工业相机的选型

工业相机的选型
工业相机的选型

工业相机选择的一些参数

1. 工业相机:本质上是将光子信号转换为数字信号的设备,而这里所谓的数字信号就是图像。这些图像不一定非得看起来如何美轮美奂,在工业机器视觉领域,只需要相机尽可能精确的将光信号转换为电信号。 所以,工业相机不会美化它拍摄的画面, 同理,机器视觉领域也应尽量避免压缩图像。

2. 数码相机:表现为胶卷,一种利用电子传感器把光学影像转换成电子数据的照相机。用于区别与胶卷相机。

3. 图像感光芯片:以前工业相机都使用CCD芯片。 这使得相机具有高灵敏度和低图像噪声。 此外,CCD工业相机还具有以下三个主要特征:1、全局快门;2、黑白与彩色两种型号;3、长期都有库存。与此同时,越来越多的CMOS感光芯片也被用于工业相机领域。由于它们成本较低,可以有效降低机器视觉应用的整体造价。 但大多数CMOS相机的卷帘式快门限制了其应用领域

4. CCD 主要有以下几种类型:

a) 面阵CCD:允许拍摄者在任何快门速度下一次曝光拍摄移动物体。

b) 线阵CCD:用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。初期应用于广告界拍摄静态图像,线性阵列,处理高分辨率的图像时,受局限于非移动的连续光照的物体。

c) 三线传感器CCD:在三线传感器中,三排并行的像素分别覆盖 RGB滤镜,当捕捉彩色图片时,完整的彩色图片由多排的像素来组合成。三线CCD传感器多用于高端数码相机,以产生高的分辨率和光谱色阶。

d) 交织传输CCD:这种传感器利用单独的阵列摄取图像和电量转化,允许在拍摄下一图像时在读取当前图像。交织传输CCD通常用于低端数码相机、摄像机和拍摄动画的广播拍摄机

e) 全幅面CCD:此种CCD 具有更多电量处理能力,更好动态范围,低噪音和传输光学分辨率,全幅面CCD 允许即时拍摄全彩图片。全幅面 CCD由并行浮点寄存器、串行浮点寄存器和信号输出放大器组成。全幅面CCD 曝光是由机械快门或闸门控制去保存图像,并行寄存器用于测光和读取测光值。图像投摄到作投影幕的并行阵列上。

第 1 页

此元件接收图像信息并把它分成离散的由数目决定量化的元素。这些信息流就会由并行寄存器流向串行寄存器。此过程反复执行,直到所有的信息传输完毕。接着,系统进行精确的图像重组。

5. 镜头:机器视觉技术的应用领域非常广泛。因此,大部分工业相机在发售时都不带镜头,但带有镜头基座。工业镜头接口有两种型号:C和CS。二者间不同之处在于感光距离不同:

a) C:C式安装座从基准面到焦点的距离为17.562毫米

b) CS:CS式距焦点距离为12.5毫米

6. 数字I/O接口:机器视觉的定义不仅仅是捕捉到图像,还包括与机器的交互。为此,工业相机提供了数字I/O接口。其中用的最多的就是外触发输出。在外触发模式下,相机根据外界事件触发快门,捕捉图像。典型的应用就是传送带上安装光栅,然后将工业相机放置在旁边。当有目标物体经过光栅时,触发脉冲信号,进而让相机曝光。

7. CCD靶面大小的区别:

a) 目前采用的芯片大多数为1/3”和1/4”

b) 特别是对摄像角度有比较严格要求的时候,CCD靶面的大小,CCD与镜头的配合情况将直接影响视场角的大小和图像的清晰度。

c) 靶面越大,成像质量越好

8. 扫描制式:

a) PAL制:中国采用逐行倒像(PAL)制式(黑白为CCIR ),标准为625行,50场

b) NTSC制:日本采用隔行扫描NTSC制式,525行,60场(黑白为EIA)。影像容易受到相位干扰。

c) 发展到数码摄像机时代之后,计算机的视频采集就成了很重要的步骤,制式的差别影响也就没这么大了。如果是用1394卡从数码摄像机上攫取视频进而编辑处理的话,无论是NTSC还是PAL都基本上是相同的

第 2 页

9. 帧速率:是指每秒钟刷新的图片的帧数,也可以理解为图形处理器每秒钟能够刷新几次。对影片内容而言,帧速率指每秒所显示的静止帧格数。要生成平滑连贯的动画效果,帧速率一般不小于8;而电影的帧速率为24fps。捕捉动态视频内容时,此数字愈高愈好。

10. 信噪比:一般监控摄像机的图像信噪比是在50dB,信噪比是信号电压对于噪声电压的比值,通常用符号s/n来表示。由于在一般情况下,信号电压远高于噪声电压,比值非常大,信噪比的单位用db 来表示。一般摄像机给出的信噪比值均是在agc(自动增益控制)关闭时的值,因为当agc接通时,会对小信号进行提升,使得噪声电平也相应提高。 信噪比的典型值为45~55db,若为50db,则图像有少量噪声,但图像质量良好;若为60db,则图像质量优良,不出现噪声。

11. 曝光时间:相机曝光时间是指从快门打开到关闭的时间间隔。曝光时间越长越需要装三脚架支撑。

12. 快门速度:

13. 曝光方式:

a) 对于线阵相机机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;

b) 面阵相机机有帧曝光、场曝光和滚动行曝光等几种常见方式

i. 帧曝光:

ii. 场曝光:

iii. 滚动行曝光:

14. 同步方式:

a) 外触发

b)

15. 可编程控制:指通过编程可以控制的选项。

第 3 页

16. 工作温度:

17. 镜头选择:

a) 据目标物体的大小和摄像头与物体的距离,通过计算得到镜头的焦距

18. 彩色与黑白区别:

a) 彩色相机:适用于景物细部辨别,如辨别衣着或景物的颜色。

b) 黑白相机:适用于光线不充足地区及夜间无法安装照明设备的地区,在仅监视景物的位置或移动时,可选用黑白摄象机

19. 分辨率:

a) 相机每次采集图像的像素点数(Pixels),对于数字相机机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480。

b) 根据实际需求而来,分辨率高清晰,但是数据量大,在图像处理时就比较慢了。

20. 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit等。

21. 照度的不同区分:

a) 普通型 正常工作所需照度1~3LUX

b) 月光型 正常工作所需照度0.1LUX左右

c) 星光型 正常工作所需照度0.01LUX以下

d) 红外型 采用红外灯照明,在没有光线的情况下也可以成像

22. 视频输出:

a) BNC接头:

第 4 页

b) VGA接口:

c) 1394接口:

d) USB接口:

e) 无线网:

如何选择工业相机:

做图像处理,处理的对像是从工业相机来的图像,所以,工业相机、工业摄像机、工业摄像头的选择是不可缺少而且非常重要的一步。

首先要弄明白的是自己的检测任务,是静态拍照还是动态拍照、拍照的频率是多少、是做缺陷检测还是尺寸测量或者是定位、产品的大小(视野)是多少、需要达到多少精度、所用软件的性能、现场环境情况如何、有没有其它的特殊要求等。如果是动态拍照,运动速度是多少,根据运动速度选择最小曝光时间以及是否需要逐行扫描的相机;而相机的桢率(最高拍照频率)跟像素有关,通常分辨率越高桢率越低,不同品牌的工业相机的桢率略有不同;根据检测任务的不同、产品的大小、需要达到的分辨率以及所用软件的性能可以计算出所需工业相机的分辨率;现场环境最要考虑的是温度、湿度、干扰情况以及光照条件来选择不同的工业相机。

举例说明:如我们的检测任务是尺寸测量,产品大小是18mm*10mm ,精度要求是0.01mm,流水线作业,检测速度是10件/秒,现场环境是普通工业环境,不考虑干扰问题。首先我们知道是流水线作业,速度比较快,因此选用逐行扫描相机;视野大小我们可以设定为

20mm*12mm(考虑每次机械定位的误差,将视野比物体适当放大),假如我们能够取到很好的图像(比如可以打背光),而且我们软件的

第 5 页

测量精度可以考虑1/2亚像素精度[注],那么我们需要的相机分辨率就是20/0.01/2=1000pixcel(像素),另一方向是

12/0.01/2=600pixcel,也就是说我们相机的分辨率至少需要

1000*600pixcel,桢率在10桢/秒,因此选择1024*768像素(软件性能和机械精度不能精确的情况下也可以考虑1280*1024pixcel),桢率在10桢/秒以上的即可。

一般高速相机指的是数字工业相机,其一般安装在机器流水线上代替人眼来做测量和判断,通过数字图像摄取目标转换成图像信号,传送给专用的图像处理系统,图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 广泛应用于生产检测、制药、印刷、电子、电气制造、以及更高要求的行业。

第 6 页

工业相机选型方法

工业相机选型方法 工业相机,选择TEO. 工业相机选型方法 工业相机又被叫做摄像机,对比与传统的民用相机而言,工业相机在图像稳定性、抗干扰能力和传能能力方面有着更大更高的优势,是组成机器视觉系统的关键部分,工业相机的性能好坏决定着机器视觉系统的稳定性。那么我们在相机选型方面如何更好地选择工业相机呢, 第一、我们要明确我们需要什么样的工业相机,所以要先确定好所需要检测的产品的精度要求;确定好检测物体的速度包括它是动态的还是静态的;确定好工业相机取景的视野大小。 第二、我们要能确定好硬件的类型。工业相机的性能硬件参数影响非常大,所以在我们确定硬件类型前,我们先看下几个重要的参数: 1.相机传输方式。目前市面上相机传输方式有很多各有优缺点:(1)USB接口相机,优点:帧率高,性价比高,不需要占据PCI插槽,缺点就是太占CPU;(2)模拟相机,优点:稳定,性价比高,缺点就是帧率太低;(3)1394相机接口,优点:不占系统CPU的运行,帧频高,缺点是价格昂贵,还需要PCI插槽。 2.相面像素大小的确定。目前虽然市场上的软件在精度上一般是没有误差的,也就是我们所说的亚像素,但是在硬件方面的误差还是不可避免的。所以现在机器视觉系统在市场上都是保证误差保持在通过“精度=视野(长或宽)?相机像素(长或宽)”这样一个公式计算出来的一个像素数值上。 3.相机的触发方式选择。(1)软件触发模式:在对动态检测的时候以及产品通过连续运动触发信号的时候可以选择;(2)硬件触发模式:对高速动态检测以及产品通

过高速运动触发信号的时候选择;(1)连续采集模式:对静态检测以及产品连续运动不能够触发信号的时候可以选择。 工业相机有着多种多样的类别,所以如何选择工业相机非常重要。根据不同行业的不同应用,我们需要选购适合应用的工业相机。

工业相机镜头的基础知识20160727

工业相机镜头的基础知识 1、工业镜头的接口 物镜的接口尺寸是有国际标准的,共有三种接口型式,即F型、C型、CS型。F型接口是通用型接口,一般适用于焦距大于25mm的镜头;而当物镜的焦距约小于25mm时,因物镜的尺寸不大,便采用C型或CS型接口。 C接口和CS接口的区别 ?C与CS接口的区别在于镜头与摄像机接触面至镜头焦平面(摄像机CCD光电感应器应处的位置)的距离不同,C型接口此距离为17.5mm., CS型接口此距离为12.5mm.。?C型镜头与C型摄像机,CS型镜头与CS型摄像机可以配合使用。C型镜头与CS型摄像机之间增加一个 5mm的C/CS转接环可以配合使用。CS型镜头与C型摄像机无法配合使用。 2、工业镜头的基本参数 视场(Field of view, 即FOV,也叫视野范围) : 指观测物体的可视范围,也就是充满相机采集芯片的物体部分。(视场范围是选型中必须要了解的) 工作距离(Working Distance,即WD):

指从镜头前部到受检验物体的距离。即清晰成像的表面距离(选型必须要了解的问题,工作距离是否可调?包括是否有安装空间等) 分辨率: 图像系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。§ 景深 (Depth of view,即DOF): 物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力 (需要了解客户对景深是否有特殊要求?)

图1:镜头基本参数示意图 感光芯片尺寸: 相机感光芯片的有效区域尺寸,一般指水平尺寸。这个参数对于决定合适的镜头缩放比例以 获取想要的视场非常重要。镜头主要缩放比例(PMAG) 由感光芯片的尺寸和视场的比率来定义。虽然基本参数包括感光芯片的尺寸和视场,但PMAG却不属于基本参数。 焦距(f)焦距, 是光学系统中衡量光的聚集或发散的度量方式,指从透镜的光心到光聚集之焦点的距离。亦是照相机中,从镜片中心到底片或CCD等成像平面的距离。(需要记住的公式) f={工作距离/视野范围长边(或短边)}X CCD长边(或短) 焦距大小的影响情况: 焦距越小,景深越大;焦距越小,畸变越大;焦距越小,渐晕现象越严重,使像差边缘的照 度降低;

工业相机的选型规则

工业相机的选型规则 工业相机是机器视觉系统中的一个关键组件,其最本质的功能就是将光信号转变成AFT-808小型高清工业相机为有序的电信号。选择合适的相机也是机器视觉系统设计中的重要环节,相机不仅是直接决定所采集到的图像分辨率、图像质量等,同时也与整个系统的运行模式直接相关。 在机器视觉系统应用中,工业相机、工业镜头、图像采集卡、机器视觉光源、机器视觉系统平台软件,在选择过程中存在很多问题,那么今天就工业相机、工业CCD摄像头的选择,给大家介绍一些经验。 1、选择工业相机的信号类型 工业相机从大的方面来分有模拟信号和数字信号两种类型。 模拟相机必须有图像采集卡,标准的模拟相机分辨率很低,一般为768*576,另外帧率也是固定的,25帧每秒。另外还有一些非标准的信号,多为进口产品,那么成本就是比较高了,性价比很低。所以这个要根据实际需求来选择。另外模拟相机采集到的是模拟信号,经数字采集卡转换为数字信号进行传输存储。模拟信号可能会由于工厂内其他设备(比如电动机或高压电缆)的电磁干扰而造成失真。随着噪声水平的提高,模拟相机的动态范围(原始信号与噪声之比)会降低。动态范围决定了有多少信息能够被从相机传输给计算机。工业数字相机采集到的是数字信号,数字信号不受电噪声影响,因此,数字相机的动态范围更高,能够向计算机传输更精确的信号。 2、工业相机的分辨率需要多大。 根据系统的需求来选择相机分辨率的大小,下面以一个应用案例来分析。 应用案例:假设检测一个物体的表面划痕,要求拍摄的物体大小为10*8mm,要求的检测精度是0.01mm。首先假设我们要拍摄的视野范围在12*10mm,那么相机的最低分辨率应该选择在:(12/0.01)*(10/0.01)=1200*1000,约为120万像素的相机,也就是说一个像素对应一个检测的缺陷的话,那么最低分辨率必须不少

工业摄像头选用简述

工业摄像头选用简述 1、精度要求与工业摄像头分辨率 虽然现在网上随处可见诸如怎么选择工业摄像头的这些文章,但感觉还是比较零碎,各执一词,维视图像根据这多的工业项目经验,总结了一些简单实用的方法,现描述给大家,希望对大家在工业摄像头(至于这里说的工业摄像头和我们的工业相机有什么区别,维视图像已在其北京公司官网上做过详细论述,这里就不多讲了)的选择上有一些实际的帮助。 MV-E系列工业数字摄像头 当我们面对一个新的项目,首先要考虑选用什么样的工业摄像头。而在考虑选用哪一款工业摄像头时,则先要考虑的是分辨率,这是因为工业摄像头的分辨率会直接影响到整个机器视觉系统的计算精度。而衡量系统精度的标准,就是我们常常听到的像素值――CCD芯片上像素所对应的实际长度。 像素值的计算公式如下: 像素值(X方向)=视野范围(X方向)÷ CCD芯片像素数量(X方向) 像素值(Y方向)=视野范围(Y方向)÷ CCD芯片像素数量(Y方向) 这个像素值越小,系统的计算精度就越高。 回来本小节的中心问题上来:对于一个有具体精度要求的项目,该如何确定相机的分辨率为多少才适合?计算相机分辨率的公式如下: 分辨率(X方向)=视野范围(X方向)÷理论像素值(X方向) 分辨率(Y方向)=视野范围(Y方向)÷理论像素值(Y方向)理论像素值指的是,根据项目精度的要求,通过推算得出的像素值在理论上所应该达到的数值。即像素值只有达到这一数值,才能确保系统的计算精度符合要求。 为了让大家容易理解,我们以一个实际项目为例。现在有客户要用我们的机器视觉系统

测量某一种工件上小孔的间距,该工件大小为50×40MM,测量精度要求达到0.1MM。由以上条件,我们可以将0.1MM假定为理论像素值(有关理论像素值的推算,另题讨论)。也就是说,只要像素值能达到0.1MM,我们就可以肯定这个项目在测量精度方面能够满足客户的要求。根据上面计算相机分辨率的公式: 50(X方向视野范围)÷ 0.1(X方向理论像素值)= 500(X方向分辨率) 40(Y方向视野范围)÷ 0.1(Y方向理论像素值)= 400(Y方向分辨率)通过上面的计算我们知道,只要相机的分辨率高于500×400,就是适合此项目的相机,比如MV-EM040M这款相机的分辨率是640×480便能适合这个例子的精度要求。 2、速度要求与工业摄像头成像速度及快门速度匹配 除了精度要求外,速度上的要求也是我们常常要面对的问题之一。系统速度的快慢取决于整个视觉系统运行的时间,包括两部分:成像时间、运算时间。成像时间,指从系统收到外来触发信号起,到图像到达计算机内存为止;运算时间,指从图像到达计算机内存起,到系统输出运算结果为止。 通过《工业相机硬件的基本构成及技术参数》的讨论,我们已经知道,标准CCD摄像头是以一个固定速度,在不间断地拍照。CCIR格式的相机,CCD芯片的成像时间大约需要40毫秒。也就是说,系统至少要等40毫秒的时间(等待摄像头的扫描指针回到CCD的起始点),才能对系统所要的图像进行“拍照”。因此,如果普通标准工业摄像头的成像时间,不能达到我们系统速度要求的时候。我们就要考虑选用,具有“异步拍照”功能的工业摄像头――随时能够终止当前扫描,并将指针重置到CCD起始位置。 MV系列工业模拟相机 除了使用“板卡触发”功能及“异步拍照”功能,可以缩短成像时间外。还可以提高相机的快门速度,即缩短CCD芯片图像获取的时间。一般相机快门速度的缺省值为自动模式,如有特殊需要,可在相机里手动设置快门速度。最高可达万分之一秒。不过,在提高快门速度的同时,相应地要加强光源的亮度。 近几年市场上的工业数字摄像头技术已非常成熟,USB2.0\USB3.0\GigE千兆网\1394

如何选择合适工业相机来完成机器视觉图像采集

如何选择合适工业相机来完成机器视觉图 像采集 整理:视清科技 在一个完整的机器视觉系统中,图像采集的意义非常大,因为通过图像采集后,视频信号就可以转换为计算机使用的数字格式。以下是为机器视觉系统选择工业相机时需要注意的几个方面: 1. 提高分辨率的优缺点 虽然高分辨率工业相机有助于提高精确度,但是通过分析更清晰的,更精细的图像,就会降低了速度。工业数字相机传输图像数据是由一系列代表像素值的数字组成的。一个分辨率为200×100的相机具有20000个像素,因此,20000个数字值会被发送到采集系统。如果工业相机工作在25MHz的数据速率下,它每40纳秒传送一个值。这造成一幅整个图像需要大约0.0008秒,相当于1250帧/秒。而当分辨率提高到640×480会有307200个像素,大约是上面的15倍。使用同样的25MHz数据速率,采集整幅图像需要0.012288秒,或相当于81.4帧/秒。这些值都是期望值,实际的相机帧率会较低,因为我们不得不添加曝光和调整次数,但是工业相机分辨率的增加会导致工业相机帧率成比例的下降。虽然各种工业相机输出配置会在不牺牲帧率的情况下提高工业相机分辨率,但是这也需要增加复杂性和更高的成本。 2. 速度和曝光 在选择一款工业数字相机时,物体成像的速度必须充分考虑好。例如,假设在拍摄过程中,物体在曝光中没有移动,可用相对简单和便宜的工业相机;对于静止或缓慢移动的物体,面阵工业相机最适合于对静止或移动缓慢的物体成像。因为整个面阵区域必须一次曝光,在曝光时间当中任何的移动会导致图像的模糊,但是,运动模糊可以通过减少曝光时间或使用闪光灯来控制;对于快速移动的物体,当对运动的物体使用一个面阵工业相机时,需要考虑在曝光时间当中处于工业相机当中的运动对象数量,还需要考虑物体上能用一个像素表征的最小特征,也就是对象分辨率,在采集运动物体的图像的拇指规则就是曝光必须发生在采集物体移动量小于一个像素的时间内。如果你采集的物体是在以1厘米/秒的速度匀速移动,而且物体分辨率已经设置为1 pixel/mm,那么需要的最大曝光时间是1/10每秒。因为物体移动一个距离恰好等于相机传感器中的一个像素,当使用最大曝光时间时这里会有一定数量的模糊。在这种情况下,一般倾向于将曝光时间设置的比最大值要快,比如1/20每秒,就能保持物体在移动半个像素内成像。如果同样的物体以1厘米/秒的速度移动,物体分辨率为1 pixel/微米,那么一秒中所需要的最大曝光是1/10000.曝光设置的对快取决于所采用的相机,还有你是否能够给物体足够的光来获得一幅好的图像。 3. 帧率

工业相机镜头主要参数

工业相机镜头主要参数 在机器视觉系统中,工业相机镜头通常与光源、相机一起构成一个完整的图像采集系统,因此工业相机镜头的选择受到整个系统要求的制约。下面迪奥科技为您讲解工业相机镜头的参数与选型: 工业相机镜头主要参数: 1.焦距(FocalLength) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris)用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm/F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(SensorSize) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount)镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth ofField,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7.工作距离(Workingdistance,WD)镜头第一个工作面到被测物体的距离。 8.视野范围(Field ofView,FOV) 相机实际拍到区域的尺寸。 9.光学放大倍数(Magnification,?)CCD/FOV,即芯片尺寸除以视野范围。 10.数值孔径(Numerical Aperture,NA)数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sina/2。数

工业相机的参数及选型

工业相机的参数及选型 分辨率(Resolution):相机每次采集图像的像素点数(Pixels),对于数字相机一般是直接与光电传感器的像元数对应的,对于模拟相机机则是取决于视频制式,PAL制为768*576,NTSC制为640*480,模拟相机已经逐步被数字相机代替,且分辨率已经达到6576*4384。 像素深度(Pixel Depth):即每像素数据的位数,一般常用的是8Bit,对于数字相机机一般还会有10Bit、12Bit、14Bit等。 最大帧率(Frame Rate)/行频(Line Rate):相机采集传输图像的速率,对于面阵相机一般为每秒采集的帧数(Frames/Sec.),对于线阵相机为每秒采集的行数(Lines/Sec.)。 曝光方式(Exposure)和快门速度(Shutter):对于线阵相机都是逐行曝光的方式,可以选择固定行频和外触发同步的采集方式,曝光时间可以与行周期一致,也可以设定一个固定的时间;面阵相机有帧曝光、场曝光和滚动行曝光等几种常见方式,数字相机一般都提供外触发采图的功能。快门速度一般可到10微秒,高速相机还可以更快。 像元尺寸(Pixel Size):像元大小和像元数(分辨率)共同决定了相机靶面的大小。数字相机像元尺寸为3μm~10μm,一般像元尺寸越小,制造难度越大,图像质量也越不容易提高。 光谱响应特性(Spectral Range):是指该像元传感器对不同光波的敏感特性,一般响应范围是350nm-1000nm,一些相机在靶面前加了一个滤镜,滤除红外光线,如果系统需要对红外感光时可去掉该滤镜。 接口类型:有Camera Link接口,以太网接口,1394接口、USB接口输出,目前最新的接口有CoaXPress接口。

工业相机镜头的参数与选型

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距 离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、 2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。 光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

工业相机镜头的参数与选型

工业相机镜头的参数与选型

————————————————————————————————作者:————————————————————————————————日期: ?

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /F1.4代表最大孔径为5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Le ica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;

焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个

工业相机镜头地全参数与选型

工业相机镜头地全参 数与选型 Revised on November 25, 2020

工业相机镜头的参数与选型 一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /代表最大孔径为毫米。F 值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、 2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深

越小;焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是

工业相机镜头选用简述

工业相机镜头选用简述 在维视图像北京公司的官网上,我们已经连续发表几篇《深度解析工业镜头核心参数》的文章来阐述工业镜头,今天我们换一个角度,从工业相机镜头的选用来分析,为大家在选择工业镜头时提供一些参考。 1、镜头的分类 如上图,大致按照工业相机对镜头进行了区分。对于1/3形,1/2形,2/3形等小尺寸有效像圆径的工业镜头常常使用C接口。可是,C接口镜头,即使1形的镜头有效像圆径也只有约16mm,如果对于再大尺寸的CCD便不能使用了,CS接口除了从成像基准面到镜头的距离少约5毫米外,其它的都一样,至于更详细的说明这个大家可参考《Microvision产品使用前必读》。这时,用的较多的是常用在35mm照相机上的K,F接口镜头。 另外,按照分辨能力可分为25-100万像素用工业镜头与500-1000万像素用工业镜头。按照入射光的光谱可分为一般可视光镜头,紫外线镜头,红外线镜头等。其他,在比较特殊的场合,我们还会用到拍摄较大观察对象时的广角镜头,可对大小不同观察物瞬间聚焦的变焦镜头等。 2、镜头的性能和特性 (1)高分辨力,下表为F值和分辨能力的关系。 (2)畸变,与分辨能力同样重要的要素还有畸变 (3)均一充分的亮度对于机器视觉用镜头,光圈开满时的最大亮度值太太被认为是很重要的。可是,中心部明亮而周边部分灰暗的现象确是要防止的。

(4)耐振荡冲击性,耐振荡冲击性对于机器视觉用镜头是最重要的课题之一。因此,镜头的零部件多数为金属材料,同时,,对焦点,光圈的调整均采用螺钉用来做固定,以达到减轻振荡?冲击的功效。 (5)小型化,由于照相机被设置的空间有所限制,小型化也成为比较重要的因素。例如:C接口的安装尺寸按照基准为¢30mm以下。 (6)其他 ①光圈控制: 一般,机器视觉镜头都是通过手动来调整光圈的,不过,为了对应被拍对象的亮度变化,有时也有远距离控制光圈的要求。 ②Zoom,AF,可变焦点镜头: 一般,机器视觉用镜头没有自动变焦功能。 ③紫外线镜头: 利用紫外线,有时可以捕捉到更细微的对象。 3、今后镜头发展的方向和难点 (1)广角 增大广角度,会加大图像的扭曲,同时画面中心和画面周边的性能差值也会增大。另外,还要求光学系统有更大的亮度,才可以充分地确保画面周边的发光强度达到所需要求。 (2)大口径比 增大大口径比会使得焦点深度变浅,从而使得色差畸变增大。同时会使得画面周边像差的补正变得困难,并容易产生径向侵食,也难以确保充分的发光强度。 (3)小型化 像差补正比较困难,分辨能力也会降低,,并使得由于制造误差引起的光学性能退化现象频于发生。 (4)大画面化 图像畸变严重,画面中心和画面周边的性能差值增大。难以确保充分的发光强度,色差畸变增大。 (5)高倍率化 由于制造误差引起的光学性能退化现象显著。光轴上色差畸变增大。 (6)高分辨率化 像差补正变得困难,使得要求的镜头数目增加,成本提高。需要明亮光学系统,并会导致镜头的大型化。 (7)波长宽带化 色差畸变增大。会要求增加采用一些特殊并且高价的光学玻璃,镜头的数目也会增加。

工业相机选型--镜头参数与选型(Word版)

工业相机选型之 镜头的参数与选型 镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm /FI. 4代表最大孔径为 5.7毫米F值越小,光圈越大,F值越大,光圈越小 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1 /2 ”、2/ 3 " 严和1 ”以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5,景深(Depth of Field, DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小; 焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。

6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米" (Ip/mm)。分辨率越高的镜头成像越清晰。 7、工作距离(Working distance, WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View, FOV) 相机 实际拍到区域的尺寸。 9、光学放大倍数(Magnification, 13) CCD/FOV,即芯片尺寸除以视野范 围。 10、数值孔径(Numerical Aperture, NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N. A=n*sin a/2a数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个非常重要的参数,因为它直接影响镜头的配置。不同厂家的相机,哪怕接凵一样也可能有不同的后倍焦。 、镜头选型 1.选择镜头接口和最大CCD尺寸

工业相机镜头的参数与选型

一、镜头主要参数 1.焦距(Focal Length) 焦距是从镜头的中心点到胶平面上所形成的清晰影像之间的距离。焦距的大小决定着视角的大小,焦距数值小,视角大,所观察的范围也大;焦距数值大,视角小,观察范围小。根据焦距能否调节,可分为定焦镜头和变焦镜头两大类。 2.光圈(Iris) 用F表示,以镜头焦距f和通光孔径D的比值来衡量。每个镜头上都标有最大F值,例如8mm/F1.4代表最大孔径为 5.7毫米。F值越小,光圈越大,F值越大,光圈越小。 3.对应最大CCD尺寸(Sensor Size) 镜头成像直径可覆盖的最大CCD芯片尺寸。主要有:1/2″、2/3″、1″和1″以上。 4.接口(Mount) 镜头与相机的连接方式。常用的包括C、CS、F、V、T2、Leica、M42x1、M75x0.75等。 5.景深(Depth of Field,DOF) 景深是指在被摄物体聚焦清楚后,在物体前后一定距离内,其影像仍然清晰的范围。景深随镜头的光圈值、焦距、拍摄距离而变化。光圈越大,景深越小;光圈越小、景深越大。焦距越长,景深越小;焦距越短,景深越大。距离拍摄体越近时,景深越小;距离拍摄体越远时,景深越大。 6.分辨率(Resolution) 分辨率代表镜头记录物体细节的能力,以每毫米里面能够分辨黑白对线的数量为计量单位:“线对/毫米”(lp/mm)。分辨率越高的镜头成像越清晰。

7、工作距离(Working distance,WD) 镜头第一个工作面到被测物体的距离。 8、视野范围(Field of View,FOV) 相机实际拍到区域的尺寸。 9、光学放大倍数(Magnification,?) CCD/FOV,即芯片尺寸除以视野范围。 10、数值孔径(Numerical Aperture,NA) 数值孔径等于由物体与物镜间媒质的折射率n与物镜孔径角的一半(a\2)的正弦值的乘积,计算公式为N.A=n*sin a/2。数值孔径与其它光学参数有着密切的关系,它与分辨率成正比,与放大率成正比。也就是说数值孔径,直接决定了镜头分辨率,数值孔径越大,分辨率越高,否则反之。 11、后背焦(Flange distance) 准确来说,后倍焦是相机的一个参数,指相机接口平面到芯片的距离。但在线扫描镜头或者大面阵相机的镜头选型时,后倍焦是一个非常重要的参数,因为它直接影响镜头的配置。不同厂家的相机,哪怕接口一样也可能有不同的后倍焦。 二、镜头选型 1.选择镜头接口和最大CCD尺寸 镜头接口只要可跟相机接口匹配安装或可通过外加转换口匹配安装就可以了;镜头可支持的最大CCD尺寸应大于等于选配相机CCD芯片尺寸。 2.选择镜头焦距

机器视觉工业相机选型指导

机器视觉工业相机选型指导 工业相机又俗称摄像机,相对传统的民用相机(摄像机)而言,它具有更高的图像稳定性、高传输能力和高抗干扰能力等优势,是机器视觉系统的关键组件之一,选择性能良好的工业相机,对于机器视觉视觉系统的稳定性有着重要影响。 在选购合适的工业相机时,维视图像建议您从以下几方面着手选购: 第一、先明确需求,要先确定检测产品的精度要求,要确定相机要看的视野大小,要确定检测物体的速度,同时确定是动态检测还是静态检测。 第二、确定硬件类型,硬件的相关参数会影响其性能,因此在确定硬件类型前要先确定其相关参数,包括以下几点: 1、相面像素大小的确定 目前市面上的软件精度一般是没有误差的,也就是通常所说的亚像素,但虽软件没有误差,但硬件的误差是不可避免的,所以现在市场上的机器视觉系统一般都保证在误差为一个像素,所以要通过如下计算公式: 例如:假设视野为10mm,精度要求为0.02mm,那么相机的像素=10÷0.02=500像素,那就只需要30万(640*480)像素的相机就可以了 2.相机传输方式的确定,针对目前市面上的相机传输方式及其应用的优缺点如下所述:1)模拟相机(PCI采集卡),对速度要求不高可选择。其优点:稳定,性价比高;缺点:帧率低,一般只能达到25帧—30帧; 2)USB接口相机,系统只用到单个相机的可先择,要求高速的时候可先择。优点:不需要占PCI插槽,帧频高,性价比高;缺点:占系统CPU; 3)1394接口相机,系统用到多个相机的时候可先择,要求高速的时候可先择。优点:不占系统CPU,帧频高;缺点:占PCI插槽,价格昂贵。 3.相机的触发方式的选择

1)连续采集模式:对静态检测可选择,产品连续运动不能给触发信号的可选择; 2)软件触发模式:对动态检测可选择,产品连续运动能给触发信号的可选择; 3)硬件触发模式:对高速动态检测可选择,产品连续高速运动能给触发信号的可选择。 工业相机的类别也是多样的,根据不同行业的应用,用户均可选购最适合自己的产品。而工业相机也凭借其强大的技术优势及绝佳的性能,在各大领域都可看到他的身影,助力行业稳步发展。 本文摘自:维视数字图像技术资料部分内容 原文地址:https://www.360docs.net/doc/e214067681.html,/service/service.html,欢迎转载和订阅最新的远心镜头内部技术资料!

Baumer产品选型手册

堡盟工业相机全面的产品组合

堡盟产品组合 ■ 紧凑型工业相机,分辨率从VGA 直至800万像素■ Gigabit 千兆以太网、FireWire TM 和 CameraLink ? 接口 ■ 创新技术改进,例如以太网供电、Dual GigE 、 IP67相机、多I/O 等 堡盟是创新型图像处理组件的全球领先制造商之一,提供广泛的适合各种应用的高品质工业相机。我们的核心能力涉及传感器集成、信号处理、接口和驱动程序等所有视觉应用领域,确保将相机集成在相应的视觉系统中。产品组合包括CCD 和CMOS 相机,分辨率从VGA 到800万像素不等。数字相机采用各种标准接口,例如:Gigabit 千兆以太网、CameraLink ? 和 FireWire TM . ■ 分辨率从VGA 直至500万像素 ■ 坚固型工业设计(尺寸:36 x 36 x 48 mm )■ 宽范围供电设计:8-30 VDC 堡盟工业相机 技术不断创新,集成更加简单 采用CCD 传感器的紧凑型GigE 相机 在TXG 系列中,堡盟提供广泛的采用强大的CCD 传感器的GigE Vision ?相机。其它功能,诸如多点传送、触发延迟、计时器、防回跳器和序列发生器,也更能优化系统集成。 GigE Vision ? 相机 多 I/O 口GigE 相机 这类相机提供3个附加输入输出(I/O ),从而提高了视觉系统集成的灵活性。 T X G

以太网供电TXG 相机是满足GigE 网络应用要求的价格合理的单电缆解决方案。该款相机简化的机械设计,提高了可靠性, 同时降低了整个相机系统的安装和维护成本。 适于不同镜头的套管 由于相机的防护外壳上带有集成的C-Mount 接头,因此无论是相机的传感器及电子元件还是所有常见的标准镜头都可以得到安全保护。 ■ 通过同一根以太网电缆实现数据传输和供电■ 提供堡盟PoE 电源交换机、供电器和触发设备■ 降低了安装和维护成本 采用以太网供电(PoE )和CCD 传感器的GigE 相机 ■ 同时为相机和镜头提供保护■ 防水防尘,适合恶劣的环境条件 ■ 多种套管长度,适用于不同的标准镜头 采用IP67外壳和CCD 传感器的GigE 相机 这款防护等级为IP67的相机是专为在恶劣及苛刻环境中的应用而开发的。根据该防护等级的要求,相机外壳具有防水和防尘性,能够保护相机的重要组件不受外部环境影响。 TXG IP 67 TXG PoE

教你如何选择工业相机镜头

教你如何选择工业相机镜 头 Revised final draft November 26, 2020

教你如何选择工业相机镜头 工业相机镜头的选择过程,是将工业相机镜头各项参数逐步明确化的过程。作为成像器件,工业相机镜头通常与光源、相机一起构成一个完整的图像采集系统,因此工业相机镜头的选择受到整个系统要求的制约。一般地可以按以下几个方面来进行分析考虑。 一、波长、变焦与否 工业相机镜头的工作波长和是否需要变焦是比较容易先确定下来的,成像过程中需要改变放大倍率的应用,采用变焦镜头,否则采用定焦镜头就可以了。 关于工业相机镜头的工作波长,常见的是可见光波段,也有其他波段的应用。是否需要另外采取滤光措施单色光还是多色光能否有效避开杂散光的影响把这几个问题考虑清楚,综合衡量后再确定镜头的工作波长。 二、特殊要求优先考虑 结合实际的应用特点,可能会有特殊的要求,应该先予明确下来。例如是否有测量功能,是否需要使用远心镜头,成像的景深是否很大等等。景深往往不被重视,但是它却是任何成像系统都必须考虑的。 三、工作距离、焦距 工作距离和焦距往往结合起来考虑。一般地,可以采用这个思路:先明确系统的分辨率,结合CCD像素尺寸就能知道放大倍率,再结合空间结构约束就能知道大概的物像距离,进一步估算工业相机镜头的焦距。所以工业相机镜头的焦距是和工业相机镜头的工作距离、系统分辨率(及CCD像素尺寸)相关的。 四、像面大小和像质 所选工业相机镜头的像面大小要与相机感光面大小兼容,遵循“大的兼容小的”原则——相机感光面不能超出镜头标示的像面尺寸——否则边缘视场的像质不保。 像质的要求主要关注MTF和畸变两项。在测量应用中,尤其应该重视畸变。 五、光圈和接口 工业相机镜头的光圈主要影响像面的亮度。但是现在的机器视觉中,最终的图像亮度是由很多因素共同决定的:光圈、相机增益、积分时间、光源等等。所以为了获得必要的图像亮度有比

工业相机选型知识

视觉系统原理描述 机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 视觉系统组成部分 视觉系统主要由以下部分组成 1.照明光源 2.镜头 3.工业摄像机 4.图像采集/处理卡 5.图像处理系统 6.其它外部设备 相机篇 详细介绍:

工业相机又俗称摄像机,相比于传统的民用相机(摄像机)而言,它具有高的图像稳定性、高传输能力和高抗干扰能力等,目前市面上工业相机大多是基于CCD (Charge Coupled Device)或CMOS(Complementary Metal Oxide Semiconductor)芯片的相机。CCD 是目前机器视觉最为常用的图像传感器。它集光电转换及电荷存贮、电荷转移、信号读取于一体,是典型的固体成像器件。CCD的突出特点是以电荷作为信号,而不同于其它器件是以电流或者电压为信号。这类成像器件通过光电转换形成电荷包,而后在驱动脉冲的作用下转移、放大输出图像信号。典型的CCD相机由光学镜头、时序及同步信号发生器、垂直驱动器、 90 年代初期,随着超大规模集成电路(VLSI) 制造工艺技术的发展,CMOS图像传感器得到迅速发展。CMOS图像传感器将光敏元阵列、图像信号放大器、信号读取电路、模数转换电路、图像信号处理器及控制器集成在一块芯片上,还具有局部像素的编程随机访问的优 分类: 以分为隔行扫描相机、逐行扫描相机;按照分辨率大小可以分为普通分辨率相机、高分辨率相机;按照输出信号方式可以分为模拟相机、数字相机;按照输出色彩可以分为单色(黑白)相机、彩色相机;按照输出信号速度可以分为普通速度相机、高速相机;按照响应频率范围可以分为可见光(普通)相机、红外相机、紫外相机等。 区别: 4小时或连续工作几天肯定会受不了的。 2、工业相机的快门时间非常短,可以抓拍高速运动的物体。 例如,把名片贴在电风扇扇叶上,以最大速度旋转,设置合适的快门时间,用工业相机抓拍一张图像,仍能够清晰辨别名片上的字体。用普通的相机来抓拍,是不可能达到同样效果的。 3、工业相机的图像传感器是逐行扫描的,而普通的相机的图像传感器是隔行扫描的,逐行扫描的图像传感器生产工艺比较复杂,成品率低,出货量少,世界上只有少数公司能够提供这类产品,例如Dalsa、Sony,而且价格昂贵。 |

工业镜头选型方法和计算公式解析

对于工业镜头选型,是一个非常重要和关键的环节。因为工业镜头选型是否合适与好坏直接影响着机器视觉成像质量。下面POMEAS工程师将结合经过多年的实际案例,分享下工业镜头选型方法和计算公式,仅供大家参考。 方法/步骤 首先,要确定工业相机的接口、靶面尺寸和分辨率大小。打比方是2/3" 工业相机,C接口,5百万像素;那么我们可以先确定需要的工业镜头是C接口,最少支持2/3", 5百万像素以上,或者线对在160LP. 其次,确定所要达到的视野范围(FOV)和工作距离(WD),然后根据这两个要求和已知的靶面尺寸计算出工业镜头的焦距(f)。其计算公式为:焦距f = WD × 靶面尺寸( H or V) / FOV( H or V) 视场FOV ( H or V) = WD × 靶面尺寸( H or V) / 焦距f 视场FOV( H or V) = 靶面尺寸( H or V) / 光学倍率

工作距离WD = f(焦距)× 靶面尺寸/FOV( H or V) 光学倍率= 靶面尺寸( H or V) / FOV( H or V) 打比方视野是100*100mm, WD.是500mm; 那么我们先从工作距离确定工业镜头的焦距要在50mm以下(工业镜头的命名方式PMS-5018M, 前面字母表示POMEAS品牌,50表示焦距50mm, 18表示最大光圈值),市场上工业镜头焦距一般是12mm, 16mm, 20mm, 25mm, 35mm, 50mm, 75mm。再结合相机靶面的大小来确定哪个型号,工业镜头的焦距越小,视场角就越大,视野也就相应的更大。 如果靶面为2/3" 可以选择35mm焦距的工业镜头;靶面1/2" 则需要 25mm焦距的工业镜头,或者更小....以此类推。 在工业镜头选型过程中,为了方便各位朋友计算工业镜头参数,现提供靶面尺寸表供参考。 1.1英寸——靶面尺寸为宽12mm*高12mm,对角线17mm

相关文档
最新文档