某煤矿安全监控系统设计

某煤矿安全监控系统设计
某煤矿安全监控系统设计

某煤矿安全监控系统设计

目录

一、矿井安全监控系统设计依据

二、矿井安全监控系统设计方案

三、矿井安全监控设备安装说明

四、矿井安全监控系统主要性能

五、矿井安全监控系统管理制度

六、矿井安全监控系统设备安装位置

七、附图

一、矿井安全监控系统设计依据

1、《煤炭工业小型矿井设计规范》

2、《煤矿安全规程》[2006]版

3、《新疆地方国有和乡镇煤矿矿井安全监控管理暂行

办法》

[2003]年

4、《矿井安全监控系统与瓦斯检查》[2003]年

5、国家其它有关煤炭工业建设的技术、经济政策和法

律、法规

6、煤矿提供的相关资料和设计要求

二、矿井安全监控系统设计方案

1、分站选型

根据矿井的实际情况的要求,分站选择两个大分站、一个中型分站。地面设一个大分站、在井下+822

水平设一个大分站、+772水平车场设一个中型分

站。

(1)安装位置:1#大分站在地面、型号KJ90-F16,控制范围、主井绞车、副井绞车、地面主通风机。(2)2#中分站安装在+772水平车场、型号KJ90-F8,控制范围、+772水平水泵的、变电所、运输皮带、

机电硐室等。

(3)3#大分站安装在+822水平南巷、型号KJ90-F16,控制范围在+822水平首采工作面、回风巷等。 2、大型分站的特点:

型号:KJ90-F16

特点:KJ90-F16 /KJ90-F8型井下监控分站是一种以

89C60单片机为刻心的微型计算机系统,可挂接多种传感器,能对井下多种环境参数诸如瓦斯、风速、一氧化碳、负压、设备开停状态等进行连续监测,具有多通道,多制式的信号采集功能和通讯功能,通过工业以太网或总线方式能及时将监测到得各种环境参数、设备状态传送到地面中心站,并中心站发出的各种命令,及时发出报警和断电控制信号。

3、主要用途及使用范围:

主要用途

(1)为井下所挂接的各种传感器、断电器提供工作电源; (2)采集各传感器的实测参数,设备运行状况、开停状态;

(3)通过工业以太网快速向地面的系统中心站传送巡检参数;

(4)通过RS485方式向地面中心站传送参数;

(5)执行地面中心站发往井下的各种控制命令;

(6)对异常状况进行断电控制。

4、适用范围:

(1)煤矿井下所有存在瓦斯和煤尘爆炸危险的场所;(2)煤矿井下所有需要使用传感器监测、监控各种有

毒有害气体及设备运行状态的地方及场所。

5、品种、规格

(1)井下监控分站。

(2) KJ90-F16 / KJ90-F8。

(3)型号的组成及其代表的意义

KJ 90 F 8/16

产品系列编号(8代表KJ90-F8;16代表KJ90-F1型)

分站设备

登记序号

矿用监测、控制系统或设备

6、环境条件

(1)、工作条件

a)工作温度;0℃~40℃; b)相对温度:≤95%;

c)大气压力;80kpa~106kpa;d)机械环境;无湿著震动和冲击的场合;e)有煤尘和瓦斯存在的场所。

7、运输贮存条件

a)高度;-40℃~60℃; b)相对温度:≤95%;

c)震动;≤50m/s2;

d)冲击;500m/s2。

6、防爆类型与标志

a)防爆形式;矿用本质安全型;

b)防爆标志;Exib

8、技术参数:

1)分站工作电压;12VDC,最大工作电流300mA

2)模拟量信号;奋战的模拟量信号为200Hz~1000Hz 的平率范围内的脉冲宽度不小于0.3ms;其高电平电压应不小于2.5V,底电平电压应不小于1.0V,输入与输出处理误差应不小于0.5%。

开关量信号;分站的开关量信号为1mA/5mA 的电流信号。电流≤1.5mA时表示为停,电流:≥4mA时表示为开。

3) 累计量输入处理误;

累计量输入处理误差不大于0.5%

4)系统信号传输;

a)分站与KJJ46数据接口的信号通讯方式为RS-485通讯方式,数据传送速率为2400bps,最大工作电压幅值≤1.5V,最大工作电流幅值≤150mA。

b)分站与KJJ103矿用网络交换机的信号通讯方式为

以太网通讯方式:数据传输速率为10/100Mbpa自适应,最大工作电压幅值≤1.5V,最大工作电流幅值≤150mA。

5)分站到KJJ46数据通讯接口采用煤矿用聚乙烯绝缘聚乙烯护套通信电缆

a)电缆信号;MHYVRP 1×2×7/0.52;

b)线缆直流电阻;≤12.8Ω/km

c)线缆分布电容:≤0.06μF/km;

d)线缆分布电感;≤0.8mH/km 。

6)分站到KJJ103数据交换机采用聚乙烯绝缘聚乙烯护套超五类双绞线。

7)分站到模拟量传感器采用煤矿用聚乙烯绝缘聚

乙烯护套通讯屏蔽电缆。

a)电缆信号;MHYVRP 1×4×7/0.43;—MHYVRP 1×2×7/0.52;

b)b)线缆直流电阻;≤12.8Ω/km

c)线缆分布电容:≤0.06μF/km;

d)线缆分布电感;≤0.8mH/km 。

8)分站到开关量、数字量传感器采用煤矿用聚乙烯绝缘聚乙烯护套通讯屏蔽电缆。

a)电缆信号;MHYVRP 1×2×7/0.43;

b)b)线缆直流电阻;≤45Ω/km

c)线缆分布电容:≤0.06μF/km;

d)线缆分布电感;≤0.6mH/km 。

9)分站到断电执行器采用煤矿用聚乙烯绝缘聚乙烯护套通讯屏蔽电缆。

a)电缆信号;MHYVRP 1×2×7/0.43;

b)b)线缆直流电阻;≤45Ω/km

c)线缆分布电容:≤0.06μF/km;

d)线缆分布电感;≤0.6mH/km 。

10)最大传送距离;

a)在传输电缆满足9)的条件下分站到KJJ46数据接口之间的最大传输距离不小于10km;

b)在传输电缆满足9)的条件下分站到KJJ103网络交换机之间的最大传输距离不小于100m;

c)在传输电缆满足9)的条件下分站到传感器之间的信号传输距离不小于2km;

d)在传输电缆满足9)的条件下分站到控制执行器之间的信号传输距离应不小于2km。

11)控制执行时间应满足控制要求,甲烷超限断电及

甲烷风电闭锁的控制执行时间应不小于3s

12)电网停电后,备用电源连续工作时间应不小于是2h

9、地面中心站:具体方案如下

1、主监控机2台

2、UPS不间断电源1台

3、打印机1台

4、通讯线路避雷器1台

5、电源避雷器1台

6、井下分站布置(见监控设备布置图)

三、矿井安全监控设备安装说明

(一)1#大分站设在地面,监控范围是;

1、主井绞车开停传感器(KT)一台。

2、副井绞车开停传感器(KT)一台。

3、风井主扇开停传感器(KT)两台。

4、总回风瓦斯传感器(CH4)一台。

5、一氧化碳传感器(CO)一台

6、风速传感器(V)一台。

7、温度传感器(T)一台。

8、负压传感器(P)一台。

9、安全出口开关传感器(FM)一台。

(二)2#中型分站设在+772水平车场。监控范围是;

1、水泵开停传感器(KT)两台。

2、水仓水位传感器(YW)一台。

3、机电硐室瓦斯传感器(CH4)一台。

4、轨道上山风速传感器(V)一台。

5、轨道上山温度传感器(T)一台。

6、机电硐室断电传感器(D)3台。

7、机电硐室馈电传感器(KD)一台。

(三)3#大型分站设在+822水平南巷。监控范围是;

1、机电硐室馈电传感器(KD)一台。

2、机电硐室断电传感器(D)一台。

3、1#煤门风门开关传感器(FM)一台。

4、回风巷瓦斯传感器(CH4)一台。

5、一氧化碳传感器(CO)一台

6、风速传感器(V)一台。

7、温度传感器(T)一台。

8、皮带开停传感器(KT)一台。

9、采煤机开停传感器(KT)一台。

10、液压泵站开停传感器(KT)一台。

11、工作面上遇角瓦斯传感器(CH4)一台。

12、采区工作面瓦斯传感器(CH4)一台。

四、KJ90安全监控系统安装规范

(1)机房:保证环境清洁、卫生,作好机房防尘,如有条件机房安装空调,作好机房恒温。机房电缆(含主通讯电缆、电源线缆、网线、避雷器接地线)铺设时最好在防静电地板下面。

(2)监控计算机:监控主机的“计算机名”必须为“KJ90”,KJ98目录(监控系统文件目录)必须在C盘根目录下,设置C盘为共享;电源管理都必须设置为“从不关闭”,删除所有屏幕保护软件(*.SCR);必须绘制监测系统示意图,其大小“800*600”象素;其它要求参考软件使用说明书。

(3)机房电源:输入电压200VAC~240VAC,如电压不在此范围或电压波动较大,必须安装交流净化电源。(4)接地极:接地方法见附件1,接地极离避雷器的距离必须小于10m,接地电阻小于2欧姆(接地包括电源避雷器接地、计算机外壳地、信号避雷器接地)。(5)地面通讯线:机房到井口的通讯电缆必须使用屏蔽电缆,安装时线路应尽量埋地(减少雷击可能),井口

煤矿安全监控系统设计探讨简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 煤矿安全监控系统设计探 讨简易版

煤矿安全监控系统设计探讨简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 鉴于煤矿生产环境的特殊性,其生产过程的安全性也就显得尤为重要,而煤矿安全监控系统正是煤矿诸多安全措施中最为重要的一种。煤矿安全监控系统能实时、准确地反映井下环境状况,并能在瓦斯超限时发出声光报警,同时切断相关设备电源,预防事故发生。下面笔者从设备选型、系统设计及监控设备布点等三方面,来探讨煤矿安全监控系统设计。 一、设备选型 在煤矿安全监控系统设备选择过程中应始终遵循以下几个原则:(1)系统设备应是通过国家技术监督局认证、经过有关部门检验,取

得“MA标志准用证”的产品,并符合《AQ6201-2006》、《煤矿安全规程》、《煤炭工业矿井设计规范》及其它规程、规范、标准的要求;(2)系统选型应结合煤矿的实际情况,考虑设备的可靠性、先进性、开放性及可扩展性等特性,以满足矿井对监控信息有效获得的需要,同时要考虑矿井近、远期发展以及产品的技术更新情况,以减少重复投资;(3)考虑技术先进性的同时,还应结合矿井规模、建设条件等实际情况,考虑系统设备的经济合理性。 二、系统设计 煤矿安全监控系统设计应符合《AQ1029-2007》、《煤矿安全规程》、《煤炭工业矿井设计规范》及其它规程、规范的要求。煤矿安全监控系统具有模拟量、开关量累计量采集、

煤矿安全论文范文:煤矿安全监控系统的研究

煤矿安全论文范文: 煤矿安全监控系统的研究 摘要:近年来,我国煤矿企业的安全生产状况十分严峻,重、特大恶性事故频发,不仅给国家财产和人民生命带来了巨大损失,而且还产生了恶劣的社会影响,煤矿安全问题已成为影响煤炭工业生产以至于社会稳定的重大问题。本文主要论述了煤矿安全监控系统及其危险有害因素的分析与控制,并提出了几点监管措施。 关键词:煤矿;安全生产;监管系统 煤矿安全监控系统是各矿生产、安全及管理方面的实时监测监管系统,对于煤矿的生产运行状况,安全水平、预测预报具有重要的作用。煤炭是我国的主要能源,约占一次能源的70%。煤炭行业是高危行业,瓦斯、煤尘、水灾、火灾、冲击地压、地热等困扰着煤炭工业的健康发展。乡镇煤矿事故频发,百万吨死亡率是国有重点煤矿的7倍,这就充分证明,先进的技术、可靠的装备、合格的人才和到位的管理,是煤矿安全生产的重要保障。 1 煤矿安全监控系统概述 煤矿安全监控系统是煤矿安全高效生产的重要保障。煤矿安全监控系统分井下和地面两部分。井下主要设备是矿用分站,是井下信息收集处理的基本单元,配接甲烷传感器、风速传感器、温度传感器、一氧化碳传感器、负压传感器、机电设备开停传感器风门开闭传感器馈电传感器完成采区数据采集,实现对生产场所的安全监测与控制。地面主要设备是信息采集处理中心:由传输接口、监测管理软件、监控主机、备用机、打印机、监视器以及信号避雷器等组成,主要把井下上传的监测控制信息及时传输到煤矿各个生产部门,对井下环境进行综合分析和科学判断,确保煤矿生产的安全。 煤矿安全监控系统用来监测CH4浓度、CO浓度、CO2浓度、O2浓度、风速、风压、温度、烟雾、馈电状态、风门状态、风筒状态、局部通风机开停、主通风机开停等,并实现CH4超限声光报警、断电和CH4风电闭锁控制等。当瓦斯超限或局部通风机停止运行或掘进巷道停风时,煤矿安全监控系统自动切断相关区域的电源并闭锁,避免或减少由于电气设备失爆、违章作业、电气设备故障电火花或危险温度引起瓦斯爆炸;避免或减少采、掘、运等设备运行产生的摩擦撞击火花及危险温度等引起瓦斯爆炸;提醒领导、生产调度等及时将人员撤至安全处。还可通过煤矿安全监控系统监控瓦斯抽放系统、通风系统、煤炭自燃、瓦斯突出等。 煤矿安全监控系统在应急救援和事故调查中也发挥着重要作用,当煤矿井下发生瓦斯(煤尘)爆炸等事故后,系统的监测记录是确定事故时间、爆源、火源等重要依据之一。 火灾监测系统主要用来监测CO浓度、CO2浓度、O2浓度、温度、压差、烟雾等,并通过风门、风窗控制,实现均压灭火控制、注氮控制等。矿山压力监测系统主要用来监测支架工作阻力、顶板下沉量、顶板下沉速度、锚杆应力、声发射频率与强度等,并实现矿山压力预报。煤与瓦斯突出监测系统主要用来监测煤岩体声发射、瓦斯涌出量、工作面煤壁温度、红外发射、电磁发射等,并实现煤与瓦斯突出预报。 2煤矿危险有害因素分析与控制 煤矿生产是地下作业,环境条件复杂。煤矿除面临地面一般工业企业的危险与有害因素以外,还有其特殊危险与有害因素,而且一种事故的发生,往往会引起另一事故的发生;工作地点和工作条件随着时空的变化而变化,使危险与有害因素产生和消亡呈现出明显的动态性;有的危险与有害因素比较隐蔽,仅凭感官和直觉难以发现,必须通过仪器和专用设备才能检测出来。煤矿主要事故如下:(1)瓦斯爆炸;(2)水灾;(3)煤矿火灾;(4)粉尘;(5)中毒和窒息;(6)高处坠

矿井防尘系统设计

矿井防尘系统设计 按照《煤矿安全规程》规定,矿井必须采取综合防尘措施,并建立完善的防尘洒水管路系统,因此,特编制本防尘系统设计。 一、水源与供水形式的选择 (一)矿井防尘系统的水质要求 1. 井下消防、洒水及一般设备用水标准见表1。 表1 井下防尘系统水质标准 2.特殊设备用水按设备厂家提供的水质标准。 (二)供水水源选择 东部井利用水源井供水,西风井利用水厂供水。东部回风井地面建有2座200 m 3及1座200 m 3水池,西风井地面建有2座200 m 3水池。 (三)防尘供水形式的选择 防尘供水形式是开展防尘工作的基 础。供水形式的确定取决于水源。现场 采用的有以下几种形式: 1.利用井下水为水源的静压供水 图1 矿井水源的静压供水系统 1—地面净水池;2—水泵;3—井筒; 4—供水管;5—井底水仓 4 3 2 1 5

井下水源可以是巷道的水沟水、淋帮水或含水层水。因水源不同,这种供水系统又可分为: 1)用井下排水泵将井底水仓中的水排至地面水池,通过沉淀过滤处理后的清水经输水管网送至各用水地点。如图1 所示。 储水池设在地面,水池容量不得小于一班的耗水量。水池标高的选择,应满足用水点水压要求及考虑管材设备的耐压强度。有时地面水池距离井底高差太大,需要采取降压措施,。 这种供水形式的优点是水压稳定,便于管理。 2)收集井下淋帮水、裂源水,汇于集水池中,用专用水泵将水送至地面,然后经管网送至井下各用水点。如图2 所示。该系统取水方式与前一种情况类似,但淋帮水、裂源水比井下水仓水的水质要好得多,一般不需要沉淀或过滤。只是需要有淋水、裂隙水条件的矿井方可采用。主要优点是水压稳定,水质较好,管理方便。 3)收集上水平的巷道淋帮水或裂源水于集水池中,充分利用上图3 上水平巷帮淋水供下水平使用 1—总回风大巷;2—集水池;3—水管; 4—上山(或斜井) 1 2 3 4 3 4 下水平 上水平 图2 巷帮淋水源的静压供水系统 1—地面净水池;2—井筒;3—供水管; 4—淋水巷道;5—集水仓 3 2 5 1 4

某煤矿安全监控系统设计

某煤矿安全监控系统设计 目录 一、矿井安全监控系统设计依据 二、矿井安全监控系统设计方案 三、矿井安全监控设备安装说明 四、矿井安全监控系统主要性能 五、矿井安全监控系统管理制度 六、矿井安全监控系统设备安装位置 七、附图 一、矿井安全监控系统设计依据 1、《煤炭工业小型矿井设计规范》 2、《煤矿安全规程》[2006]版 3、《新疆地方国有和乡镇煤矿矿井安全监控管理暂行 办法》 [2003]年

4、《矿井安全监控系统与瓦斯检查》[2003]年 5、国家其它有关煤炭工业建设的技术、经济政策和法 律、法规 6、煤矿提供的相关资料和设计要求 二、矿井安全监控系统设计方案 1、分站选型 根据矿井的实际情况的要求,分站选择两个大分站、一个中型分站。地面设一个大分站、在井下+822 水平设一个大分站、+772水平车场设一个中型分 站。 (1)安装位置:1#大分站在地面、型号KJ90-F16,控制范围、主井绞车、副井绞车、地面主通风机。(2)2#中分站安装在+772水平车场、型号KJ90-F8,控制范围、+772水平水泵的、变电所、运输皮带、 机电硐室等。 (3)3#大分站安装在+822水平南巷、型号KJ90-F16,控制范围在+822水平首采工作面、回风巷等。 2、大型分站的特点: 型号:KJ90-F16 特点:KJ90-F16 /KJ90-F8型井下监控分站是一种以

89C60单片机为刻心的微型计算机系统,可挂接多种传感器,能对井下多种环境参数诸如瓦斯、风速、一氧化碳、负压、设备开停状态等进行连续监测,具有多通道,多制式的信号采集功能和通讯功能,通过工业以太网或总线方式能及时将监测到得各种环境参数、设备状态传送到地面中心站,并中心站发出的各种命令,及时发出报警和断电控制信号。 3、主要用途及使用范围: 主要用途 (1)为井下所挂接的各种传感器、断电器提供工作电源; (2)采集各传感器的实测参数,设备运行状况、开停状态; (3)通过工业以太网快速向地面的系统中心站传送巡检参数; (4)通过RS485方式向地面中心站传送参数; (5)执行地面中心站发往井下的各种控制命令; (6)对异常状况进行断电控制。 4、适用范围: (1)煤矿井下所有存在瓦斯和煤尘爆炸危险的场所;(2)煤矿井下所有需要使用传感器监测、监控各种有

煤矿安全监控系统设计方案

煤矿安全监控系统设计方案 近年来,煤矿事故频频发生,如何加强安全生产,提高预警和事后搜救工作效率,摆到了国家各级主管部门和领导的面前。在经济高速发展、能源供应紧张的形势下,如何处理好保证安全和提高产量的关系,需要深入研究,发展不能以牺牲环境和生命为代价。 为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行煤矿安全监测职能,有效进行矿工管理,保证抢险救灾、安全救护的高效运作显得尤为重要和紧迫。我们认为提升安全生产信息化管理水平,加强以灾害预防、搜救为主要目标的安全生产长效机制,是我国安全生产工作的必由之路。 在此环境下浙江大华技术股份有限公司率先推出适用于煤矿的数字视频监控系统,本系统从视频监控、信号传输、中心控制、远程监管等各方面提出全方位的解决办法,可以实现井下监控中心、地、市煤矿安全监控指挥中心与省局监控指挥中心联网,使煤矿安全管理工作向科学化、规范化、数字化管理轨道迈进,提高煤矿安全管理水平。 利用远程视频监控系统,地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故,防患于未然,也能为事后分析事故提供有关的第一手图像资料。另外,煤矿监管部门可以从省部管理中心远程监看井下状况,提出整改方法,减少事故隐患,因此新天安远程视频监控系统将是保障矿井安全生产的重要组成部分。

需求分析 在我国,采煤机械化程度仅为45%,矿工队伍很大一部分是文化水平较低、培训时间有限的农民工,甚至存在井下抽烟等严重违章现象,在高度危险的作业环境中,极易发生事故,造成重大伤亡。我们在分析近期几个煤矿发生的特大事故时发现: 1)地面与井下人员的信息沟通不及时; 2)地面人员难以及时动态掌握井下人员的分布及作业情况; 3)一旦煤矿事故发生,抢险救灾、安全救护的效率低,搜救效果差。 目前,煤矿井下作业因为远离地面,地形复杂,环境恶劣与地面人员间沟通不便,如果利用远程视频监控系统,地面监控人员则可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故,防患于未然,也能为事后分析事故提供有关的第一手图像资料。同时要求上级有关监管部门可以通过网络远程查看进行状况,提出整改方法。 煤矿监控系统需要满足以下功能要求: ●视频监控设备满足煤矿行业防爆、隔爆等级国家标准; ●可以实现各级部门联网监控,指挥终端、中心控制室以及上级领导终端可通过语音对讲对煤矿开采企业进行远程指挥; ●系统具有特定的视频效果:以矿井为单元,将一路或多路视频信号进行图像预览和录像。

煤矿监测监控论文

第一章绪论 1.1 概述国内外监控系统及其技术的发展 矿井安全监控技术是伴随煤炭工业发展而逐步发展起来的。1815年,英国发明了世界上第一种瓦斯检测仪器-瓦斯检定灯,利用火焰的高度来测量瓦斯浓度。20世纪30年代,日本发明了光干涉瓦斯检定器,一直沿用至今。40年代,美国研制了检测瓦斯气体的敏感元件-铂丝催化元件。1954年,英国采矿安全研究所制成了最早的载体催化元件。60年代以后,主要的产煤国家都把发展崔体元件作为瓦斯检测仪器的主攻方向。电子技术的进步推动了瓦斯监控装置的进一步发展,首先是研制小型化个人携带式仪器,以后是矿井进空系统,如70年代后期法国研制的CTT63/40矿井监控系统英国的MINOS系统美国的SCADA系统等。 我国监测监控技术应用较晚,80年代初,从波兰、法国、德国、英国和美国等(如DAN6400、TF200、MINOS和Senturion-200)引进了一批安全监控系统,3装备了部分煤矿;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况. 先后研制出KJ2、KJ4、KJ8、KJ10、 KJ13、KJ19、KJ38、KJ66、KJ75、KJ80、KJ92等监控系统,在我国煤矿已大量使用。实践表明,安全监控系统为煤矿安全生产和管理起到了十分重要的作用,各局矿已作为一项重大安全装备。由于当时相当一部分监控系统由于技术水平低、功能和扩展性能差、现场维修维护和技术服务跟不上等原因,或者已淘汰、或者停产。因此造成相当一部分矿井无法继续正常使用已装备的系统。特别是近年来由于老系统服务年限将至,已无继续维修维护的必要,系统面临更新改造的机遇。 本系统分析了近年来我国煤矿安全生产监测监控系统的研制开发、推广使用、维护管理经验和存在的问题,在对系统的软件技术和功能、硬件及接口技术的可靠性和兼容性、传感器技术的稳定性和可靠性、企业安全生产信息化管理技术的深入研究的基础上设计而成。 第二章系统总体设计

煤矿排水系统设计

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井

煤矿安全监控

1、编制采区设计、采掘作业规程时,必须对安全监控、人员位置监测、有线调度通信设备的种类、数量和位置,信号、通信、电源线缆的敷设,安全监控系统的断电区域等做出明确规定,绘制安全监控布置图和断电控制图、人员位置监测系统图、井下通信系统图,并及时更新。 每3个月对安全监控、人员位置监测等数据进行备份,备份的数据介质保存时间应当不少于2年。图纸、技术资料的保存时间应当不少于2年。录音应当保存3个月以上。 2、矿用有线调度通信电缆必须专用。严禁安全监控系统与图像监视系统共用同一芯光纤。矿井安全监控系统主干线缆应当分设两条,从不同的井筒或者一个井筒保持一定间距的不同位置进入井下。 设备应当满足电磁兼容要求。系统必须具有防雷电保护,入井线缆的入井口处必须具有防雷措施。 系统必须连续运行。电网停电后,备用电源应当能保持系统连续工作时间不小于2h。 监控网络应当通过网络安全设备与其他网络互通互联。 安全监控和人员位置监测系统主机及联网主机应当双机热备份,连续运行。当工作主机发生故障时,备份主机应当在5min内自动投入工作。 当系统显示井下某一区域瓦斯超限并有可能波及其他区域时,矿井有关人员应当按瓦斯事故应急救援预案切断瓦斯可能波及区域的电源。安全监控和人员位置监测系统显示和控制终端、有线调度通信系统调度台必须设置在矿调度室,全面反映监控信息。矿调度室必须24h有监控人员值班。 3、安全监控设备必须具有故障闭锁功能。当与闭锁控制有关的设备未投入正常运行或者故障时,必须切断该监控设备所监控区域的全部非本质安全型电气设备的电源并闭锁;当与闭锁控制有关的设备工作正常并稳定运行后,自动解锁。 安全监控系统必须具备甲烷电闭锁和风电闭锁功能。当主机或者系统线缆发生故障时,必须保证实现甲烷电闭锁和风电闭锁的全部功能。系统必须具有断电、馈电状态监测和报警功能。 4、安全监控设备的供电电源必须取自被控开关的电源侧或者专用电源,严禁接在被控开关的负荷侧。

煤矿视频监控系统设计方案

煤矿井下视频监控系统施工方案 一、概述 近年来,矿发生事故的数量在不断增加,如何加强安全生产,提高预警和事后搜救工作效率,摆到了国家各级主管部门和领导的面前。在经济高速发展、能源供应紧的形势下,如何处理好保证安全和提高产量的关系,需要深入研究,发展不能以牺牲环境和生命为代价。 为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行矿安全监测职能,有效进行矿工管理,保证抢险救灾、安全救护的高效运作显得尤为重要和紧迫。面对新形势、新机遇和新挑战,国家各级主管部门的领导对安全生产工作提出了很高的要求和期望。我们认为提升安全生产信息化管理水平,加强以灾害预防、搜救为主要目标的安全生产长效机制,是我全生产工作的必由之路。 在此环境下的煤矿数字视频监控系统,本系统从视频监控、信号传输、中心控制、远程监管等各方面提出全方位的解决办法,可以实现井下监控中心、地、市矿安全监控指挥中心与省局监控指挥中心联网,使矿安全管理工作向科学化、规化、数字化管理轨道迈进,提高矿安全管理水平。 利用远程视频监控系统,地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故苗子,防患于未然,也能为事后分析事故提供有关的第一手图像资料。另外,矿监管部门可以从省部管理中心远程监看井下状况,提出整改方法,减少事故隐患,因此天大天财远程视频监控系统将是保障矿井安全生产的重要组成部分。 二、需求分析 在美国,矿已实现高度机械化,井下工作人员很少,作业规,巷道通畅,一旦发生事故,易于撤离,伤亡不大。而在我国,采煤机械化程度仅为45%,矿工队伍很大一部分是文化水平较低、培训时间有限的农民工,甚至存在井下抽烟等严重违章现象。这样的千军万马集中在高度危险的作业环境中,极易发生事故,

煤矿安全监测监控论文

作者:煤矿安全生产监测监控系统 第一章绪论 1.1 概述国内外监控系统及其技术的发展 矿井安全监控技术是伴随煤炭工业发展而逐步发展起来的。1815年,英国发明了世界上第一种瓦斯检测仪器-瓦斯检定灯,利用火焰的高度来测量瓦斯浓度。20世纪30年代,日本发明了光干涉瓦斯检定器,一直沿用至今。40年代,美国研制了检测瓦斯气体的敏感元件-铂丝催化元件。1954年,英国采矿安全研究所制成了最早的载体催化元件。60年代以后,主要的产煤国家都把发展崔体元件作为瓦斯检测仪器的主攻方向。电子技术的进步推动了瓦斯监控装置的进一步发展,首先是研制小型化个人携带式仪器,以后是矿井进空系统,如70年代后期法国研制的CTT63/40矿井监控系统英国的MINOS系统美国的SCADA系统等。 我国监测监控技术应用较晚,80年代初,从波兰、法国、德国、英国和美国等(如DAN6400、TF200、MINOS和Senturion-200)引进了一批安全监控系统,3装备了部分煤矿;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况. 先后研制出KJ2、KJ4、KJ8、KJ10、 KJ13、KJ19、KJ38、KJ66、KJ75、KJ80、KJ92等监控系统,在我国煤矿已大量使用。实践表明,安全监控系统为煤矿安全生产和管理起到了十分重要的作用,各局矿已作为一项重大安全装备。由于当时相当一部分监控系统由于技术水平低、功能和扩展性能差、现场维修维护和技术服务跟不上等原因,或者已淘汰、或者停产。因此造成相当一部分矿井无法继续正常使用已装备的系统。特别是近年来由于老系统服务年限将至,已无继续维修维护的必要,系统面临更新改造的机遇。 本系统分析了近年来我国煤矿安全生产监测监控系统的研制开发、推广使用、维护管理经验和存在的问题,在对系统的软件技术和功能、硬件及接口技术的可靠性和兼容性、传感器技术的稳定性和可靠性、企业安全生产信息化管理技术的深入研究的基础上设计而成。 第二章系统总体设计

煤矿井下强排系统安全技术措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 煤矿井下强排系统安全技术措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4565-50 煤矿井下强排系统安全技术措施(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、工程概况: 刘家峁煤矿已按设计要求完成了井下排水系统,井下设有中央泵房和中央水仓以及临时水仓。排水管路及水泵已安装完毕。 二、矿水文地质特征: 1、水文地质情况: (1)由于本矿上部为1-2煤采空区,根据实际开采情况分析,采空区内积水较少,因此上部采空区对本工作面无影响。 (2)1-2煤与2-2煤之间顶底岩性多以砂岩为主,无较大地质构造,为不导水层,多以裂隙水为主,且水量较小,对本工作面开采无影响。 (3)虽然采空内的积水不多,在开采过程中必须

重视探放水工作。 2、矿井涌水量: 根据矿井初设表明:矿井正常涌水量45m3/h, 最大涌水量60m3/h。 三、安装强排系统的目的: 煤矿井下水害不仅直接威胁煤矿的安全生产,且严重威胁着矿工的生命安全。实践证明,对有突水淹井危险的矿井,卧泵加矿用潜水泵排水系统是解决矿井正常排水和抗灾抢险排水的有效方案。 1 建立抗灾强排系统的必要性防治煤矿水害除了建立健全预测预报体系外,建立强大的防排水系统是积极有效的措施。尤其是水文地质情况复杂、有突水危险的煤矿,除了保证完善的正常排水系统外,还必须建立强排系统。 长期以来,我国煤矿井下排水系统均采用中央泵房、电机驱动卧式离心水泵的设计模式,这几乎成为煤矿生产排水的定式。电动机和开关柜等主要电器设备,虽具有防爆性,但不具有防水性。一旦遇水侵害,

新版煤矿监控系统升级实施与设计方案

XXX煤矿 安全监控系统升级改造实施方案 编制单位:XX煤矿 编制日期:二〇一七年三月十九日

安全监控系统升级改造实施方案 一、安全监控系统升级改造目的 为了提高煤矿安全监控系统准确性、灵敏性、可靠性、稳定性和易维护性,增加煤矿安全保障能力。 1、促进安全监测监控新技术新装备的推广应用,提高安全监控系统技术性能和安全可靠性,适应煤矿安全生产的需要。 2、促进安全监测监控多元融合和信息共享,提高煤矿安全预测预警水平,实现安全监测监控信息的的深度分析和综合利用。 3、支持安全监管监察,促进煤矿企业合理有效使用安全监控系统,充分发挥安全监控系统在煤矿安全生产中的重要作用,提升井下日常安全生产技术保障水平。 二、矿井概况 煤矿设计能力为90万吨/年,于1983年12月26日正式动工,1995年11月投产。投产以来,通过改革采煤工艺,技术扩能改造,特别是2006年增补新副井、延深二水平,2008年进行安全改建,北八采区增加一个回风井和一个进风井,矿井生产能力不断提升。2012年核定为185万吨/年。矿井在用安全监控系统安装情况: (一)监测监控系统

我矿选用的监测监控系统型号:KJ90N一套,KJ90-F16D分站23台,其中主机两台,一台工作,一台备用,服务器2台,上传机4台,矿井安全监控系统,装备齐全,数据准确,反应灵敏,系统能实现声光报警,曲线、报表打印,瓦斯电闭锁、故障闭锁、风电闭锁等,功能齐全且正常运行并与县监控中心联网监控矿井瓦斯动态情况,采集有效数据。 (二)人员定位系统 我矿井安装了两套人员定位系统,型号为:KJ251A,且系统运行正常。煤矿人员管理系统的建设完善主要是增加设备和维护升级,完善软件的功能,根据矿井生产地区的变化,及时调整井下读卡分站位置及数量,抽调专人负责煤矿人员管理系统的维护管理工作。 (三)视频监控系统 我矿选用的视频监控系统型号:海康威视两套主机和摄像仪矿用防爆16个,并与县监控中心联网,监控矿井的各个工作点情况。 (四)通讯系统 我矿选用通讯系统型号:KTJ3-16一台和100门交换机,在矿井各工作点安装直通井上调度室、监控室及各办公室和寝室电话。 三、安全监控系统升级改造方式及实施方案 在充分利用现有系统的基础上,根据实际需求对在用安全监控系统部分组件改造、软件更新的升级方式,计划2018年底前完成安全监控系统升级改造。 四、安全监控系统升级改造时间安排

煤矿安全监控系统规范

煤矿安全监控系统及检测仪器使用管理规范 (AQ1029—2007) 2007年1月4日国家安全生产监督管理总局发布 1 范围 本标准规定了煤矿安全监控系统及检测仪器的装备、设计和安装、传感器设置、使用与维护、系统及联网信息处理、管理制度与技术资料等要求。 本标准适用于全国井工煤矿,包括新建和改、扩建矿井。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 煤矿安全规程 AQ6201—2006 煤矿安全监控系统通用技术要求 AQ6203—2006 煤矿用低浓度载体催化式甲烷传感器技术条件 MT423—1995 空气中甲烷校准气体技术条件 3 术语和定义 下列术语和定义适用于本标准。 3.1 煤矿安全监控系统coal mine safety monitoring system 具有模拟量、开关量、累计量采集、传输、存储、处理、显示、打印、声光报警、控制等功能,用于监测甲烷浓度、一氧化碳浓度、风速、风压、温度、烟雾、馈电状态、风门状态、风筒状态、局部通风机开停、主通风机开停,并实现甲烷超限声光报警、断电和甲烷风电闭锁控制,由主机、传输接口、分站、传感器、断电控制器、声光报警器、电源箱、避雷器等设备组成的系统。 3.2 传感器transducer 将被测物理量转换为电信号输出的装置。 3.3 甲烷传感器methane transducer 连续监测矿井环境气体中及抽放管道内甲烷浓度的装置,一般具有显示及声光报警功能。 3.4 风速传感器air velocity transducer 连续监测矿井通风巷道中风速大小的装置。 3.5

煤矿安全监控系统设计方案标准版本

文件编号:RHD-QB-K5090 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 煤矿安全监控系统设计方案标准版本

煤矿安全监控系统设计方案标准版 本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 近年来,煤矿事故频频发生,如何加强安全生产,提高预警和事后搜救工作效率,摆到了国家各级主管部门和领导的面前。在经济高速发展、能源供应紧张的形势下,如何处理好保证安全和提高产量的关系,需要深入研究,发展不能以牺牲环境和生命为代价。 为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行煤矿安全监测职能,有效进行矿工管理,保证抢险救灾、安全救护的高效运作显得尤为重要和紧迫。我们认为提升安全生

产信息化管理水平,加强以灾害预防、搜救为主要目标的安全生产长效机制,是我国安全生产工作的必由之路。 在此环境下浙江大华技术股份有限公司率先推出适用于煤矿的数字视频监控系统,本系统从视频监控、信号传输、中心控制、远程监管等各方面提出全方位的解决办法,可以实现井下监控中心、地、市煤矿安全监控指挥中心与省局监控指挥中心联网,使煤矿安全管理工作向科学化、规范化、数字化管理轨道迈进,提高煤矿安全管理水平。 利用远程视频监控系统,地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故,防患于未然,也能为事后分析事故提供有关的第一手图像资料。另外,煤矿监管部门可以从省部管理

矿井主排水系统设计

矿井主排水系统设计 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第一章矿井概况 一、矿井简介 该矿井属于某煤田——河流区域,最高海拔+170米左右,平原最低标高+110左右,井田内多为缓岗丘陵,堆积平原和玄武岩地相间,该河蜿蜒蛇曲,横贯井田南部为老年期河流,沿河两侧有大片沼泽湿地,河宽10~15米,坡度%河深1~2米,平均流量米3/秒,最小流量米3/秒,最大流量(暴雨后)米3/秒。除此主干流外,还有季节冲沟,本区最高洪水位标高为+125米。 矿井东南为背斜构造,地层倾角最大60度左右,中西部有不明显褶皱,倾角一般10~18度,区内断层共11层,其中除F11逆断层外,F1~F10均为正断层,断层落差最大120~150米,最小为0~17米。 二、水文地质 1、第四系孔隙含水层 该河在本区段上游以粗砂含水层为主,分选性和渗透性较好,含水丰富,其厚30米以上,最宽分布2100米,分选性和渗透性由上游逐渐减弱,该河下游以灰色砾砂为主,分选性与渗透性均好,含水丰富,含水层厚度平均为15米最厚25米,分布宽1100米,水力性质为潜水,埋在地表米以下,水位米左右,砾砂层含水层与煤系地层直接接触,二者的联系是密切的。 2、侏罗系含水带

从水文地质条件和地貌来看,西部为补给区,东部为排泄区,当地下水流到大中沟时,在低洼处,形成上升泉排泄于地表,东区侏罗系含水带划分为: 1)裂隙含水带,分布在120米以上,主要由中粗沙层组成,强化风隙含水带裂隙发育,含水丰富。 2)孔隙含水带,含水带在120米以下,即位于强风化裂隙含水带以下,但二带无明显界限,孔隙含水带单位涌水量在~0.064升/秒.米,地下水受到到控制,总的规律是由西向东流。 3)自垩系隔水带 岩性为灰绿色岩,全区分布厚度不一,在背斜轴部岩基附近厚305米,两冀其它部分,平均厚160米,最低处为米,单位涌水量为升/秒.米,所以视为隔水层。 3、矿床充水 1)地表水对矿床充水,该河由西向东横贯全区,它的注入是矿井充水的主要补给合源。 2)地质构造对矿床充水的影响,主干断层F10伴生几条高度正断层,是沟通第四系含水层的煤系地层,含水层的良好通道,容易对矿井造成突然涌水和增大涌水量。 3)大气降水,大气降水是地下水主要来源,砾砂含水层和玄武岩覆盖层裂隙发育是大气降水渗入补给的良好通道。 4)煤系地层顶部80米以上岩石含水性强,区内百分之百的涌水部位多数岩性是中性粗砂岩,开采时要防止突然涌水。 第二章矿井主排水设备选择计算

煤矿安全监控系统设计方案

编号:AQ-JS-07134 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 煤矿安全监控系统设计方案 Design scheme of coal mine safety monitoring system

煤矿安全监控系统设计方案 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 近年来,煤矿事故频频发生,如何加强安全生产,提高预警和事后搜救工作效率,摆到了国家各级主管部门和领导的面前。在经济高速发展、能源供应紧张的形势下,如何处理好保证安全和提高产量的关系,需要深入研究,发展不能以牺牲环境和生命为代价。 为此,如何正确处理安全与生产、安全与效益的关系,如何准确、实时、快速履行煤矿安全监测职能,有效进行矿工管理,保证抢险救灾、安全救护的高效运作显得尤为重要和紧迫。我们认为提升安全生产信息化管理水平,加强以灾害预防、搜救为主要目标的安全生产长效机制,是我国安全生产工作的必由之路。 在此环境下浙江大华技术股份有限公司率先推出适用于煤矿的数字视频监控系统,本系统从视频监控、信号传输、中心控制、远程监管等各方面提出全方位的解决办法,可以实现井下监控中心、地、市煤矿安全监控指挥中心与省局监控指挥中心联网,使煤矿安

全管理工作向科学化、规范化、数字化管理轨道迈进,提高煤矿安全管理水平。 利用远程视频监控系统,地面监控人员可以直接对井下情况进行实时监控,不仅能直观的监视和记录井下工作现场的安全生产情况,而且能及时发现事故,防患于未然,也能为事后分析事故提供有关的第一手图像资料。另外,煤矿监管部门可以从省部管理中心远程监看井下状况,提出整改方法,减少事故隐患,因此新天安远程视频监控系统将是保障矿井安全生产的重要组成部分。 需求分析 在我国,采煤机械化程度仅为45%,矿工队伍很大一部分是文化水平较低、培训时间有限的农民工,甚至存在井下抽烟等严重违章现象,在高度危险的作业环境中,极易发生事故,造成重大伤亡。我们在分析近期几个煤矿发生的特大事故时发现: 1)地面与井下人员的信息沟通不及时; 2)地面人员难以及时动态掌握井下人员的分布及作业情况; 3)一旦煤矿事故发生,抢险救灾、安全救护的效率低,搜救效

煤矿井下电力监测监控系统的设计方案

煤矿井下电力监测监控系统设计方案 一、系统组成 1.1 数据交换中心 此部分主要由数据采集服务器和两台互为冗余的网路交换机组成。 数据采集服务器:主要通过井下隔爆交换机把井下各个电力监控分站的数据采集汇总到此服务器,完成数据处理及数据备份。 选用了IBM X3500服务器一台,做了RAID5磁盘镜像。 网路交换机:采用了双交换机、冗余设计,保证了地面集控站与数据交换中心的数据链路安全。 选用了CISC029系列的两台网络交换机。 1.2 地面集控站 此部分主要配置包括两台互为双机热备的电力监控服务器(选用IBM X3500服务器)和两台操作员站(选用DELL工控机)。 主要根据采集的电网数据和友好的软件平台,实现电网的运行监视和控制管理。另外,地面集控站预留了视频及WEB接口,便于将来扩充视频服务器和WEB服务器。视频服务器主要用于将井下和地面的配电室及变电所现场安装的摄像头采集的视频信号进行监视和保存;WEB服务器则用于将系统采集的电网数据以网页的形式发布到公司的办公系统网络中,公司领导只要在自己的办公室打开电脑就可以观看到全矿的电网实时数据。 综述,以上体系结构符合集控系统的体系结构原理,满足了系统功能和性能要求,并且符合实时性、安全性和可靠性原则。关键设备用了冗余配置。 二、系统软件 2.1 系统组态软件 选用了具有良好的开放性和灵活性的SIMATIC WinCC组态软件,布置在地面集控站的监控服务器上,实现用户的监控需求。采用此软件主要有以下优点: (1)包括所有的SCADA功能在内的客户机/服务器系统。最基本的WINCC系统仍能够提供生成可视化任务的组件和函数,而且最基本的WINCC系统组件即涵盖了画面、脚本、报警、趋势和报表的各个编辑器。 (2)强大的标准接口。WINCC提供了OLC、DDE、ActiveX、OPC等接口,可以很方便地与其他应用程序交换数据。 (3)使用方便的脚本语言。WINCC可编写ANSI-C和Visual Basic脚本程序。 (4)具有向导的简易(在线)组态。WlNCC提供了大量的向导来简化组态工作。在调试阶段还可以进行在线修改。 2.2 系统数据库软件 系统选用了力控实时数据库,它以其强大的功能,为企业信息化建设提供了完整的实时管理工具,能够提供及时、准确、完整的产生和统计信息,为实施企业管控一体化提供稳固的基础和有力的保证。其性能主要有: (1)真正的分布式结构,同时支持C/S和B/S应用; (2)实时数据库系统具有高可靠性和数据完整性; (3)灵活的扩展结构可满足用户各种需求; (4)高速的数据存储和检索性能;

煤矿安全监控系统评估(通用简版)

矿井安全监测监控系统评估 一、评估对象 系统名称:本矿井安全监测监控系统 系统概况:本系统主要由监控中心监控设备、监控分站、各类传感器及其他辅助设备组成。传输平台采用工业以太环网平台+现场总线。 监控中心监控设备包括监控主机、地面环网交换机、打印机、不间断电源、电源避雷器等设备。中心站设备均采用当时主流技术的通用产品,并满足可靠性、可维护性、开放性和可扩展性等要求。 系统采用先进的分布式处理模式,能充分发挥各部分设备的性能优势,结构简洁,可操作性强,便于系统的日常维护及管理。系统主干连接为树型结构,安装扩展简单。因此本方案设计为分层结构,具体组成如下: 1) 地面监控中心站及网络终端等,是整个监控系统的核心,负责整个系统设备及监测数据的管理、定义配置、实时数据采集、分析处理、统计存储、屏幕显示、查询打印、实时控制、远程传输、画面编辑、网络通讯等任务。网络终端完成系统监测信息异地实时共享,能够以文本或图形方式显示安全生产信息,查询各类报表数据。地面监控中心站及网络终端等设备之间的连接采用局域网方式; 2) 传输平台:工业以太环网传输平台。 3) 系列化智能监控分站。主要完成对所监测的传感器数据采集、数据预处理、分类显示、报警、断电控制、与地面监控中心站的数据通讯、所接传感器的集中供电等; 4) 各类模拟量传感器、开关量传感器及断电控制器等设

备,是整个监测系统最前沿的终端设备,负责对各监测点的物理数据采集、就地显示、超限报警、信号传输、对监控分站控制指令的执行等。 二、评估目的 为实现煤矿安全生产由被动防范向源头管理、主动管理转变,有效遏制和防范煤矿重特大事故的发生,落实“安全第一、预防为主、综合治理”的安全生产工作方针,加强安全生产工作的控制力和事故的防范能力。落实安全措施自主保安,实现安全生产工作的制度化,规范化和科学化。本次对本矿井安全监测监控系统评估,主要目的是为煤矿重大危险源属地管理和分级管理提供重要依据,并最大限度降低该煤矿的安全风险,使因事故和危害造成的损失降到最低程度,提高煤矿的整体安全监控系统管理水平,获得最优的安全效益。 三、评估依据 1、法律、法规、规章及规范性文件 1.《中华人民共和国安全生产法》 2.《中华人民共和国矿山安全法》 3.《中华人民共和国劳动法》 4.《国务院关于进一步加强企业安全生产工作的通知》(国发〔2010〕23号) 5.《关于预防煤矿生产安全事故的特别规定》(国务院令第446号) 6.关于印发《煤矿企业安全生产管理制度规定》的通知(煤安监办字[2004]42号) 7.《国家安全监管总局国家煤矿安监局关于建设完善煤矿井下安全避险“六大系统”的通知》(安监总煤

煤矿安全监控论文

煤矿安全监控系统设计 李 建 军 山西凌志能源投资集团有限公司

目录 摘要 (1) 第一章绪论 (1) 1.1概述国内外监控系统及其技术的发展 (2) 1.2需求分析 第二章系统总体设计 (2) 2.1矿井监控系统以及相关组成 (2) 2.2矿井监控系统相关设计 2.3煤矿安全监测监控系统设备选型 (5) 第三章井下监控分站设计 (6) 3.1监控分站与井下各关联设备的连接 (6) 3.2 井下监控分站设备选型 (6) 第四章主要传感器的布置 4.1矿用甲烷传感器的布置 (7) 4.2矿用一氧化碳传感器的布置 4.3矿用温度传感器的布置 第五章相关传感器设备选型 (14) 结束语 (18) 参考文献 (18)

摘要 作为煤炭大国我国为国民经济的发展提供了有力的能源支持。但由于我国对矿井瓦斯的治理和利用严重滞后,煤炭生产一直被安全问题所困扰。近年来,煤矿事故频频发生其中瓦斯爆炸事故占有的比例很重,直接导致大量矿工伤亡和财物毁损。随着人民群众对安全思想的日益提高,煤矿安全监控系统应运而生,。煤矿安全监控系统及其技术是随着煤炭工业和社会经济的发展而逐步发展起来的。论文中会首先对于国内外安全监控系统及其技术的发展过程及现状做一个介绍,同时会对安全监控系统目前存在的问题和未来发展趋势做一个探讨。由于这些问题的存在以及安全监控检测手段的落后,才会对于煤矿安全监控系统的设计做一些探讨和研究,特别是对于瓦斯气体的检测和监测。后面的几个章节会是对安全监控系统的一个整体的分析和设计,其中包括系统构成、设计要求及特点、通信系统的设计、井下分站的设计、瓦斯传感器的设计和各类传感器控制器等等。特别是对于系统井下网络结构的探讨,通过分析比较现在主要几种系统的井下网络结构,提出了较为完善的井下网络结构。在各类井下事故中,瓦斯事故是最严重,也是发生频率最高的一类事故,所以在整个安全监控系统中,对于瓦斯气体的检测和监控就显得十分重要。论文中也会对瓦斯气体的检测和监控进行一些探讨。 关键词:安全监控,井下分站,瓦斯传感器,通信系统。 第一章绪论 1.1 概述国内外监控系统及其技术的发展 我国煤田遍布全国,但煤层的赋存条件和地质情况差异很大,很多矿井自然环境恶,受到水火瓦斯粉尘顶板事故等自然灾害的威胁。在这些自然灾害所造成的事故中,瓦斯事故死亡人数占总死亡人数的30%-40%。特别是瓦斯煤尘爆炸事故,危害更为严重。因此,预防瓦斯事故是煤矿安全工作的重点。在煤矿中,装备矿井安全监控系统装置是防止瓦斯事故的重要手段,深入了解其工作原理,掌握使用维修技术是煤矿安全工作者的责任。

相关文档
最新文档