蛋白质复性方法

蛋白质复性方法
蛋白质复性方法

包涵体表达的蛋白的复性

摘要综述了包涵体形成、包涵体分离和溶解、包涵体折叠复性的方法、复性产率低下的主要因素以及通过分子伴侣、低分子量添加物等的应用而提高了蛋白质复性产率。

关键词包涵体蛋白质复性

Abstract Strategies for decreasing the formation of inclusion bodies, isolation and resolution of inclusion bodies, refolding of inclusion body proteins and the cause of decreased refolding yields were included. Renaturation yield of recombinant protein have been improved by using some additives, such as molecular chaperone, small molecules.

Key words inclusion body , protein , renaturation

外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。

一、包涵体:

包涵体的定义、组成与特性:

包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为,具有很高的密度(约ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR 等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1]

包涵体的形成:

主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。

1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以

至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。

1.2.2、重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。

1.2.3、重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。1.2.4、重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类和辅助因子,如折叠酶和分子伴侣等,致使中间体大量积累,容易形成包涵体沉淀。

1.2.5、蛋白质在合成之后,于中性pH或接近中性pH的环境下,其本身固有的溶解度对于包涵体的形成比较关键,即是说,有的表达产率很高,如Aspartase和Cyanase,表达产率达菌体蛋白的30%,也不形成包涵体,而以可溶形式出现。

[2]

1.2.6、在细菌分泌的某个阶段,蛋白质分子间的离子键、疏水键或共价键等化学作用导致了包涵体的形成。

包涵体破菌、分离、洗涤及溶解

1.3.1基因工程菌发酵液,经离心浓缩后,可用:机械破碎、超声破碎:单纯超声破碎,在小规模下且菌量较少的情况下效果较好,由于能量传递和局部产热等原因,很难用于大体积细胞悬液的破碎,这样部分未破碎细胞与包涵体混在一起,给后期纯化带来困难。因此,在较大规模纯化时先用溶菌酶破碎细菌的细胞膜,再结合超声破碎方法,可显着提高包涵体的纯度和回收率。以及化学方法破碎使细菌裂解,然后以5000-20000g 15min离心,可使大多数包涵体沉淀,与可溶性蛋白分离。

1.3.2洗涤:为了除去包涵体上粘附的杂质,如膜蛋白或核酸,应用洗涤液洗涤包涵体,通常用低浓度的变性剂,过高浓度的尿素或盐酸胍会使包涵体溶解,如2M尿素在50mM Tris 左右,1mM EDTA中洗涤。此外可以用温和去垢剂TritonX-100洗涤去除膜碎片和膜蛋白。[3]

1.3.3溶解:一般用强的变性剂如尿素(6-8M)、盐酸胍(GdnHCl 6M),通过离子间的相互作用,打断包涵体蛋白质分子内和分子间的各种化学键,使多肽伸展,一般来讲,盐酸胍优于尿素,因为盐酸胍是较尿素强的变性剂,它能使尿素不

能溶解的包涵体溶解,而且尿素分解的异氰酸盐能导致多肽链的自由氨基甲酰化,特别是在碱性pH值下长期保温时。或用去垢剂,如SDS、正十六烷基三甲基铵氯化物、Sarkosyl等,可以破坏蛋白内的疏水键,也可溶解一些包涵体蛋白质。Kandula Suntha等人用TritonX-100来溶解Zymononas mobilis levansucrase包涵体蛋白。另外,对于含有半胱氨酸的蛋白质,分离的包涵体中通常含有一些链间形成的二硫键和链内的非活性二硫键。还需加入还原剂,如巯基乙醇、二硫基苏糖醇(DTT)、二硫赤藓糖醇、半胱氨酸。还原剂的使用浓度一般是50-100mM 2-BME或DTT,也有文献使用5mM浓度。在较粗放的条件下,可以使用5ml/l的浓度。还原剂的使用浓度与蛋白二硫键的数目无关,而有些没有二硫键的蛋白加不加还原剂无影响,如牛生长激素包涵体的增溶。对于目标蛋白没有二硫键某些包涵体的增溶,有时还原剂的使用也是必要的,可能由于含二硫键的杂蛋白影响了包涵体的溶解。[4]

二、复性:

由于包涵体中的重组蛋白缺乏生物学活性,加

上剧烈的处理条件,使蛋白的高级结构破坏,因此重组蛋白的复性特别必要。通过缓慢去除变性剂使目标蛋白从变性的完全伸展状态恢复到正常的折叠结构,同时去除还原剂使二硫键正常形成。一般在尿素浓度4M左右时复性过程开始,到2M 左右时结束。对于盐酸胍而言,可以从4M 开始,到1.5M 时复性过程已经结束。

包涵体蛋白复性方法

2.1.1稀释复性:直接加入水或缓冲液,放置过夜,缺点是体积增加较大,变性剂稀释速度太快,不易控制。目前稀释法主要有一次稀释、分段稀释和连续稀释三种方式。

2.1.2透析复性:好处是不增加体积,通过逐渐降低外透液浓度来控制变性剂去除速度,有人称易形成无活性蛋白质聚体,且不适合大规模操作,无法应用到生产规模。

2.1.3超滤复性:在生产中较多的使用,规模较大,易于对透析速度进行控制,缺点是不适合样品量较少的情况,且有些蛋白可能在超滤过程中不可逆的变性。

2.1.4柱上复性:是最近研究较多并成功的在生产中应用的一种复性方法,包涵体蛋白变性后,

在色谱柱上复性,大致可分成疏水柱复性及凝胶柱复性两类。其中的凝胶柱复性均是用Sephacry1S-100或Superdex75 等分子筛填料,柱较长(40cm-100cm不等)。相比稀释和透析两种方法,色谱柱复性回收率高(高达90%以上)、快速、易放大,样品稀释倍数小(一般五倍左右)[5]

2.1.5高蛋白质浓度下的复性:通常有两种方法,一是缓慢地连续或不连续地将变性蛋白加入到复性缓冲液中,使得蛋白质在加入过程中或加入阶段之间有足够的时间进行折叠复性;二是采用温度跳跃式复性,即让蛋白质先在低温下折叠复性以减少蛋白质聚集的形成,当形成聚集体的中间体已经减少时,迅速提高温度以促进蛋白质折叠复性。

此外,吸附法、反胶束法和双水相萃取法等都可用蛋白质的复性。

包涵体蛋白复性效率

复性是一个非常复杂的过程,除与蛋白质复性的过程控制相关外,还很大程度上与蛋白质本身的性质有关,有些蛋白非常容易复性,如牛胰RNA酶有12对二硫键,在较宽松的条件下复性

效率可以达到95%以上,而有一些蛋白至今没有发现能够对其进行复性的方法如IL-11,很多蛋白的复性效率只有百分之零点几,如在纯化IL-2时以十二烷基硫酸钠溶液中加入铜离子(%SDS,mol/l CuCl2)的方法,25-37°C下反应3小时,再EDTA至1m mol/l终止反应,复性后的二聚体低于1%。[6]一般说来,蛋白质的复性效率在20%左右。

2.2.1影响复性效率的因素:

2.2.1.1蛋白质的复性浓度:正确折叠的蛋白质的得率低通常是由于多肽链之间的聚集作用,蛋白质的浓度是使蛋白质聚集的主要因素,因而,一般浓度控制在ml;如果变性蛋白加入复性液中过快,容易形成絮状沉淀,可能是蛋白重新凝聚的缘故。所以我们采用再水浴和磁力搅拌下,逐滴加入变性蛋白,使变性蛋白在复性液中始终处于低浓度状态。

2.2.1.2pH和温度:复性缓冲液的pH值必须在以上,这样可以防止自由硫醇的质子化作用影响正确配对的二硫键的形成,过高或过低会降低复性效率,最适宜的复性pH值一般是。[12]

此外,影响复性效率的因素还有,变性剂的起

始浓度和去除速度、氧化还原电势、离子强度、共溶剂和其他添加剂的存在与否等。

2.2.2提高包涵体蛋白的复性产率

2.2.2.1氧化-还原转换系统

对于含有二硫键的蛋白,复性过程应能够促使二硫键形成。常用的方法有:空气氧化法、使用氧化交换系统、混合硫化物法、谷胱甘肽再氧化法及DTT再氧化法.

最常用的氧化交换系统是GSH/GSSG,而cysteine/cystine、cysteamine/cystamine、DTT/GSSG、DTE/GSSG等也都有应用。氧化交换系统通过促使不正确形成的二硫键的快速交换反应提高了正确配对的二硫键的产率。通常使用1-3m mol/l还原型巯基试剂,还原型和氧化型巯基试剂的比例通常为10:1—5:1。[7]

2.2.2.2添加低分子化合物

低分子化合物自身并不能加速蛋白质的折叠,但可能通过破坏错误折叠中间体的稳定性,或增加折叠中间体和未折叠分子的可溶性来提高复性产率。如盐酸胍、脲、烷基脲、以及碳酸酰胺类等,在非变性浓度下是很有效的促进剂。蛋白质的辅因子、配基或底物亦可起到很好的促折叠

作用,如蛋白质的辅因子Zn2+或Cu2+可以稳定蛋白质的折叠中间体,从而防止了蛋白质的聚集,加入浓度大于mol/lTris缓冲液可提高包涵体蛋白质的折叠效率。浓度为-0.6M L-Arg有助于增加复性中间产物的溶解度。成功的应用于很多蛋白如t-PA的复性中,可以抑制二聚体的形成。NDSBs是近年来出现的可促进蛋白复性的新家族, NDSBs由一个亲水的硫代甜菜碱及一个短的疏水集团组成,故不属于去垢剂,不会形成微束,易于透析去除,目前,常用的有NDSB-195,NDSB-201,NDSB-256。[8]

2.2.2.3PEG-NaSO4两相法

用PEG和NaSO4作为成相剂,然后加入盐酸胍,再把变性的还原的蛋白质溶液加入其中进行复性,但这种方法需复性的变性蛋白质的浓度必须低。[9]

2.2.2.4分子伴侣和折叠酶等

这类蛋白质主要包括硫氧还蛋白二硫键异构酶、肽酰-辅氨酰顺反异构酶、分子伴侣、FK506结合蛋白、Cyclophilin等。分子伴侣和折叠酶等不仅可在细胞内调节蛋白质的折叠和聚集过程的平衡,而且可在体外促进蛋白质的折叠复性。

[13]

2.2.2.5其它

提高复性率的策略还有许多,如:非离子型去垢剂,尤其是离子型或两性离子去垢剂或表面活性剂CHAPs、Triton X-100、磷脂、laury lmaltosid、Sarkosyl等对蛋白质复性有促进作用;待折叠复性的蛋白质的抗体可有效协助其复性;多聚离子化合物如肝素不仅可以促进蛋白质的作用,而且具有稳定天然蛋白质的作用。[10]

复性效果的检测:

根据具体的蛋白性质和需要,可以从生化、免疫、物理性质等方面对蛋白质的复性效率进行检测。

2.3.1、凝胶电泳:一般可以用非变性的聚丙烯酰胺凝胶电泳可以检测变性和天然状态的蛋白质,或用非还原的聚丙烯酰胺电泳检测有二硫键的蛋白复性后二硫键的配对情况。

2.3.2、光谱学方法:可以用紫外差光谱、荧光光谱、圆二色性光谱(CD)等,利用两种状态下的光谱学特征进行复性情况的检测,但一般只用于复性研究中的过程检测。

2.3.3、色谱方法:如IEX、RP-HPLC、CE等,

由于两种状态的蛋白色谱行为不同,

2.3.4、生物学活性及比活测定:一般用细胞方法或生化方法进行测定,较好的反映了复性蛋白的活性,值得注意的是,不同的测活方法测得的结果不同,而且常常不能完全反映体内活性。

2.3.5、黏度和浊度测定:复性后的蛋白溶解度增加,变性状态时由于疏水残基暴露,一般水溶性很差,大多形成可见的沉淀析出。

2.3.6、免疫学方法:如ELISA、WESTERN等,特别是对结构决定簇的抗体检验,比较真实的反映了蛋白质的折叠状态。[11]

在正常的生理条件下,组成蛋白质的多肽链都能以独特的方式进行折叠,形成自己特有的空间结构,以执行某一些生命活动。当外界环境改变时,可能造成基因突变和蛋白质序列改变,错误剪接和运输,错误折叠和异常聚积,形成对机体有害的反应,引起构象病的发生和无生物活性、不可溶的包涵体形成。目前对包涵体形成和复性过程中发生聚集的机制尚不清楚,许多已建立的高效复性方法是在反复实验和优化的基础上建立的,且没有普遍性,但从这许许多多的个例中发现了一些规律:如聚集的发生是由链间的疏水

相互作用介导、聚集具有相对特异性、折叠中间体可能具有不同的作用等等,并利用这些知识建立了一些重组蛋白质高效复兴性的方法。相信随着结构生物学、生物信息学、蛋白质工程学及相关新技术和新设备的发展和完善,在不久的将来,预测和设计最佳复性方案将成为可能。

参考文献

1 包涵体蛋白质的复性研究进展宁云山李妍生物技术通讯

2 重组包涵体蛋白质的折叠复性冯小黎生物化学与生物物理进展 2001;28(4)

3 Fischer B, Sumner I. Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in as inclusion bodies. Biotech Bioeng,1993,41(1)

4 王克夷 <<生命的化学>>,1999,19(5)

5 Werner M H, Clore G M, Refolding proteins by gel filtration chromatography. FEBS Lett, 1994,345(2)

6 孙彦生物分离工程, 北京:化学工业出版社,1998

7 蛋白质复性史晋辉生命的化学 2000年第6期

8 Goldberg M E, Non-detergent sulphobetaines: a new class of molecules that facilitate in vitro protein renaturation . Fold Des, 1996,1(1)

9 Misawa S et al. Biopolym, 1999,51(4)

10 Lotwin J et al. Biotechnol & Bioeng, 1999,65(4)

11 de Bernardez C E. Refolding of recombinant proteins. Curr Opin Biotechnol,1998,9(2)

12 Xie Y, Wetlaufer D B. Control of aggregation in protein refolding: the temperature-leap tactic. Protein Sci, 1996,5(3)

13 Thomas J G, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins fom E. Coli: to fold or refold. Appl Biochem Biotechnol,1997,66(3)

综述改性蛋白质的安全性

综述改性蛋白质的安全性 改性方法主要有物理法、化学法、酶法、生物基因工程法等。 1 化学改性 化学改性实质是通过改变蛋白质的结构、静电荷和疏水基团分布,去除抗营养因子,从而改善大豆蛋白的性质。蛋白质的化学改性可分为两大类,一类是蛋白质分子的特定基团与改性试剂以共价键相连接,即化学衍生化反应,另一类则不存在蛋白质与改性试剂之间的共价键,主要包括亲油化、酸、碱处理等。 最常用的食品蛋白质化学改性方法:乙酸酐和琥珀酸酐作为酰化试剂的酰化作用。它们的作用机理是酰化试剂一般与赖氨酸ε-氨基作用,带正电的氨基被一个中性的酰基残基取代。酰化作用的功能:提高蛋白质的溶解度和水合作用和改进蛋白质的乳化性质。酰化蛋白质的特点:较低的等电点、较高的正极电迁移率、较好的起泡能力、较差的泡沫稳定性、结构较无序、电荷推斥、热稳定性高(主要由前两个决定)。决定酰化蛋白质营养质量的因素:蛋白质的种类、改性的程度、所采用的酰化剂。其他改性方法,如化学磷酸化—利用并入的高亲水性的磷酸基,提高蛋白质在水中的溶解度;温和酸处理—增加蛋白质表面的负电荷、导致蛋白质结构的展开、疏水性残基的暴露—具有较好的溶解度、乳化性质、起泡性质。 化学变化的危害方面需要考虑因素有两个①改性蛋白质和它的消化产物的毒性;②使用的化学试剂以及在蛋白质中任何残留物的毒性。 蛋白质的磷酸化作用是无机磷酸(Pi) 与蛋白质上特定的氧原子(Ser 、Thr 、Tyr 的-OH) 或氮原子(Lys 的ε-氨基、His 咪唑环1 ,3 位N、Arg 的胍基末端N) 形成-C-O-Pi 或-C -N -Pi 的酯化反应。 蛋白质的磷酸化改性可通过化学方法或酶法予以实现。化学磷酸化试剂:磷酰氯(POCl3)、磷酸(H3PO4)、P2O5/ H3PO4、三聚磷酸钠(STP)。 用于蛋白质磷酸化的酶称为蛋白激酶. 蛋白激酶家族包括有约1001 种酶. 蛋白激酶能对蛋白质进行磷酸化修饰,是很有潜力和前途的食品蛋白质改性的工具。常用到的蛋白激酶有依赖于CAMP 激活的蛋白激酶(CAMPdPK),酪蛋白激酶Ⅱ(CK- Ⅱ)。 磷酸化改性后的蛋白中,由于引进了大量的磷酸根基团,从而增加了蛋白质体系的电负性,提高了蛋白质分子之间的静电斥力,使之在食品体系中更易分散,相互排斥,因而提高了溶解度,聚结稳定性,降低了等电点,而且其净负电荷只有在相当低的pH 环境中才会被中和,故其可有效地拓宽在食品中的应用范围。用三聚磷酸钠改性大豆蛋白的实验结果充分验证了这一结论。但用磷酰氯改性蛋白时其蛋白溶解度反而下降,这是因为用磷酰氯作磷酸化试剂会导致蛋白质分子之间发生交联,这些交联键的存在是导致蛋白水溶解性降低的原因。但用磷酰氯改性蛋白可显著提高蛋白的粘度及胶凝性。磷酸化改性蛋白中由于负电荷的引入大大降低了乳化液的表面张力,使之更易形成乳状液滴,同时也增加了液滴之间的斥力,从而更易分散,因此改性蛋白的乳化能力及乳化稳定性都有较大改善。 从毒理学的观点看,因为没有一种生物可以合成磷酸根离子,而磷酸根离子为所有生物代谢所必需,必须由膳食中取得,所以蛋白质的磷酸化改性是一种较实用、有效的方法。 化学改性也存在很多的限制因素:(1)产品安全性,化学衍生化可定向地改变蛋白质的功能特性,然而这一技术在食品方面的应用却很少,毒性(或安全性)

蛋白质复性方法

包涵体表达的蛋白的复性 摘要综述了包涵体形成、包涵体分离和溶解、包涵体折叠复性的方法、复性产率低下的主要因素以及通过分子伴侣、低分子量添加物等的应用而提高了蛋白质复性产率。 关键词包涵体蛋白质复性 Abstract Strategies for decreasing the formation of inclusion bodies, isolation and resolution of inclusion bodies, refolding of inclusion body proteins and the cause of decreased refolding yields were included. Renaturation yield of recombinant protein have been improved by using some additives, such as molecular chaperone, small molecules. Key words inclusion body , protein , renaturation 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低,而分子伴侣、低分子量添加物等在复性过程中的应用及新的复性方法的建立都大大提高了重组蛋白质复性产率。

一、包涵体: 包涵体的定义、组成与特性: 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为,具有很高的密度(约ml),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR 等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。[1] 包涵体的形成: 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.2.1、基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以

蛋白质的生物和化学改性

文章编号:1003 7969(2000)06 0181 05 蛋白质的生物和化学改性 周瑞宝1,周 兵2 (1 郑州工程学院食品科学与工程系,450052郑州市嵩山南路140号; 2 郑州油脂化学集团公司,450053郑州市黄河路;第一作者:男,59岁,教授) 摘要:生物酶或化学法改性食品蛋白质,是提高食品功能特性的重要途径。生物酶有酶源易于得到,应用更安全,并且可将蛋白质改性到所期望的功能值;化学法的乙酰化、磷酸化、糖基化、交联反应,在改变结构和功能性方面,对提高蛋白质功能特性比酶法更有效。 关键词:蛋白质;生物酶;化学法;改性 中图分类号:TQ645 9+9 文献标识码:A 1 蛋白质的酶法改性 蛋白质的改性就是用化学因素(如化学试剂、酶制剂等)或物理因素(如热、高频电场、射线、机械振荡等),使氨基酸残基和多钛链发生某种变化,引起蛋白大分子空间结构和理化性质改变,从而获得较好的功能性和营养特性。 用于水解大豆蛋白的酶,包括植物来源的木瓜酶(Papain)、微生物蛋白酶(Alcalase、Neutrase、Ther mitase)和动物蛋白酶(Pepsin、Chymotrypsin)等,都可以用于蛋白质的改性。 1 1 大豆蛋白的部分水解及其功能特性 大量文献列举了蛋白质水解对功能特性的影响,其中包括:植物蛋白的大豆蛋白[1]、蚕豆蛋白、小麦谷朊粉、玉米蛋白、燕麦粉(蛋白)、棉籽蛋白、葵花籽和菜籽蛋白;以及动物蛋白的酪蛋白,都可以进行蛋白酶水解,又称蛋白生物酶改性。 大豆蛋白酶改性[2],对于提高蛋白质的溶解性具有特殊重要性,甚至对于在水中难于分散的谷类蛋白,也是如此。只有使蛋白水解之后,才能显示它的改性意义。玉米蛋白是一种玉米储存蛋白,在pH2~5,具有很高的不溶性,当用胰蛋白酶处理水解使1 9%的肽键断裂时,在同样的pH范围内,溶解度可达30%~50%。而小麦谷朊粉用此法处理,在pH7时,达到9 8%水解度(D H)时,溶解度从7%增加到50%。燕麦粉经Alcalase 或Neutrase酶处理,在等电点(pH5.0)条件下溶解度提高3~4倍[3]。在一定的酶与底物比例条件下,增加水解度(3 8%~ 10 4%),溶解度也同时增加。用Alcalase在pH8,或Neutrase在pH7条件下,使大豆分离蛋白进行有限的蛋白酶水解,会改变它的pH值与溶解曲线图。用Thermitase酶处理蚕豆分离蛋白,使水解度达到8 3%时,在等电的pH值下,溶解度增加高达40%。用Ttaphyloc occus aureus V8蛋白酶水解酪蛋白,水解度达到2%和6 7%时,溶解度增加25%和50%。 大豆蛋白生物改性,可以提高水解蛋白的吸水和结合水的能力。这是由于蛋白水解过程中释放出氨基和羧基,离子基团数量增加。甚至大豆分离蛋白在84%的相对湿度的室温下,其吸水性随酶处理程度成比例增加。酸 沉大豆蛋白和11S大豆球蛋白,用菠萝蛋白酶进行有限蛋白水解后,吸水能力增加2~2 5倍。运用Alcalase或Teutrase处理燕麦粉,随水解度(DH)的升高,吸水能力增加。大豆蛋白质酶改性对蛋白质的乳化能力很敏感。使用木瓜蛋白酶对大豆蛋白进行短时水解,会增加乳化能力,然而,当继续水解时,乳化能力减少。有人发现大豆分离蛋白在水解度(DH)为5%时,乳化特性最佳。蛋白酶改性,也能改善花生蛋白的乳化特性。 用胰蛋白酶部分水解由大豆和蚕豆得到的11S 球蛋白,其中高分子量的水解产物大豆球蛋白 T 和豆球蛋白 T,分别对乳化能力和乳化稳定性,起着关键作用。随着豆蛋白 T的生成,其乳化能力和乳化稳定性增加,当豆蛋白 T被胰酶进一步水解时,乳化能力和乳化稳定性降低。 蛋白酶部分水解时,乳化能力和乳化稳定性的有益作用可能是由于暴露了分子内部掩蔽的疏水基团,改善亲水 疏水平衡,从而提高乳化能力。蛋白质表面失去亲水肽,导致表面疏水作用增加,而有利于表面吸附。过度消化的不利影响,使其失去球状 收稿日期:2000 09 15

蛋白的变性和复性备课讲稿

蛋白的变性和复性

蛋白的变性和复性 变性:蛋白质的空间结构是体现生物功能的基础,蛋白质折叠则是形成空间结构的过程。蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的. 蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋白质的结构转换, 不但受蛋白质肽链自身的热力学稳定性所控制, 而且还受动力学过程控制. 变性原因:蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用(denaturation)。变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。 引起蛋白质变性的因素很多,物理因素有高温、紫外线、X-射线、超声波、高压、剧烈的搅拌、震荡等。化学因素有强酸、强碱、尿素、胍盐、去污剂、重金属盐(如Hg2+、Ag+、Pb2+等)三氯乙酸,浓乙醇等。不同蛋白质对各种因素的敏感程度不同。 蛋白质变性后许多性质都发生了改变,主要有以下几个方面: (一)生物活性丧失

蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。 (二)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。 (三)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。 复性:如果变性条件剧烈持久,蛋白质的变性是不可逆的。如果变性条件不剧烈,这种变性作用是可逆的,说明蛋白质分子内部结构的变化不大。这时,如果除去变性因素,在适当条件下变性蛋白质可恢复其天然构象和生物活性,这种现象称为蛋白质的复性(renaturation)。 外源基因在大肠杆菌中的高表达常常导致包涵体的形成,虽然包涵体具有富集目标蛋白质、抗蛋白酶、对宿主毒性小等优点,但包涵体蛋白质的复性率一般都很低, 一般说来,蛋白质的复性效率在20%左右。

蛋白质复性方法及其注意事项

蛋白质复性方法及其注意事项 蛋白前期准备 (1)査阅U标蛋白相关文献,了解其等电点,标签等注意点。 (2)如果日标蛋白易降解,可在纯化时加l-2mMDTT,全程低温,及时处理. (3 )透析Buffer得选择可参考文献。 蛋白复性 包涵体:在某些生长条件下,大肠杆菌能积累某种特殊得生物大分子,它们 致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性得结构称 为包涵体(Indus! on Bod i es? I B)。 在E、co li中累积得重组蛋白会迅速地以包涵体形式被沉淀出来,这些包 涵体蛋白就是丧失生物活性得不可溶得错误折叠蛋白得聚集体. 包涵体得处理一般包括这么儿步:包涵体得洗涤、溶解、纯化及复性。 如果过表达蛋0在包涵体中,那么通常有两个选择可以考虑:(2)退一步/尤化 表达条件;(2)接受包涵体并采取策略来将蛋白溶解以及复性?这里主要考虑第二 种方案。 包涵体得洗涤 破碎细胞都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物 降解,导致天然物质量得减少,加入蛋0酶抑制剂等,还可通过选择pH、温度或离子强度等,使这些条件都要适合于U得物质得提取。 2mM EDTA, 2mM D 洗涤Buf f e r :50mM T r i s -H CI (pH8、0), TJr 1 5 0 mM NaCI, l%Tn t on X—1 0 0, Img/ml Lwupe p t in^ Img/ml P epstat in, ImM TCER 超声时用40— 6 0 ml裂解液'因为我们得超声仪很适合用1 0 0 ml小烧 杯,装4 0-60m I裂解液,这样能让超声头离液面不高不低,不会洒出来、菌 多就延长超声时间(全程冰浴)? 包涵体得溶解 I、对于尿素与盐酸M得选择: 尿素与盐酸属中强度变性剂,易经透析与超滤除去。它们对包涵体氢键有

蛋白质改性研究与应用进度

蛋白质改性研究与应用进度 宋英皓江南大学食品与科学学院 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性, 以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景. Abstract Various protein modification methods including physical chemical,enzymatic methods and the effect of modification to its functional properties Nutritional value and safety were studied. The prospect application was also predicted. Keyword Functional properties Modification Nutritional value Safety Application 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1蛋白质的功能特性 蛋白质的功能性质主要分三类:(l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。(2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca,·和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形 成空间网状结构。(3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质 形成一层膜,可阻止小液滴或气泡聚集,有 助于稳定乳化液和气泡。这些功能特性 在食品中常被应用。蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水 化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷“,。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 改变蛋白质功能特性的物理方法有机械处理、挤压、冷冻等。蛋白质粉末或浓缩物彻底干磨后会产生小粒子和大表面的粉末,与未研磨的试样相比,水吸收、蛋白质的溶解度、脂肪吸收和起泡性质都得到了改进;在乳的均质过程中,蛋白质悬浊液受到强烈剪切力使蛋白质聚集体(胶束)碎裂成亚基, 从而提高蛋白质的乳化能力川。挤压处理时蛋白质在高温高压下受定向力的作用而定 向排烈压力的释放,水分的瞬时蒸发,形成 具有耐嚼性和良好口感的纤维状蛋白质。将蛋白质溶液以一定速率冷却,会产生垂直于冷却表面的冰晶,使蛋白质定向排列并在冰晶空隙中被浓缩,移去水分可得到结构完整的蛋白质。 2.2化学改性 2.2.1酸、碱、盐作用下的改性 蛋白质经酸、碱部分水解可改进其功能特性,如溶解性、乳化能力、起泡性等,并能钝化酶活力,破坏毒素、酶抑制剂和过敏原,但往往会造成营养价值下降。P-乳球蛋白和乳清蛋白在酸性或微碱性中热展开,提高了它的增稠、凝胶、起泡和乳化性质。在适当pH

蛋白质介绍

[本次授课内容] 第6章蛋白质 6.4食品加工贮藏中蛋白质的变化与蛋白质的改性 # 6.5食品蛋白质含量的测定 重点:加工对营养及功能特性的影响、改善营养及功能特性的方法 6.4 食品加工贮藏中蛋白质的变化 6.4.1 食品加工贮藏中蛋白质的变化 6.4.1.1 热处理中的变化 热处理是许多食品,尤其是蛋白食品的加工常用的杀菌方法,也是一些食品加工中所必须的工艺步骤。多数食品蛋白质只能在窄狭的温度范围内(60-90℃,1h或更短时间)才具有生物活性或功能性。 ○加热对蛋白质理化性质的直接影响:蛋白质结构变得松散、某些次级键的断裂、变性失活等。而加热的程度(温度、时间)及其它因素的协同作用、蛋白质的种类等又是蛋白质变性程度的决定因素,其中有些变化有利于营养、功能特性的提高,另一些变化则属于劣变。 (1)有利变化始终保持适度热处理,既不会破坏共价键也不至于形成新的共价键,不影响蛋白质的一级结构。从营养学的观点讲,蛋白质对温和热处理所产生的变化一般是有利的。 ①大多数蛋白质在加热后营养价值得到提高。因为适宜的加热使蛋白质变性后,原有的紧密结构变得松散、伸展,进入人体易为消化酶所水解,从而提高消化率,营养价值也相应提高。 ②某些植物蛋白所含的抗营养因子-蛋白酶抑制剂(胰蛋白酶、胰凝乳蛋白酶)、凝集素(致血红细胞凝集)等在加热中被钝化失活。从而提高蛋白质食品的安全性和营养价值,如豆科植物蛋白的热加工处理。 ③热处理是常用的杀菌方法。微生物的机体蛋白因热处理变性失活,达到杀菌目的,可防止微生物引起的食品腐败变质。 33

34 ④ 热处理还可钝化食品中存在的某些可能引起食品的色泽、质地、风味等发生非需宜改变的酶。如,酶促褐变、引起豆腥味的LOX ),从而保持良好的风味及外观品质。 (2)不利变化 A 、过度加热会导致氨基酸特别是必需氨基酸(蛋与胱、赖AA )的损失。因蛋白质因热分解或聚合致使营养价值下降。 ① 脱硫:T-115℃~27h ,某些AA 残基(胱氨酸与蛋氨酸——含硫EAA ),会有一半以上的 胱氨酸发生脱硫化氢反应。既损害营养,也引起功能性质的改变; ② 脱酰胺:T>100℃,蛋白质中Gln ,Asn 残基脱除酰胺基-NH 2。尽管不损害营养,但环境 中-NH 2会导致蛋白质电荷和功能性质的改变; ③ 异构化:T>200℃,色氨酸发生异构化,生成环状衍生物。其中包括致突变物质,某些氨 基酸由L-型转变为D-型而失去营养价值,甚至具有毒性; ④ 交联反应:T>150℃,蛋白质中赖氨酸的ε-NH 2参与形成新的肽键-交联肽键。如Lys 与 Asp 、Glu 反应,失去赖氨酸的营养价值,新生成的肽链可能对人体有毒; NH CH CO (CH 2)4NH CO (CH )22CH CO ε-N (γ-谷氨酰基)-L-赖氨酰基 ⑤ 羰氨反应:当还原糖存在时,在普通条件下即可发生的羰氨反应,因加热可加速进行。色、 精、苏、组等均易发生,Lys 中ε-NH 2更易发生该反应,形成不易为酶消化水解的希夫碱,失去EAA 的营养价值并同时导致外观褐变,遇有蔗糖水解、脂肪氧化产物均可提供羰基发生该反应;当然,同时可对面粉焙烤食品起到需宜性的呈色效果。 ⑥ 热分解:T>200℃以上时(如烧烤食品表面温度),蛋白质发生热分解。可能产生诱变化合CH 3 2NH N N N N CH 3N N CH 3NH 23CH CH 32NH N N N

蛋白质的改性论文

蛋白质的改性 摘要:介绍蛋白质的功能特性,以及物理、化学、摘要介绍蛋白质的功能特性,以及物理、化学、酶法等各种改性方法及其对蛋白质功能特性和营养安全性的影响,展望蛋白质改性的应用前景。 0 前言 蛋白质具有营养功能,添加到食品中可以有效地提高产品的营养价值,更重要的是蛋白质在食品中可以体现出不同的功能特性,影响食品的感官特性,而且对食品在制造、加工或保藏中的物理化学性质起着重要的作用。因此蛋白质广泛用于食品加工的各个领域。但是,不少天然蛋白质的这些特性尚不突出,不能满足现代食品开发与加工的需要,往往通过特定的方法来提高其功能特性,使其应用领域更广阔。 1 蛋白质的功能特性 蛋白质的功能性质主要分三类: (l)水化性质,包括水吸收及保留、湿润性、溶胀、粘着性、分散性、溶解度和粘度。由蛋白质肤链骨架上的极性基团与水分子发生水化作用。 (2)与蛋白质一蛋白质相互作用有关的性质,包括产生沉淀作用、凝胶作用和形成各种其它结构(如蛋白质面团和纤维)。蛋白质分子受热舒展,内部的疏水基团暴露出来,通过疏水作用(高温能提高此类作用)、静电作用(通过ca和其它二价离子桥接的)、氢键(冷却能提高此类作用)或二硫交联形成空间网状结构。 (3)表面活性,包括表面张力、乳化作用和泡沫特征。蛋白质结构中既有亲水基又有亲油基,能够吸附在油一水或空气一水界面上,一旦被界面吸附,蛋白质形成一层膜,可阻止小液滴或气泡聚集,有助于稳定乳化液和气泡。这些功能特性在食品中常被应用。 (4)蛋白质的功能特性与其结构有关,即氨基酸组成、排列顺序、构象、分子的形状和大小、电荷分布以及分子内和分子间键的作用。高比例的极性残基影响肤链间相互作用、水化作用、溶解性和表面活性,疏水性相互作用在蛋白质三级折叠中相当重要,它影响乳化作用、起泡性和风味结合能力。带电氨基酸能增强静力相互作用,起到稳定球蛋白,结合水分的作用,以及水化作用、溶解度、凝胶作用和表面活性。琉基(SH)能被氧化形成二硫键,硫醇和二硫化物的相互转化会影响流变性。共价键和非共价键的性质和数量决定了蛋白质的大小、形状、表面电荷。所有这些性质又受PH、温度等环境因素及加工处理的影响。 2蛋白质改性 2.1物理改性 所谓蛋白质物理改性是指利用热、机械振荡、电磁场、射线等物理作用形式改变蛋白质的高级结构和分子间的聚集方式, 一般不涉及蛋白质的一级结构。如蒸煮、搅打等均属于物理改性技术。

蛋白质变复性

变复性的过程 E.coli 中表达的蛋白常常以包涵体的形式沉积于细胞内,表现为无活性的不溶性聚集物。 生产研究中为了得到较高的目的蛋白的表达量,通常会采用较强的启动子(如λPL 、T7 或串联启动子) ,使外源基因可在胞内获得高效表达,一般占细菌总蛋白的10 %~50 %. 然而胞内表达的最大问题是产物形成不溶性的包涵体,虽然这可为后续的分离纯化带来方便,但包涵体必须经过体外复性才有可能获得生物活性 .绝大部分高表达的重组蛋白质往往聚集成不溶的、无活性的包涵体形式, 极大地影响到后续的结构分析和活性研究工作, 开展对这些包涵体的复性工作已成为一个重要的研究方向。 包涵体是由蛋白质折叠中间体的聚集而形成的,任何影响中间体稳定的因素(如pH 值、离子强度、温度等) 都可导致包涵体的形成. 包涵体形成原因 1. 表达量过高,研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 2. 重组蛋白的氨基酸组成,一般说来含硫氨基酸越多越容易形成包涵体。 3. 重组蛋白所处的环境,发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 4. 重组蛋白是大肠杆菌的异源蛋白,由于缺少真核生物中翻译后修饰所需酶类,致使中间 体大量积累,容易形成包涵体沉淀。 5. 有报道认为,丰富的培养基有利于活性蛋白质的表达,当培养条件不佳时,容易形成包涵体。 蛋白复性的必要性 细胞中的生物学活性蛋白质常以可融性或分子复合物的形式存在,功能性的蛋白质总是折叠成特定的三维结构型。包涵体内的蛋白是非折叠状态的聚集体,不具有生物学活性,因此要获得具有生物学活性的蛋白质必须将包涵体溶解,释放出其中的蛋白质,并进行蛋白质的复性。复性过程是变性蛋白的重折叠过程。 对包涵体蛋白复性,应先对包涵体进行分离纯化及去折叠(即变性溶解) ,然后采用合适的复性方法促进变性,蛋白再折叠进而恢复活性. 一.包涵体的分离纯化 ①含包涵体的宿主菌细胞的破碎; ②将破碎液离心除去可溶蛋白(9000r 15min 4℃),获得包涵体; ③洗涤包涵体,以除去包涵体上粘附的杂质,如膜蛋白或核酸,应用洗涤液洗涤包涵体,通常用低浓度的变性剂,过高浓度的尿素或盐酸胍会使包涵体溶解,如2M尿素在50mM Tris pH7.0-8.5左右,1mM EDTA中洗涤,温和去垢剂TritonX-100等洗涤包涵体,然后离心(12000r 5min 4℃)取上清洗涤后包涵体的主要成分为聚合态的目的蛋白。

蛋白质变性机理

蛋白质变性机理 1、蛋白质介绍 2、蛋白质变性结果 1)活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只要轻微变化即可引起生物活性的丧失。 2)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来, 分子的不对称性增加,因此粘度增加,扩散系数降低 蛋白质分子凝聚从溶液中析出

3)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。 4)致变因素 引起蛋白质变性的原因可分为物理和化学因素两类。物理因素可以是加热、加压、脱水、搅拌、振荡、紫外线照射、超声波的作用等;化学因素有强酸、强碱、尿素、重金属盐、十二烷基磺酸钠(SDS)等。在临床医学上,变性因素常被应用于消毒及灭菌。 反之,注意防止蛋白质变性就能有效地保存蛋白质制剂。蛋白质的变性很复杂,要判断变性是物理变化还是化学变化,要视是物理变化 加热、紫外线照射、剧烈振荡等物理方法使蛋白质变性,主要是破坏蛋白质分子中的氢键,在变化过程中也没有化学键的断裂和生成,没有新物质生成,因此是物理变化。 否则,鸡蛋煮熟后就不是蛋白质了。而我们知道,熟鸡蛋依然有营养价值,其中的蛋白质反而更易为人体消化系统所分解吸收。 5)复性

蛋白质、包涵体复性

目录 一、脲和盐酸胍在包涵体蛋白质纯化中的作用 二、包涵体变复性 三、包涵体洗涤纯化——7~10 四、包涵体提出、纯化和复性

一、

二、包涵体变复性 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等。 基本信息 中文名称 包涵体变复性 复性方法 稀释复性 原因 基因工程菌的表达产率过高 包涵体变性 破菌洗涤溶解 目录 1包涵体 2包涵体变性 3包涵体复性 包涵体是指细菌表达的蛋白在细胞内凝集,形成无活性的固体颗粒。一般含有50%以上的重组蛋白,其余为核糖体元件、RNA聚合酶、内毒素、外膜蛋白ompC、ompF和ompA等,环状或缺口的质粒DNA,以及脂体、脂多糖等,大小为0.5-1μm,具有很高的密度(约1.3mg/mL),无定形,呈非水溶性,只溶于变性剂如尿素、盐酸胍等。NMR等新技术的应用表明包涵体具有一定量的二级结构,他们可能在复性的启动阶段中具有一定的作用。 包涵体的形成原因 主要因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,或环境不适,无法形成正确的次级键等原因形成的。 1.基因工程菌的表达产率过高,超过了细菌正常的代谢水平,由于细菌的δ因子的蛋白水解能力达到饱和,使之表达产物积累起来。研究发现在低表达时很少形成包涵体,表达量越高越容易形成包涵体。原因可能是合成速度太快,以至于没有足够的时间进行折叠,二硫键不能正确的配对,过多的蛋白间的非特异性结合,蛋白质无法达到足够的溶解度等。 2.重组蛋白的氨基酸组成:一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关。 3.重组蛋白所处的环境:发酵温度高或胞内pH接近蛋白的等电点时容易形成包涵体。 4.重组蛋白是大肠杆菌的异源蛋白,由于缺乏真核生物中翻译后修饰所需酶类和辅助因子,如折叠酶和分子伴侣等,致使中间体大量积累,容易形成包涵体沉淀。

蛋白质结构与功能的关系

蛋白质结构与功能的关系 专业:植物学 摘要:蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强。而分子模拟技术为蛋白质的研究提供了一种崭新的手段。在理论上解决了结构预测和功能分析以及蛋白质工程实施方面所面临的难题。它在蛋白质的结构预测和模建工作中占有举足轻重的地位,实现了生物技术与计算机技术的完美结合。 关键词:蛋白质的结构、功能;折叠/功能关系;蛋白质构象紊乱症;分子模拟技术;同源建模 RNase是由124个氨基酸残基组成的单肽链,分子中 8 个Cys的-SH构成4对二硫键,形成具有一定空间构象的蛋白质分子。在蛋白质变性剂和一些还原剂存在下,酶分子中的二硫键全部被还原,酶的空间结构破坏,肽链完全伸展,酶的催化活性完全丧失。当用透析的方法除去变性剂和巯基乙醇后,发现酶大部分活性恢复,所有的二硫键准确无误地恢复原来状态。若用其他的方法改变分子中二硫键的配对方式,酶完全丧失活性。这个实验表明,蛋白质的一级结构决定它的空间结构,而特定的空间结构是蛋白质具有生物活性的保证。前体与活性蛋白质一级结构的关系,由108个氨基酸残基构成的前胰岛素原,在合成的时候完全没有活性,当切去N-端的24个氨基酸信号肽,形成84个氨基酸的胰岛素原,胰岛素原也没活性,在包装分泌时,A、B链之间的33个氨基酸残基被切除,才形成具有活性的胰岛素。 功能不同的蛋白质总是有着不同的序列;种属来源不同而功能相同的蛋白质的一级结构,可能有某些差异,但与功能相关的结构也总是相同。若一级结构变化,蛋白质的功能可能发生很大的变化。蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强。 虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥

包涵体变性、复性及纯化

一、菌体的裂解 1、怎样裂解细菌? 细胞的破碎方法 1.高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。 2.玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。 3.超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG 频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施,时间以及超声间歇时间、超声时间可以自己调整,超声完全了菌液应该变清亮,如果不放心可以在显微镜下观察。对超声波及热敏感的蛋白和核酸应慎用。 4.反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。 5.化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好,我用的浓度一般为1mg/ml。无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酶活力,但不是全部,而且应该在破碎的同时多加几次;另外,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。 这是标准配方: 裂解液:50mM Tris-HCl(pH8.5~9.0), 2mM EDTA, 100mM NaCl, 0.5% Triton X-100, 1mg/ml溶菌酶。(溶菌酶在这个pH范围内比较好发挥作用) 但我个人的经验是:如果你裂解细菌是为了提取蛋白的话,而且蛋白的分子量又小于20kd的话,尽量减少溶菌酶的用量,会引入溶菌酶这种杂蛋白.一般配60ml裂解液用药匙匙柄盛一点就够.判断裂解好坏的标准是,溶液很粘. protocol是10ml-50ml缓冲液(菌体洗涤液,裂解液等)/1g湿菌体. 如果只做一个鉴定,我觉得100-200ml菌就够了. 但凡超声,我都用60ml裂解液,因为我们的超声仪(现代分子生物学实验技术录象里的那种)很适合用100ml小烧杯,装60ml裂解液,这样能让超声头离液面不高不低,不会冒泡泡,也不会洒出来.菌多我就延长超声时间. 沉淀,也就是包涵体沉淀了,如果要上柱纯化,一定要先用4M尿素洗涤一下再用8M尿素溶解.如果不上柱,只是跑跑电泳,可以直接用8M尿素溶解以后,离心取上清,加入适量体积的loading buffer.loading buffer对于包涵体的溶解能力是较弱的. "取200微升菌液,离心后直接加上样buffer,100度3分钟后上样,然后SDSPAGE. 这个方法到底能不能溶解细菌中的包涵体? "

蛋白的变性和复性

蛋白的变性和复性 变性:蛋白质的空间结构是体现生物功能的基础,蛋白质折叠则是形成空间结构的过程。蛋白质一级结构决定其高级结构的著名学说, 认为蛋白质折叠是受热力学因素控制的. 天然蛋白质处于能量最低(即热力学最稳定)的状态. 一般来说, 天然蛋白质的结构是相对稳定的, 结构的稳定性也是其保持生物个体功能和物种的相对稳定所要求的. 蛋白质担负着复杂的生化反应, 同时在生物合成以后, 蛋白质本身也经历着繁杂的生理过程. 蛋白质自翻译以后, 还需进行一系列的翻译后过程, 包括跨膜转运、修饰加工、折叠复性、生化反应、生物降解等. 这些过程似乎都伴随着蛋白质的结构转换, 不但受蛋白质肽链自身的热力学稳定性所控制, 而且还受动力学过程控制. 变性原因:蛋白质因受某些物理或化学因素的影响,分子的空间构象被破坏,从而导致其理化性质发生改变并失去原有的生物学活性的现象称为蛋白质的变性作用(denaturation)。变性作用并不引起蛋白质一级结构的破坏,而是二级结构以上的高级结构的破坏,变性后的蛋白质称为变性蛋白。

引起蛋白质变性的因素很多,物理因素有高温、紫外线、X-射线、超声波、高压、剧烈的搅拌、震荡等。化学因素有强酸、强碱、尿素、胍盐、去污剂、重金属盐(如Hg2+、Ag+、Pb2+等)三氯乙酸,浓乙醇等。不同蛋白质对各种因素的敏感程度不同。 蛋白质变性后许多性质都发生了改变,主要有以下几个方面: (一)生物活性丧失 蛋白质的生物活性是指蛋白质所具有的酶、激素、毒素、抗原与抗体、血红蛋白的载氧能力等生物学功能。生物活性丧失是蛋白质变性的主要特征。有时蛋白质的空间结构只有轻微变化即可引起生物活性的丧失。(二)某些理化性质的改变 蛋白质变性后理化性质发生改变,如溶解度降低而产生沉淀,因为有些原来在分子内部的疏水基团由于结构松散而暴露出来,分子的不对称性增加,因此粘度增加,扩散系数降低。 (三)生物化学性质的改变 蛋白质变性后,分子结构松散,不能形成结晶,易被蛋白酶水解。蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白

蛋白质凝胶机理

蛋白质凝胶 摘要:凝胶特性是食品蛋白质的重要功能特性,蛋白质的凝胶行为及其流变性质是形成某些食品独特的质构、感官和风味的决定性因素长期以来,人们对蛋白质的凝胶行为进行了广泛深入的研究,但对蛋白质凝胶的机理和凝胶动力学还没有完全了解:本文对当前有关蛋白质凝胶的类型、凝胶过程中蛋白质分子构象的变化、形成蛋白质凝胶的主要作用力和凝胶动力学过程的研究进展作了综述:随着现代分析研究技术的进步,对蛋白质凝胶行为的认识也逐渐深入 关键词:蛋白质,凝胶机理 1 蛋白质凝胶的定义、类型及其凝胶过程中分子构象的变化 蛋白质凝胶的形成可以定义为蛋白质分子的聚集现象,在这种聚集过程中,吸引力和排斥力处于平衡,以至于形成能保持大量水分的高度有序的三维网络结构或基体(matrix)。如果吸引力占主导,则形成凝结物,水分从凝胶基体排除出来。如果排斥力占主导,便难以形成网络结构。 蛋白质凝胶的类型主要决定于蛋白质分子的形状。由于凝胶过程是一个动态过程,也受外界环境的pH、离子强度及加热的温度和时间的影响。纤维状蛋白质分子,如明胶和肌浆球蛋白凝胶的网络结构由随机的或螺旋结构的多肽链组成。Ledward报道,明胶的凝胶网络为线性分子通过形成连接区而形成凝胶网络。Hermanssan和langton观测到肌浆球蛋白凝胶是由线性分子间形成连接点而构建成三维网络。球蛋白的热凝胶是由仍保持球形结构的蛋白质分子首尾聚集而形成的。Tombs认为球蛋白形成两种类型的凝胶:高度定向有序的“念珠串状”网络结构和随机聚集的网络结构。“念珠串状”凝胶外观透明或半透明,Nakamura报道了大豆蛋白具有这种凝胶的网络结构。这种凝胶是在低离子强度和远离蛋白质等电点pI的条件下形成的。当环境的离子强度较高及pH接近等电点pI时,则形成随机聚集的凝胶。然而大多数球蛋白凝胶都具有这两种类型的凝胶网络,这决定于蛋白质的浓度、环境的pH与离子强度及加热的温度和时间。 蛋白质分子构象的变化是蛋白质分子聚集的先决条件,球蛋白更是如此。在串状网络结构中发现蛋白质分子仍保持球形构象。经典的球形蛋白质分子展开的“两种状态”理论认为仅存住两种状态的蛋白质:未变性的蛋白质和高度变性的无序蛋白质一现在已经证明,存从无序状态向未变性状态展开的路径中明显存在一动态的中间体。已经发现相似的中间体状态存在于低pH(或高pH)的平衡条件下、适当浓度变性剂的条件下和高温度的条件下。这种中间体状态被称为“熔融球蛋白状态”,它被定义为含有与未变性状态相似的二级结构而三级结构展开的紧凑的球形分子。从受热时的未变性状态到熔融球蛋白的转变及这种部分变性的形式主要与热凝胶的形成有关。 2形成蛋白质热凝胶的作用力 蛋白质凝胶是变性的蛋白质分子间排斥和吸引相互作用力相平衡的结果。一般认为,形成和维持蛋白质凝胶的作用力主要是疏水相互作用、氢键、静电相互作用等物理作用力,但含有巯基的蛋白质分子间SH-SS交换反应也可能对蛋白质的凝胶作用有贡献。 2.1 疏水相互作用 蛋白质受热时包埋的非极性多肽暴露出来,从而增强了I临近多肽非极十牛片段的疏水相互作用:因而,平均疏水性(例如蛋白质中疏水氨基酸的比率)应该影响凝胶的形成过程I Shimada和Matsushita等报道,含有高于31.5%克分子分数的非极性氨基酸残基的

重组蛋白质复性

重组包涵体蛋白质复性 邹平 基因工程技术的发展掀开了人类生命科学研究的崭新篇章,开辟了现代生物工业发展的新纪元。重组DNA技术为大规模生产目标蛋白质提供了可能,E.coli以其易于操作、遗传背景清楚、发酵成本低和蛋白表达水平高等优点,是生产重组蛋白的首选表达系统。但外源基因在E.coli中的高表达常常导致包涵体的形成,如何高效地复性包涵体蛋白是基因工程技术面临的一个难题。随着人类基因组计划的完成和蛋白组计划的实施,人们将会更多地面临这一问题的挑战。 一、包涵体蛋白 1、包涵体的形成 包涵体主要是因为在重组蛋白的表达过程中缺乏某些蛋白质折叠的辅助因子,而无法形成正确的次级键等原因形成的;也可能是外源基因合成速度太快,没有足够的时间进行折叠、二硫键不能正确的配对、过多的蛋白间的非特异性结合、蛋白质无法达到足够的溶解度等;重组蛋白质的一级结构也与包涵体形成有关,一般说含硫氨基酸越多越易形成包涵体,而脯氨酸的含量明显与包涵体的形成呈正相关;重组蛋白所处的环境不适,发酵温度高或胞内pH接近蛋白的等电点时易形成包涵体。 2、减少包涵体形成的策略 降低重组菌的生长温度,是减少包涵体形成的最常用的方法。低生长温度降低了无活性聚集体形成的速率和疏水相互作用;细菌生长缓慢溶氧水平低,也可减少包涵体的形成。 在培养重组菌中供给丰富的培养基,创造最佳培养条件,如供氧充足、合适pH等,以减少包涵体的形成。 添加可促进重组蛋白质可溶性表达的生长添加剂,增加细胞的渗透压。 在低的诱导剂条件下培养重组菌,减少重组蛋白表达量,也可减少包涵体的形成。 利用硫氧还蛋白融合表达或与目标蛋白共表达,得到可溶性目的蛋白。筛选合适的宿主菌,使表达的重组蛋白可溶。 3、包涵体破菌、分离、洗涤 常用高压匀化或机械、化学和酶相结合的方法破碎含包涵体的宿主菌细胞 ,再将破碎液通过低速离心或过滤除去可溶蛋白后获得包涵体。包涵体中除了目的蛋白外还含有脂类、脂多糖、核酸和杂蛋白等成分,而这些成分会影响包涵体蛋白的复性,故去折叠前应洗涤包涵体,以去除杂质。 4、包涵体的溶解去折叠 一般用强的变性剂如尿素、盐酸胍,通过离子间的相互作用,打断包涵体蛋白质分子内和分子间的各种化学键,使多肽伸展。盐酸胍优于尿素,因为盐酸胍是较尿素强的变性剂,

相关文档
最新文档