机的选择步骤: 步骤一,需要先知道系统精度要求和工业相机分辨率; 步骤二,需要知道系统速度要求与工业相机成像速度; 步骤三,需要将工业相机与图像采集卡一并考虑,因为这涉及到两者的匹配; 步骤四,价格的比较。 选择工业相机应注意什么?

1、根据应用的不同来决定是需要选用CCD还是CMOS相机。CCD工业相机主要应用在运动物体的图像提取,如贴片机,当然随着CMOS技术的发展,许多贴片机也在选用CMOS工业相机。用在视觉自动检查的方案或行业中一般用CCD工业相机比较多。CMOS工业相机由成本低,功耗低也应用越来越广泛。 2、分辨率的选择,首先考虑待观察或待测量物体的精度,根据精度选择分辨率。其次看工业相机的输出,若是体式观察或机器软件分析识别,分辨率高是有帮助的;若是VGA输出或USB输出,在显示器上观察,则还依赖于显示器的分辨率,工业相机的分辨率再高,显示器分辨率不够,也是没有意义的;利用存储卡或拍照功能,工业相机的分辨率高也是有帮助的。 3、与镜头的匹配,传感器芯片尺寸需要小于或等于镜头尺寸,C或CS安装座也要匹配(或者增加转接口); 4、相机帧数选择,当被测物体有运动要求时,要选择帧数高的工业相机。但一般来说分辨率越高,帧数越低。

工业相机镜头的参数与选型

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距 离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、 2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。 光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

工业相机镜头的参数与选型

工业相机镜头的参数与选型

————————————————————————————————作者:————————————————————————————————日期: ?

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Le ica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

工业相机的选型规则

工业相机的选型规则 工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成AFT-808小型高清工业相机为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。 在机器视觉系统应用中,工业相机、工业镜头、图像采集卡、机器视觉光源、机器视觉系统平台软件,在选择过程中存在很多问题,那么今天就工业相机、工业CCD摄像头的选择,给大家介绍一些经验。 1、选择工业相机的信号类型 工业相机从大的方面来分有模拟信号和数字信号两种类型。 模拟相机必须有图像采集卡,标准的模拟相机分辨率很低,一般为768*576,另外帧率也是固定的,25帧每秒。另外还有一些非标准的信号,多为进口产品,那么成本就是比较高了,性价比很低。所以这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。工业数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。 2、工业相机的分辨率需要多大。 根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。 应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少

如何选择合适工业相机来完成机器视觉图像采集

如何选择合适工业相机来完成机器视觉图 像采集 整理:视清科技 在一个完整的机器视觉系统中,图像采集的意义非常大,因为通过图像采集后,视频信号就可以转换为计算机使用的数字格式。以下是为机器视觉系统选择工业相机时需要注意的几个方面: 1. 提高分辨率的优缺点 虽然高分辨率工业相机有助于提高精确度,但是通过分析更清晰的,更精细的图像,就会降低了速度。工业数字相机传输图像数据是由一系列代表像素值的数字组成的。一个分辨率为200×100的相机具有20000个像素,因此,20000个数字值会被发送到采集系统。如果工业相机工作在25MHz的数据速率下,它每40纳秒传送一个值。这造成一幅整个图像需要大约0.0008秒,相当于1250帧/秒。而当分辨率提高到640×480会有307200个像素,大约是上面的15倍。使用同样的25MHz数据速率,采集整幅图像需要0.012288秒,或相当于81.4帧/秒。这些值都是期望值,实际的相机帧率会较低,因为我们不得不添加曝光和调整次数,但是工业相机分辨率的增加会导致工业相机帧率成比例的下降。虽然各种工业相机输出配置会在不牺牲帧率的情况下提高工业相机分辨率,但是这也需要增加复杂性和更高的成本。 2. 速度和曝光 在选择一款工业数字相机时,物体成像的速度必须充分考虑好。例如,假设在拍摄过程中,物体在曝光中没有移动,可用相对简单和便宜的工业相机;对于静止或缓慢移动的物体,面阵工业相机最适合于对静止或移动缓慢的物体成像。因为整个面阵区域必须一次曝光,在曝光时间当中任何的移动会导致图像的模糊,但是,运动模糊可以通过减少曝光时间或使用闪光灯来控制;对于快速移动的物体,当对运动的物体使用一个面阵工业相机时,需要考虑在曝光时间当中处于工业相机当中的运动对象数量,还需要考虑物体上能用一个像素表征的最小特征,也就是对象分辨率,在采集运动物体的图像的拇指规则就是曝光必须发生在采集物体移动量小于一个像素的时间内。如果你采集的物体是在以1厘米/秒的速度匀速移动,而且物体分辨率已经设置为1 pixel/mm,那么需要的最大曝光时间是1/10每秒。因为物体移动一个距离恰好等于相机传感器中的一个像素,当使用最大曝光时间时这里会有一定数量的模糊。在这种情况下,一般倾向于将曝光时间设置的比最大值要快,比如1/20每秒,就能保持物体在移动半个像素内成像。如果同样的物体以1厘米/秒的速度移动,物体分辨率为1 pixel/微米,那么一秒中所需要的最大曝光是1/10000.曝光设置的对快取决于所采用的相机,还有你是否能够给物体足够的光来获得一幅好的图像。 3. 帧率

工业相机的参数及选型

工业相机的参数及选型 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字相机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480,模拟相机已经逐步被数字相机代替,且分辨率已经达到6576*4384。 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit、14Bit等。 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机为每秒采集的行数(Lines/Sec.)。 曝光方式(Exposure)和快门速度(Shutter):对于线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机靶面的大小。数字相机像元尺寸为3μm~10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。 接口类型:有Camera Link接口,以太网接口,1394接口、USB接口输出,目前最新的接口有CoaXPress接口。

工业相机选型解密之相机接口

工业相机选型解密之相机接口面对市面上出现的越来越多的工业相机品牌,各相机厂商都给出了大量的相机参数,例如:相机接口、芯片类型、量子效应、帧率等。一般非行业内人士,在面对这些参数时往往会无所适从。维视图像拥有十多年的相机研发经验,同时结合这么多年和客户接触的情况,希望能用简短的语言结合实际效果展示一下工业相机选型时需要注意的地方。 首先,先了解一下工业相机的相机接口。目前最常见的工业相机接口,有USB、1394、Gige、BNC、camera link等。那么这些接口之间孰优孰劣,各自都适应哪些应用场合呢?下面逐一解答。 一、模拟接口 模拟视频有近百年历史,早期的相机都是输出的模拟图像信号,直接传输给电视实时观看。由于数字图像处理技术的兴起,我们需要将模拟图像信号转换为数字图像再进行处理。所以目前市场上还存在很多模拟图像采集卡,此类采集卡一般都应用于视频显示、视频转换等,部分应用于机器视觉处理。 模拟相机以BNC接口为主,由于其固有原因,和近十几年兴起的数字视频相比,精度差很多,随着数字化技术的发展,模拟视频终究会消亡,但模拟视频的消亡还要有相当长的一段时间,由于模拟视频设备的低价格,在视觉应用的低端领域还有相当的市场。 二、USB接口 USB接口相机是数字相机,直接输出数字图像信号。USB全称是Universal Serial Bus (通用串行总线),它是1994年底由康柏、IBM、Microsoft等多家公司联合制订的,但是直到1999年,USB才真正被广泛应用。 USB接口是4“针”,其中2根为电源线、2根为信号线。USB是串行接口,可热拔插,连接方便。用USB连接的外围设备数目最多达127个,共6层,所谓6层是指从主装置开始可以经由5层的集线器进行菊花链接,用不着担心要连接的装置数目受限制;两个外设之间最长通信可以距离5米。USB1.1接口支持同步和异步数据的传输,数据传输率最高达12Mbps,比标准串口快100倍,比并口快10倍;USB 2.0向下兼容USB 1.1、USB 1.0,数据的传输率将达到120Mbps~480Mbps。

工业相机镜头选用简述

工业相机镜头选用简述 在维视图像北京公司的官网上,我们已经连续发表几篇《深度解析工业镜头核心参数》的文章来阐述工业镜头,今天我们换一个角度,从工业相机镜头的选用来分析,为大家在选择工业镜头时提供一些参考。 1、镜头的分类 如上图,大致按照工业相机对镜头进行了区分。对于1/3形,1/2形,2/3形等小尺寸有效像圆径的工业镜头常常使用C接口。可是,C接口镜头,即使1形的镜头有效像圆径也只有约16mm,如果对于再大尺寸的CCD便不能使用了,CS接口除了从成像基准面到镜头的距离少约5毫米外,其它的都一样,至于更详细的说明这个大家可参考《Microvision产品使用前必读》。这时,用的较多的是常用在35mm照相机上的K,F接口镜头。 另外,按照分辨能力可分为25-100万像素用工业镜头与500-1000万像素用工业镜头。按照入射光的光谱可分为一般可视光镜头,紫外线镜头,红外线镜头等。其他,在比较特殊的场合,我们还会用到拍摄较大观察对象时的广角镜头,可对大小不同观察物瞬间聚焦的变焦镜头等。 2、镜头的性能和特性 (1)高分辨力,下表为F值和分辨能力的关系。 (2)畸变,与分辨能力同样重要的要素还有畸变 (3)均一充分的亮度对于机器视觉用镜头,光圈开满时的最大亮度值太太被认为是很重要的。可是,中心部明亮而周边部分灰暗的现象确是要防止的。

(4)耐振荡冲击性,耐振荡冲击性对于机器视觉用镜头是最重要的课题之一。因此,镜头的零部件多数为金属材料,同时,,对焦点,光圈的调整均采用螺钉用来做固定,以达到减轻振荡?冲击的功效。 (5)小型化,由于照相机被设置的空间有所限制,小型化也成为比较重要的因素。例如:C接口的安装尺寸按照基准为¢30mm以下。 (6)其他 ①光圈控制: 一般,机器视觉镜头都是通过手动来调整光圈的,不过,为了对应被拍对象的亮度变化,有时也有远距离控制光圈的要求。 ②Zoom,AF,可变焦点镜头: 一般,机器视觉用镜头没有自动变焦功能。 ③紫外线镜头: 利用紫外线,有时可以捕捉到更细微的对象。 3、今后镜头发展的方向和难点 (1)广角 增大广角度,会加大图像的扭曲,同时画面中心和画面周边的性能差值也会增大。另外,还要求光学系统有更大的亮度,才可以充分地确保画面周边的发光强度达到所需要求。 (2)大口径比 增大大口径比会使得焦点深度变浅,从而使得色差畸变增大。同时会使得画面周边像差的补正变得困难,并容易产生径向侵食,也难以确保充分的发光强度。 (3)小型化 像差补正比较困难,分辨能力也会降低,,并使得由于制造误差引起的光学性能退化现象频于发生。 (4)大画面化 图像畸变严重,画面中心和画面周边的性能差值增大。难以确保充分的发光强度,色差畸变增大。 (5)高倍率化 由于制造误差引起的光学性能退化现象显著。光轴上色差畸变增大。 (6)高分辨率化 像差补正变得困难,使得要求的镜头数目增加,成本提高。需要明亮光学系统,并会导致镜头的大型化。 (7)波长宽带化 色差畸变增大。会要求增加采用一些特殊并且高价的光学玻璃,镜头的数目也会增加。

相机接口说明

相机:Cognex工业相机 Cognex工业相机在BMW项目的M1SB090工位用来检测发动机活塞及连杆的装配情况。 活塞的检测,需要读出活塞上二维码的值,有OK和NG逻辑结果。对于OK的结果,还需要反馈出活塞上的二维码的准确值。 连杆的检测,需要判断每个连杆是否装反,对于各种型号,如G7,G8,H7,H8等都能够判断出来。 相机工作过程:首先照相机读取发动机的活塞二维码信息,与活塞预装线的信息进行比较,若比较一致,再进行检测发动机的连杆的装配情况。若一致,则认为活塞装配校验成功。 1.相机的硬件说明 相机的控制器是由小型的工业PC机组成。 控制器需要安装VisionPro(视觉检测软件)对相机进行数据的采样和PLC的数据通讯。

2.相机的组态 相机的PC机通过CP 343-1 Lean与西门子PLC进行通讯。

在配置CP网卡时要注意,IP地址要与PLC的网段要一致。 3.相机的通讯接口 相机发送的数据接口: 相机接收的数据接口:

工作时序图: 主要数据: PLC控制的主要数据:

TypeNumber:机型号设定,表示发动机类型。StepNumber:工序号设定,表示工序类别,1:活塞;2:连杆PositinNumber:位置号,对于四个相机,需要提供位置号。Trigger:用于触发相机拍摄的控制位。 ResetResult:清除接口数据 相机反馈的主要数据: 相应相机会反馈基本信息,向PLC进行确认:TypeNumber:机型号设定,表示发动机类型。StepNumber:工序号设定,表示工序类别,1:活塞;2:连杆PositinNumber:位置号,对于四个相机,需要提供位置号。SysHeart:表示相机的通讯心跳。 SysFault:表示相机出现系统错误。 ActionFinished:表示拍摄完成。 LoadingJobStatus:表示正在装置发动机的状态信息。Camera1ResultOK:表示相机1拍摄结果合格。 Camera2ResultOK:表示相机2拍摄结果合格。 Camera3ResultOK:表示相机3拍摄结果合格。 Camera4ResultOK:表示相机4拍摄结果合格。 Camera1ResultNG:表示相机1拍摄结果不合格。 Camera2ResultNG:表示相机2拍摄结果不合格。 Camera3ResultNG:表示相机3拍摄结果不合格。 Camera4ResultNG:表示相机4拍摄结果不合格。

工业相机的接口选择

工业相机,选择迪奥科技。 工业相机的接口选择 在了解工业相机接口之前,让我们大概先了解一下什么是工业相机,一般对工业相机的定义大概是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机的选择不仅直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。 因为没有一个标准的命名,所以工业相机还被称作工业摄像头、工业摄像机、工业照相机等等。从其芯类型中被分为工业CCD相机和工业CMOS相机,从其信号种类里又分为工业模拟相机、工业数字相机。其中数字相机又分为: GIGE千兆网、USB2.0、 USB3.0、等多种类型的接口。而各种接口都有其利弊。接下来让迪奥科技先简单的分析这几个接口的区别。 (1)GIGE千兆网接口 1、千兆网协议稳定。 2、千兆网接口的工业相机,是近几年市场应用的重点。使用方便,连接到千兆网卡上,即能正常工作。 3、需要注意一些特殊的细节,如早期的NI的软件,可能对千兆网卡的芯片有要求,需要使用INTEL的芯片才可以正常驱动GIGE相机,而使用如Realtek的芯片网卡,就无法响应。随着技术的不断革新发展,迪奥科技千兆网工业相机无论是什么芯片网卡,都能稳定的正常使用,不会有任何问题。 4、在千兆网卡的属性中,也有与1394中的Packet Size类似的巨帧。设置好此参数,可以达到更理想的效果。 5、传输距离远,可传输100米。 6、可多台同时使用,CPU占用率小。 (2)USB2.0接口

1、USB2.0接口的工业相机,是最早应用的数字接口之一,开发周期短,成本低廉,是目前最为普通的类型。 2、所有电脑都配置有USB2.0接口,方便连接,不需要采集卡;缺点是其传输速率较慢,理论速度只有480Mb(60MB)。 3、传输速率低,糟糕的协议(Bulk-Only Transport(BOT)协议)与编码方式,数据只有30MB/S左右。 4、在传输过程中CPU参与管理,占用及消耗资源较大。 5、USB2.0接口不稳定,相机通常没有坚固螺丝,因此在经常运动的设备上,可能会有松动的危险。 6、传输距离近,信号容易衰减。

相关文档
最新文档