HIV_1整合酶及其抑制剂的研究进展

HIV_1整合酶及其抑制剂的研究进展
HIV_1整合酶及其抑制剂的研究进展

饲用酶制剂研究进展

饲用酶制剂研究进展 中国农业科学院畜牧研究所汪儆 [摘要] 本文从饲用酶制剂的分类、生产、作用机理和研究展望等方面对饲用酶制剂的最新进展进行了综述,添加饲用酶制剂不仅能有效地消除饲料抗营养因子和毒素的有害作用,而且能全面促进饲粮养分的分解消化和吸收利用,提高畜禽的生产性能和增进畜禽健康。应用饲用酶制剂有利于开发非常规饲料资源,提高常规饲料的利用率,减少畜禽排泄中有机物、氮和磷的排出量,保护和改善生态环境,提高饲料和养殖企业的经济效益,因而饲用酶制剂在实现畜牧业的可持续发展中有着极为广阔的应用前景。 关键词:饲用酶制剂研究进展 将“酶”添加到饲料中提高饲料营养价值和畜禽生产性能的设想和实践已有数十年的历史了,但只是近年来才受到饲料营养学术界和工业界的普遍重视和关注(Leshe.1996)。国外一些著名的饲料营养学术刊物有关饲用酶制剂的文章频频出现,我国一些饲料营养刊物有关饲用酶制剂的研究报告也愈来愈多。 饲用酶制剂作为饲料添加剂的一个品种,为什么近年来受到人们如此的关注和青睐呢? 原因有以下几个方面: 首先,人们逐渐认识到添加饲用酶制剂不仅能有效地消除饲料抗营养因子和毒素的有害作用,而且能全面促进饲粮养分的分解消化和吸收作用,提高畜禽的生长速度、饲料转化效率和增进畜禽健康(Choct,1997)。添加酶制剂的效果已从近年来国内外大量的饲养试验、消化代谢试验得到充分证实。 其次,由于世界人口迅速增加,对肉、蛋、奶的需求量也不断增加,而耕地面积日益减少,饲料资源呈现长期短缺的势态已成为人们的共识。解决的办法,一是开发非常规饲料资源,二是提高现有常规饲料资源的利用率,而从当今饲料营养学的发展来看,饲用酶制剂对这两者均大有用武之地(Pluske,1997)。 第三,人们意识到应用酶制剂有利于保护和改善我们赖以生存的生态环境。减少畜禽排泄物中有机物、氮和磷的排出量,从而减少排泄物中有机物、氮和磷对土壤和水体的污染(Choctet al,1995)。一些发达国家由于日益增强的环保意识,对畜禽类粪便中氮和磷的排放量已从法律上予以严格的限制,因而在客观上促进了饲用酶制剂在饲料和养殖业中的应用。 第四,饲用酶制剂是使用最安全的一种饲料添加剂。迄今为上,国内外尚无一例由于使用饲用酶制剂而引发毒副作用的报道。酶作为蛋白质的一种,是微生物发酵的天然产物,迄今不能人工合成,因而不存在合成化学品的各种弊端,被称为“天然”或“绿色”的添加剂。

酶分类之不可逆抑制剂

不可逆抑制剂 酶的不可逆抑制是指酶抑制剂与酶的活性中心发生了化学反应抑制剂共价地连接在酶分子的必需基团上,阻碍了底物的结合或破坏了酶的催化基团。这种抑制不能用透析或稀释的方法使酶恢复活性。 通常将其分为非专一性不可逆抑制剂和专一性不可逆抑制剂。 抑制剂与酶分子上不同类型的基团都能发生化学修饰反应,这类抑制称为非专一性的不可逆抑制。虽然缺乏基团专一性,但在一定条件下,也有助于鉴别酶分子上的必需基团。由于非专一性的不可逆抑制剂通常可作用于酶分子中的几类基团。但不同基团与抑制剂的反应性不同,故某一类基团常首先或主要地受到修饰。如被修饰的基团中包括必需基团,则可导致酶的不可逆抑制。随着蛋白质一级结构和功能的研究,目前已发现或合成了氨基酸侧链基团的修饰剂。这些化学试剂主要作用于某类特定的侧链基团,如氨基、巯基、胍基和酚基等。但绝大多数试剂都不是专一性的,可借副反应而同时修饰其他类型的基团。 专一性的不可逆抑制作用有KS型和Kcat型两类。KS型不可逆抑制又称亲和标记试剂,结构与底物类似,但同时携带一个活泼的化学基团,对酶分子必需基团的某个侧链进行共价修饰,从而抑制活性。Kcat型不可逆抑制剂又称酶的自杀性底物。这类抑制剂也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下,潜在的化学活性基团被激活,与酶的活性中心发生共价结合,不能再分解,酶因此失活。 KS型不可逆抑制剂是根据底物的化学结构设计的: 1、它具有和底物类似的结构, 2、可以和靶酶结合, 3、同时还带有一个活泼的化学基团可以和靶酶分子中的必需基团起反应, 4、该活泼化学基团能对靶酶的必需基团进行化学修饰,从而抑制酶的活性。 卤酮是使用最早也是最经典的亲和标记试剂。其中以溴酮及氯酮较佳。例:胰蛋白酶和胰凝乳蛋白酶是两种专一性不同的内肽酶,分别水解碱性氨基酸或芳香氨基酸的羧基所形成的肽键,也可以分别水解这两类氨基酸的酯类,但其氨基酸必须被阻断而成非游离状态。 Kcat型不可逆抑制剂即酶的自杀性底物,也是底物的类似物,但其结构中潜在着一种活性基团,在酶的作用下被激活,与酶的活性中心发生共价结合,使酶失活。每一种自杀底物都是酶的作用对象,这是一种专一性很高的不可逆抑制剂。下面介绍几种自杀性底物(如图所示):

饲料添加剂——微生物复合酶制剂

饲料添加剂——微生物复合酶制剂 摘要:酶是一种专一性极高的生物催化剂,广泛应用于食品、纺织、饲料、医药、造纸等行业领域。本文从酶制剂的发展历史、微生物复合酶制剂的生产方式、影响因素和复合酶制剂最新的研究成果以及16SrRNA菌种鉴定技术在菌种筛选中的应用等几个方面做了简单的综述,并提出了今后的发展方向,指明微生物制备复合酶制剂有巨大的发展潜力。 关键词:研究进展;复合酶;微生物发酵; 16Sr RNA 酶是有活细胞产生的、催化特定生物化学反应的一种生物催化剂,酶制剂是经过提纯、加工后的具有催化功能的生物制品。酶作为一种饲料添加剂具有很多优点:(1)酶催化的反应需要在常温常压下进行,而且具有很高的效率和专一性,它不会有任何有害残留物质;(2)其用量小,经济合算;(3)酶反应条件温和、易操作、能耗低,还可避免因剧烈操作所造成营养成分的损失。因此,酶的应用正日益受到人们的重视。 大量的试验表明,酶制剂主要参与以下活动,发挥其作用:(1)参与细胞壁降解,使酶与底物充分接触,增进现有养分的消化;(2)水解非淀粉多糖(NSP),降解消化道内容物粘度;(3)消除抗营养因子;(4)补充内源酶的不足,改进动物自身肠道酶的作用效果;(5)使某些成分在消化道内的消化位点转移,如NSP的消化由大肠转入小肠,使消化后的营养更易于吸收;(6)改变消化道内菌群分布。 酶的制备主要有2种方法,即直接提取法和微生物发酵生产法。早期的酶制剂是以动植物作为原料,从中直接提取的。由于动植物生长周期长,又受地理、气候和季节等因素的影响,因此原料的来源受到了限制,不适于大规模的工业生产。目前生产上应用的酶制剂中,虽然动、植物来源的酶制剂还在发挥着不可忽视的作用,占很少的一部分,但人们正越来越多地转向以微生物作为酶制备的主要来源,如淀粉酶和蛋白酶的微生物制备已经实现工业化。目前已经能够大规模

浅谈复合酶制剂在面粉工业中的应用前景_杨春玲

粮食加工 2015年第40卷第2期收稿日期:2014-11-18 作者简介:杨春玲(1966-),女,工程师,从事小麦粉新产品开发。 近10年来,我国的面粉加工业得到了飞速地发展,无论是生产规模、设备的先进性,还是产品的档次和质量都得以大大提高。但是,存在着诸多困难和挑战:如生产能力严重过剩,产品供过于求,竞争十分激烈。单纯地使用小麦调整面粉质量,面临国产小麦品质不稳定,进口小麦价格高,货源连续性不确定等问题,因此,多数面粉厂选择使用添加剂作为面粉后处理的手段,但添加剂安全的问题,也越来越受全社会的关注。质量安全成为食品行业头等大事,从溴酸钾到过氧化苯甲酰的禁用,天然、绿色、安全、高效的酶制剂越来越受到面粉行业的广泛应用。 酶是一类具有高度专一性生物催化能力的蛋白质,一般由生物体内提取制成酶制剂。酶制剂在食品工业中属加工助剂类添加剂[1],应用很广泛,如回收副产品、改进食品风味、提高食品质量、研制开发新品种、提高提取速度和产品得率等。生产酶制剂的原料有动物性的、植物性的和微生物性的。随着科学技术的发展,近代酶制剂的主要来源多为微生物性的,目前已知的酶制剂有近百种,常用的有30多种。 在烘焙工业中应用麦芽和微生物α-淀粉酶已有数十年的历史[2],其主要作用是提高发酵速度,改善面包结构,增加面包体积,保持面包在贮存中的新鲜度,延长面包的货架期。酶不仅在烘焙食品和其他面制食品的加工中越来越起着重要的作用,而且,近几年来在面粉工业中的应用愈来愈引起人们的重视。在专用粉的生产中,在通用粉的改造中,各种酶制剂发挥着不可忽视的作用。 1葡萄糖氧化酶 浅谈复合酶制剂在面粉工业中的应用前景 杨春玲 (中央储备粮大连直属库,辽宁大连116033) 摘 要:随着各种专用粉的开发和人们对食品安全要求的提高,各种天然、安全、高效的酶制剂越来越受到面粉 行业的广泛应用。重点介绍了葡萄糖氧化酶的作用机理、使用条件、效果和添加剂量。对其它酶制剂如α-淀粉酶、戊聚糖酶、木聚糖酶、脂肪酶等的应用效果及多酶协同增效作用也进行了论述并指出现阶段酶制剂在面粉中使用应注意的问题。 关键词:酶制剂;面粉工业;应用前景;注意问题中图分类号:TS 211.43 文献标志码:B 文章编号:1007-6395(2015)02-0015-03 葡萄糖氧化酶(GOD )的系统名称为α-D-葡萄糖氧化还原酶。最先于1982年在黑曲霉和灰绿青霉中发现,在有氧参与的条件下,葡萄糖氧化,简式为: 葡萄糖氧化 葡萄糖+O 2+H 2O →葡萄糖酸+H 2O 2, H 2O 2+硫氢键→双硫键→形成更强面筋。 葡萄糖氧化酶(GOD )具有高度的专一性,它只对葡萄糖分子C (1)上的β-羟基起作用,而对C (1) 上的α-羟基几乎不起作用(它对C (1)上的β-羟基的活力比α-羟基的活力大约高出160倍)。将葡萄糖氧化酶用于面粉中,面筋蛋白中的硫基(-SH )将会被氧化形成二硫键(-S-S-),从而增强面团的网络结构,使面团具有良好的弹性和耐机械搅拌特性。 H 2O 2是在面团中起作用的活性成分,夏萍[3]等的研究表明,添加葡萄糖氧化酶(GOD )的面粉和面团的水溶性抽提物中-SH 基含量明显下降,这说明由GOD 催化葡萄糖氧化所产生的H 2O 2氧化了-SH 基,从而也就强化了面团。 商品GOD 是食品级酶制剂,它溶于水,在2~ 4℃条件下,其活力至少可保持1年。GOD 具有较宽的pH 值适应范围,在pH 值3.5~7.0范围内,酶活性 稳定,可耐受50℃以上的高温。在使用中,往往可耐受更低的pH 值环境,例如,在pH 值2.6的可乐饮料和pH 值3.2的葡萄饮料中,30℃时,葡萄糖氧化酶仍具有相当高的稳定性。 近几年来,有关葡萄糖氧化酶在面粉中的应用研究取得了进展。林家永等[4]进行了应用葡萄糖氧化酶与脂酶改进小麦粉质量的实验研究,选用两种典型的强筋面粉和弱筋面粉,结果发现葡萄糖氧化酶和脂酶对面团质地的改善都十分显著,其中葡萄糖氧化酶的效果更为明显,并报告了两种酶在面粉 15

HIV整合酶抑制剂的研究进展

2010年第30卷 有 机 化 学 V ol. 30, 2010 * E-mail: hliu@https://www.360docs.net/doc/0715367219.html, Received April 16, 2009; revised August 6, 2009; accepted September 7, 2009. 国家高技术研究发展计划(“863”计划)(No. Grant 2006AA020602)资助项目. ·综述与进展· HIV 整合酶抑制剂的研究进展 郭涤亮a ,b 刘冠男a 周 宇a 李 建a 徐进宜b 蒋华良a 陈凯先a 柳 红*,a ,b (a 中国科学院上海药物研究所 新药研究国家重点实验室药物设计和发现中心 上海 201203) (b 中国药科大学药学院 南京210009) 摘要 HIV 整合酶是病毒DNA 复制所必需的3个基本酶之一, 是新批准上市的抗艾滋病药物Raltegravir (MK-0518, Isentress)的分子靶标. HIV 整合酶抑制剂已经成为新一类治疗获得性免疫缺陷综合症的药物. 对HIV 整合酶抑制剂的研究进展进行了综述, 为研究新型人类免疫缺陷病毒整合酶抑制剂提供参考. 关键词 人类免疫缺陷病毒; 整合酶抑制剂; 二酮酸类; Raltegravir Research Progress in HIV Integrase Inhibitors Guo, Diliang a ,b Liu, Guannan a Zhou, Yu a Li, Jian a Xu, Jinyi b Jiang, Hualiang a Chen, Kaixian a Liu, Hong *,a ,b (a Drug Discovery and Design Centre , State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica , Chinese Academy of Sciences , Shanghai 201203) (b School of Pharmacy , China Pharmaceutical University , Nanjing 210009) Abstract HIV integrase is one of the three essential enzymes for viral DNA replication and the molecular target of the newly approved anti-AIDS drug raltegravir (MK-0518, Isentress). HIV integrase inhibitors have emerged as a new class of drugs for the treatment of AIDS. In this article, the recent progress of HIV inte-grase inhibitors is reviewed to provide some useful information for the further research and development of HIV integrase inhibitors. Keywords HIV; integrase inhibitor; diketoacid; Raltegravir 人类免疫缺陷病毒(HIV)感染引起的艾滋病(AIDS)是目前人类所经历的最严重的疾病之一, 截止2004年底, 全球已有4000万艾滋病毒携带者和艾滋病患者, 已有310万人死于艾滋病, 新感染艾滋病病毒的人数约为490万, 艾滋病在全球范围内的传播速度惊人. 鉴于此, 研究和开发抗艾滋病的新药显得日益紧迫和重要. 随着人类对HIV 病毒及其感染过程的研究不断深入, 以及各国药物研发人员的不断努力, 抗HIV 药物有了突飞猛进的发展, 尤其是全新作用机制的HIV 进入抑制剂和HIV 整合酶抑制剂的出现, 为抗HIV 药物的研制带来了新的 发展方向, 也为艾滋病治疗带来了新的希望. 1 抗艾滋病药物的作用机制和分类 抗艾滋病药物的作用机制是通过影响HIV 复制周期的某个环节, 从而抑制病毒的复制和感染. 根据HIV-1的生命周期, 目前抗艾滋病药物主要针对病毒复制过程的8个重要环节, 即HIV 对宿主细胞的依附(viral attachment)-进入抑制剂(entry inhibitor); 辅受体相互作用(coreceptor interaction)-进入抑制剂; HIV 与

复合酶制剂的研究及应用进展

复合酶制剂的研究及应用进展 农业大学动物科学技术学院/罗士津瞿明仁 中国农业科学院畜牧兽医研究所动物营养国家重点实验室/铁鹰 原刊于《新饲料》杂志2007年第4期 摘要:复合酶制剂在现代畜牧业生产中的应用非常广泛,而且起到了令人鼓舞的效果,该文综述了饲料中的抗营养因子、复合酶制剂的作用机制、影响复合酶作用效果的因素以及复合酶制剂在畜牧业中的作用效果,旨在为畜牧业生产提供理论依据。 关键词:复合酶制剂;作用机制;生产性能 酶是一种生物催化剂,对畜禽的消化吸收极为重要。酶制剂是应用物理或化学的方法,将生物体产生的酶提取出来制成的产品。近年来,随着中国畜牧业的快速发展和微生物技术在畜牧业上的应用,国已开发生产出许多不同类型的畜禽用复合酶制剂。 复合酶中存在多种酶活,其中主要为非淀粉多糖酶(NSP酶)。复合酶中的各种酶活起着互相补充、相辅相成的作用,在各种酶的共同作用下,动物饲料中的一些抗营养因子被破坏,其抗营养作用消失,因而可以促进动物的生长,提高动物的免疫力,增进动物健康。饲用复合酶中各种酶的种类和比例与动物饲粮有关.不同饲粮所含抗营养因子的种类和比例不同,需要饲用酶制剂所含酶的种类和比例也不同。 1 复合酶制剂分类 抗生素是应用最广泛的抗菌类药物之一。在过去的5O多年中,由于抗生素的长期使用,导致大量耐药菌株的产生,且病原菌抗药性逐年增强,致使疗效下降,剂量提高。为此,世界卫生组织于1994年就细菌耐药性的监测结果给全世界提出了警告:细菌对抗生素产生的耐药性正在以惊人的速度增加。而现有的抗生素药物正在失去原来的疗效。因此,寻求一种高效的绿色产品已成为当今畜牧生产的迫切需求。 酶广泛存在于生物体,参与新代等多种生理功能,其中对微生物细胞壁有水解功能的酶能够溶解微生物细胞壁而使其死亡。由于水解酶的特异性很强,微生物的细胞壁结构和化学组成又存在差异,因此一种酶只能对某一类微生物有水解作用。即使对于某一特定微生物,由于细胞壁化学组成的复杂性,也需要不同类型水解酶的组合,才能有更好的作用效果。 水解酶具有对某一病原菌所有血清型都有效的优点,当几种酶复合后,对不同类型的病原菌均有效,克服了一种抗生素只能预防一种病原菌或一种血清型病原菌的不足,也不存在药物残留和耐药性的问题。 溶菌酶在医药和食品行业中已开始使用,作为畜禽饲料添加剂则刚刚起步,仅前联、法国、德国和美国做了一些初步研究,目前国也已开始了相关研究。而对复合杀菌酶药物的研究,国外均刚刚起步。高效、绿色养殖已成为当今养殖的主题,而复合酶制剂正是这个情况下诞生的产物,复合酶制剂将为养鸡业生产带来福音。

复合酶在饲料中的应用机理及研究进展

复合酶在饲料中的应用机理及研究进展 复合酶制剂是一种安全有效的饲料添加剂,它能有效改善动物生产性能、提高饲料消化率且能减少环境污染,在饲料工业中得到了广泛的应用。 饲用酶制剂作为一种高效、环保、安全的饲料添加剂,能消除和降低饲料中抗营养因子的不良作用,提高饲料利用率。复合酶制剂是采用现代生物技术生产的新型生物活性制剂,主要含有酸性蛋白酶、糖化淀粉酶、纤维素酶和果胶酶等酶系,添加到饲料中,可借助动物消化道内环境,将饲料中的蛋白质、淀粉、纤维素、果胶等成分酶化分解,形成易被动物机体吸收的营养物质,从而提高饲料的消化利用率;减少肠道内氨浓度过高对动物产生的毒性,增加泌乳量和乳脂量,增进消化道功能,减少消化道疾病,提高饲料效益,降低养殖成本。目前复合酶制剂已在饲养业中得到广泛应用。 1 应用现状 1.1 复合酶在鸡饲料中的应用 宋连喜等在41周龄的海兰褐商品蛋鸡基础日粮添加0.1%的复合酶制剂,试验28天后结果表明:可以使产蛋率平均提高6.12%(P<0.05),料蛋比降低11.69%(P<0.05)。张强等人在海兰商品蛋鸡饲料中添加不同比例的复合酶制剂,结果表明:均可提高蛋鸡生产水平。其中添加0.2%的复合酶制剂组产蛋数提高3.92%。 1.2 复合酶在鸭饲料中的应用 在樱桃谷肉鸭日粮中添加肉鸭专用酶制剂,可极显著提高肉鸭质量(P<0.01),能有效促进肉鸭生长,45日龄日增质量提高7.44%(P<0.05),大大促进了饲料转化效率,降低饲料成本,大幅度增加经济效益。同时在使用复合酶制剂时,降低樱桃谷肉鸭日粮营养水平12%也不会对肉鸭的生长性能产生显著影响。添加0.05%中性蛋白酶和0.05%植酸酶饲喂26周龄法国黑羽番鸭56天,能显著提高其产蛋量和受精率,与对照组相比,二者分别提高11.64 %(P<0.01)和10.67%(P<0.01)。说明在种番鸭日粮中添加酶制剂可显著提高生产性能,并改善种番鸭的采食量、料蛋比和蛋质量。 1.3 复合酶在猪饲料中的应用 大量试验结果表明,饲料养分利用率提高:能量6%~8% ,蛋白质、氨基酸7%~13% ;仔猪增重提高8%~15% 。断奶仔猪饲粮中添加0.1%复合酶制剂可降低鱼粉用量2百分点,而对仔猪生长性能和皮肤颜色无显著影响,且有改善皮肤红度和亮度的趋势。可使断奶仔猪的平均日增质量提高6%(P<0.05);饲料报酬提高5.6%(P<0.05),经济效益提高4.4%。添加酶制剂在一定程度上也可促进19千克生长猪的生长,改善饲料利用率。与对照组相比,复合酶制剂组平均日增质量提高9.1%(P>0.05),料重比提高7%(P>0.05)。在不同类型的猪饲粮中添复合酶制剂也取得了很好的效果。 1.4 复合酶在牛羊饲料中的应用 刘云波等(2002)的研究表明,在日粮中添加0.2%的以半纤维素酶、淀粉酶、蛋白酶和木聚糖酶为主的奶牛复合酶,试验组平均乳脂率比对照组增加3.28%。吴建设等的报道中,添加酶制剂使奶牛泌乳量增加的幅度为7.1%~11.8%,本试验添加酶使奶牛泌乳量增加的幅度为5.9%~9.1%。张美莉、郭睿等结果表明,在基础日粮中添加复合酶制剂0.1%、0.2%、0.3%,均能显著提高奶牛的产奶量,日产奶量分别增加了1.8千克、2.8千克、2.4千克,增产率分别为5.9%、9.1%、7.7%。试验组与对照组乳脂率的差异不显著,表明添加复合酶制剂对乳脂率影响很小。日粮中添加0.2%复合酶制剂能影响绵羊瘤胃液VFA,降低瘤胃PH。在试验整个时间段内,NH3浓度都有提高的趋势,瘤胃内是 NH3菌体蛋白的重要来源。提高NH3的浓度可扩大菌体蛋白的合成量,从而促进动物的生长。

蛋白酶抑制剂的研究进展

蛋白酶抑制剂的研究进展 郭川 微生物专业,200326031 摘要:自然界共发现四大类蛋白酶抑制剂:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、金属蛋白酶抑制剂和酸性蛋白酶抑制剂,本文就各大类蛋白酶抑制剂的结构特点,活性部位的研究概况及其在各领域应用的原理及进展。 关键词:蛋白酶抑制剂;结构;应用 天然的蛋白酶抑制剂(PI)是对蛋白水解酶有抑制活性的一种小分子蛋白质,由于其分子量较小,所以在生物中普遍存在。它能与蛋白酶的活性部位和变构部位结合,抑制酶的催化活性或阻止酶原转化有活性的酶。在一系列重要的生理、病理过程中:如凝血、纤溶、补体活化、感染、细胞迁移等,PI发挥着关键性的调控作用,是生物体内免疫系统的重要组成部分。从Kunitz等最早分离纯化出一种PI至今,已有多种PI被发现,根据其作用的蛋白酶主要分以下几类:抑制胰蛋白酶、胰凝乳蛋白酶等的丝氨酸蛋白酶抑制剂,抑制木瓜蛋白酶、菠萝蛋白酶等的巯基蛋白酶抑制剂,抑制胃蛋白酶、组织蛋白酶D等的羧基蛋白酶抑制剂、抑制胶原酶、氨肽酶等的金属蛋白酶抑制剂等。而根据作用于酶的活性基团不同及其氨基酸序列的同源性,可将自然界发现的PI分为四大类:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂(半胱氨酸蛋白酶抑制剂)、金属蛋白酶抑制剂和酸性蛋白酶抑制剂[1]。 1 结构与功能 1.1丝氨酸蛋白酶抑制剂(Serine Protease Inhibitor,Serpin) 丝氨酸蛋白酶抑制剂是一族由古代抑制剂趋异进化5亿年演变而来的结构序列同源的蛋白酶抑制剂。Sepin为单一肽链蛋白质。各种serpin大约有30%的同源序列,疏水区同源性高达70%。血浆中的serpin多被糖基化,糖链经天东酰胺的酰胺基与主链相连。位于抑制性serpin表面、距C端30~40个氨基酸处的环状结构区RSL(reactive site loop)中,存在能被靶酶的底物识别位点识别的氨基酸P1[2];近C端与P1相邻的氨基酸为P1’,依此类推,即肽链结构表示为N端-P15~P9~P1-P1’~P9’~P15’-C端。在对靶酶的抑制中。Serpin 以RSL中的类底物反应活性位点与靶酶形成紧密的不易解离的酶-抑制剂复合物,同时P1-P1’间的反应活性位点断裂。几种perpin氨基酸序列比较发现,serpins各成员的抑制专一性是由P1决定的,且被抑制的酶特异性切点一致。如抗凝血酶,抑制以Arg羧基端为敏感部位的丝氨酸蛋白酶,其中P1为Arg[2]。 1.2巯基蛋白酶抑制剂(Cytsteine Proteinase Inhiitor,CPI) 对于丝氨酸蛋白酶抑制剂(SPI)已有大量研究,巯基蛋白酶抑制剂(CPI)的研究则相对要晚一些。而动物和微生物来源的CPI已有一些研究,发现它们在结构上具有同源性,Barrett等将CPI统称为胱蛋白超家族,并按分子内二硫键的有无与数量,分子量大小等将此家族分为3个成员(F1、F2、F3)。在3个家族中,大多数F1和F3的CPI中都有Glu53-Val54-Val55-Ala56-Gly57保守序列,其同源序列在其它CPI中也被发现,如F2中的Gln-X-Val-Y-Gly和CHα-ras基因产物中的Gln-Val-Val肽段。人工合成的Glu-Val-Val-Ala-Gly 短肽也显示对木瓜蛋白酶有抑制活性,因此可以认为这一保守区段在抑制活性中起着全部或部分的关键作用[3]。对植物来源的CPI研究的不多,已有报道的有水稻、鳄梨和大豆。水稻巯基蛋白酶抑制剂(Oryzacystatin,OC) 具有102个氨基酸残基,有典型的Glu-Val-Val-Ala-Gly保守序列,应与动物CPI同源进化而来。从OCI没有二硫键来看,它应归为F1成员,但从序列比较看,则更接近F3。对OCIGlu---Gly保守序列进行点突变试验表明,突变使其抑制活性大幅度下降,其中当Glu被Pro替代时则活性全无,由此说明,这一段保守序列在OCI的抑制活性中,同动物CPI一样必不可少。除Glu---Gly保守区域外,OCI序列中其

复合酶制剂的研究进展

河北畜牧兽医饵料夭地复合酶制剂的研究进展 李晓东1.2.董文成1 (1.廊坊市畜牧水产局,河北廊坊065000; 2.中国农业大学农业推广专业,北京100094) 1酶制剂的种类 目前已发现的酶种类很多,生产上可以应用的酶已达到300多种,用于饲料的也有20多种。饲用酶制剂大致分为内源性消化酶、外源性消化酶和复合酶。 1.1内源性消化酶:内源性消化酶是指动物体内能够自身合成并分泌到消化道的一类酶。通常养殖动物内源性酶类不足会直接影响到饲养效果。内源性酶不足有两种情况:一是动物体内酶系不全。如非草食性动物缺乏纤维素酶、植酸酶等。二是生理性内源酶分泌不足。即当动物处于幼年、老年、疾病或应激状态时,也会出现内源酶分泌量的减少。添加内源性酶类似物的结构和性质,可能不同于内源酶,但功能相同,统称内源性酶。该类酶主要包括淀粉酶、蛋白酶和脂肪酶等。 1.2外源性消化酶:畜禽体内不能够合成外源性消化酶,一般需要添加到动物体内。用于消化动物自身不能消化的物质或降解抗营养因子或有害物质等。这类酶主要包括纤维紊酶、半纤维素酶、植酸酶、果胶酶等。 1.3复合酶类:随着单酶制剂生产的工业化发展及价格的降低,复合酶制剂的使用便越来越多.这是一类最常用的酶制剂。复合酶制剂是由一种或几种单一酶制剂为主体,加上其他单一酶制剂混合而成的:可同时降解饲料中多种需降解的抗营养因子及多种养分,最大限度地提高饲料的营养价值。复合酶制剂主要有以下几类:一是以蛋白酶、淀粉酶为主的饲用复合酶,主要用于补充动物内源酶的不足:二是以B一葡聚糖酶为主的饲用复合酶,主要用于以大麦、燕麦为主的饲料原料:三是以纤维素酶、果胶酶为主的饲用复合酶,主要作用是破坏植物细胞壁,释放细胞中的营养物质,同时消除饲料中的抗营养因子,降低胃肠道内容物的黏度,促进动物的消化吸收;四是以纤维素酶、蛋白酶、淀粉酶、糖化酶、B一葡聚糖酶、果胶酶为主的饲用复合酶,综合各种酶类的共同作用,具有更强的辅助消化作用。 2酶制剂在饲料中的作用 2.1直接分解营养物质,提高饲料的利用效率。动物饲料组分多为谷物类及粕类,植物细胞壁的存在影响了养分的消化吸收。具有活性的各种酶能有效地将饲料的一些大分子多聚体分解和消化成动物容易吸收的营养物质或分解成小片段营养物质.使其他消化酶进一步消化一些动物本身难以分解和吸收的大分子物质。 2.2补充内源酶的不足,激活内源酶的分泌消化功能。正常的健康成年动物,在适宜的生产条件下,能分泌足够的消化饲料中淀粉、蛋白质、脂类等养分的酶。但幼年动物或动物处于高温、寒冷、转群、疾病等应激状态时,动物分泌酶的能力较弱或者易出现消化机能紊乱,内源消化酶分泌减少,因此在日粮中添加外源性消化酶,可以补充内源酶的不 足,提高饲料的利用率,改善动物的消化能力,减少应激条 件下生产能力的I:下降.同时还可以促进内涿酶的分泌。 2.3消除抗营养因子,改善消化机能。植物性饲料原料中常常存在一些非淀粉糖、果胶、纤维素聚合物,这些物质 使动物消化道内容物的黏度增加,影响动物对有效营养成 分的消化和吸收。酶制剂中多种酶特别是B一葡聚糖酶、果 胶酶和纤维素酶能够将这些物质分解为小分子物质,从而 降低了消化道的黏度,有效消除这些抗营养因子的不良影 响,改善了动物的消化机能。 2.4提高植酸磷的利用率。由于植物含有相当多的植酸,而植酸容易与磷结合,结合态的磷是不能被动物吸收利 用的.因而降低了磷的利用率。而植酸酶能将该结合物水 解,生成游离态的磷,供动物消化利用。 2.5使某些成分在消化道内的消化位点转移。如NSP的消化有大肠转入小肠.但是消化后的营养更容易吸收。 3研究现状 3.1从世界养禽业来看,肉鸡应用酶制剂比较早并产生了比较好的效益。20世纪80年代,在欧洲,大麦比较便宜, 营养学家研究在肉鸡日粮中添加B一葡聚糖酶以减少日粮 中大麦的负面影响。其结果得到一个黄金定律:大麦+8一葡 聚糖酶=小麦。紧接着,小麦+木聚糖酶=玉米,也得到证实。 20世纪90年代。酶在饲料工业中的应用得到了普遍认可。 1996年,欧洲80%的肉鸡饲料<粘性谷物为能量来源)中含 有纤维素降解酶。越来越多的证据表明。黄金日粮(玉米一豆 粕型日粮)也可以通过酶来改善其营养价值。03.2有关酶制剂对反刍动物作用的研究,始于20世纪60年代,但酶制剂的作用效果添稳定。20世纪90年代中后 期,随着发酵成本的降低,以及更多韵活:性更高酶制剂的问 世,研究者垂薪开始-『外源性酶翩剂对反刍动物作用的研 究。t肉牛应用酶澍剂早期的研究,没有考虑到日粮组成、日 粮类型、酶活性水平或者酶的使用方法等因素对肉牛生产 性能的影响。近年来的研究开始偏重于此。例如:使用不同 水平(0.25--4.01.h)的木聚糖酶和纤维素酶的混合物以及单 一纤维素酶,均能使饲喂紫花苜蓿干草或猫尾草干草的阉 牛的ADG增加30%和36%。但是没有改善饲喂大麦青贮日 粮牛的ADG。当类似的酶制剂添加到95%的大麦日粮中。 牛的饲料效率改善了1l%;而添加到95%的玉米日粮后.牛 的饲料效率并没有改善。与肉牛上的研究一样,外源性酶制 剂对奶牛生产性能的影响也是不稳定的。在荷斯坦牛高粱 日粮中添加复合酶制剂,其产奶量并没有增加。相反,给奶 牛饲喂由50%精料和喷洒两种酶制剂的玉米青贮组成的日 粮。产奶量增加2.Skg/d,奶的成分没有受到影响。 3-3我国饲用酶的研究始于70年代,曾进行过酶曲的生产,并应用于饲料——发酵饲料。此后,酶制剂的研究、开 加o 2005年第21卷第6期

神经氨酸酶抑制剂的研究进展解析

上海应用技术学院 研究生课程(论文类)试卷 2 014 / 2 015学年第二学期 课程名称:新药研发与申报 课程代码:NX0702016 论文题目:神经氨酸酶抑制剂的研究进展 学生姓名:王震 专业﹑学号:化工1班,146061114 学院:化学与环境工程学院 课程(论文)成绩: 课程(论文)评分依据(必填): 1.论文结构规范,检索的文献资料经认真的综合分析整理,选材精简得当,条理清晰,语言流畅, 版面整洁美观。得分为90-100分。 2.论文结构较规范,检索的文献资料经分析整理,材料组织得当,条理清晰,语言流畅。得分为 80-89分。 3.论文结构基本规范,内容有小问题,检索的文献资料经一般性分类整理,条理较清晰,得分为 70-79分。 4.论文结构基本规范,内容未经认真整理,一般性罗列所检索的文献资料。得分为60-69分。 5.达不到上述第4点要求的论文,得分为0-59分。 任课教师签字: 日期:年月日

神经氨酸酶抑制剂的研究进展 摘要:2009年高致病性的H1N1流感大爆发,再次向人们敲响了警钟:随着毒株变异性的加强,流感疫苗已无力完全遏制疫情的传播[1]。我们知道,流感病毒在感染和传播过程中,作为其四大活性位点之一(其他三个是血凝素、M2离子通道和部分RNA聚合酶)的神经氨酸酶(NA)起到了重要作用。因此,抗流感病毒神经氨酸酶抑制剂的设计与合成势在必行。本文综述了抗流感病毒神经氨酸酶抑制剂(NAIs)的研究进展。 关键词:神经氨酸酶;变异;抑制剂;合成

The development of neuraminidase inhibitors Abstract: The pandemic of influenza virus in 2009 to human beings sounded the alarm: the influenza vaccine was feeling powerless to suppress the transmission of epidemic with the strengthening of strain’s variability. As we know, in the process of influenza virus’ infection and propagation, the neuraminidase, one of four neuraminiric active site (another active site,ie,Hemagglutinin,M2 ion channels and RNA polymerase), played a important role. Therefore, the designing and synthesis of anti-influenza virus neuramnidase inhibitors are imperative. And this paper reviewed the development of influenza-resistant virus neuraminidase inhibitors. Keywords: neuraminidase; variation; inhibitors; synthesis

复合酶制剂在食品工业中的应用

复合酶制剂在食品工业中的应用 酶制剂作为一类绿色食品添加剂,用于改善食品品质和食品制造工艺,其应用已越来越普遍,品种也不断增多。为了达到理想的酶制剂应用效果,并帮助酶制剂客户有效方便地使用酶制剂,酶制造商针对不同的食品加工应用领域特点,已经开发出各种专用复合酶制剂,把几种酶制剂混合使用往往有协同增效作用,还可减少单一酶的使用量,其在食品中的应用方兴未艾,现就复合酶制剂在食品工业中的研究与应用作一简单介绍。 一、面粉加工小麦、玉米、大麦、高粱、燕麦、荞麦等谷物主要成分是淀粉,其次是蛋白质,在其面食品(包焙烤食品、面条、饼干等)加工中主要使用淀粉酶和蛋白酶,同时木聚糖酶、脂肪酶、葡萄糖氧化酶、转谷氨酰胺酶、脂肪氧化酶、植酸酶等可赋予谷物食品特殊的风味、良好的品质以及增加营养,因此复合型酶制剂是面粉改良剂首选。 1、真菌α-淀粉酶真菌α-淀粉酶由米曲霉或黑曲酶产生,它能从淀粉分子内部切开α-1,4键生成各种寡糖,在长时间作用下,还可切开这些寡糖α-1,4键而生成麦芽糖,故又称麦芽糖生成酶。在面团发酵食品制作过程中,适量加入真菌α-淀粉酶,面粉中的淀粉被水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而为酵母的发酵提供足够的糖源作为营养物质,使面包变得柔软,增强伸展性和保持气体的能力,容积增大,出炉后制成触感良好面包。

2、木聚糖酶木聚糖酶是一种戊聚糖酶,面粉中存在着非淀粉多糖戊聚糖,在面粉中添加木聚糖酶,能使水不溶性戊聚糖增溶,可提高面筋网络的弹性,增强面团稳定性,改善加工性能,改进面包瓤的结构,增大面包体积。因面粉中的水不溶性戊聚糖对面包的品质有消极影响,它使面包体积减小,面包瓤质构变差,面包品质恶化。而水溶性戊聚糖则对面包品质起到积极作用。戊聚糖酶对水不溶性戊聚糖的增溶作用,一定程度上减小了水不溶性戊聚糖的消极影响,改善了面团的操作性能及面团的稳定性,增大了成品体积,提高了成品的质量。 3、葡萄糖氧化酶葡萄糖氧化酶在氧气的存在的条件下能将葡萄糖转化为葡萄糖酸,同时产生过氧化氢。过氧化氢是一种很强的氧化剂,能够将面筋分子中的巯基(-SH)氧化为二硫键(-S-S-),从而增强面筋的强度。提高面团延展性、增大面包体积,可取代对人体有致癌作用的溴酸钾KBrO4。在面条生产中,葡萄糖氧化酶有助面筋蛋白之间形成较好的蛋白质网络结构,增加面条的咬劲。 4、脂肪酶脂肪酶能水解脂肪成单酰甘油和二酰甘油,单酰甘油能与淀粉结合形成复合粉,从而延缓淀粉的老化,在面包使用脂肪氧化酶,使面包增白,改善风味。在面条面团中使用脂肪酶,可使天然脂质得到改性,生成脂质和淀粉复合物,可防止直链淀粉在膨胀和煮熟过程中渗出,减少面团上出现斑点。 5、植酸酶植酸其化学结构为肌醇六磷酸酯,由于分子中含有6个磷酸基团,具有强大的络合能力。植酸与蛋白质,钙、锰、铁等无机盐和维生素等螯合,使它们不能被利用,限制了面粉中无机盐的活性。使用植酸酶,可使面团中植酸水

复合酶制剂在食品工业中的应用范文知识分享

江南大学生物工程学院余晓斌 酶制剂作为一类绿色食品添加剂,用于改善食品品质和食品制造工艺,其应用已越来越普遍,品种也不断增多。为了达到理想的酶制剂应用效果,并帮助酶制剂客户有效方便地使用酶制剂,酶制造商针对不同的食品加工应用领域特点,已经开发出各种专用复合酶制剂,把几种酶制剂混合使用往往有协同增效作用,还可减少单一酶的使用量,其在食品中的应用方兴未艾,现就复合酶制剂在食品工业中的研究与应用作一简单介绍。 一、面粉加工 小麦、玉米、大麦、高粱、燕麦、荞麦等谷物主要成分是淀粉,其次是蛋白质,在其面食品(包焙烤食品、面条、饼干等)加工中主要使用淀粉酶和蛋白酶,同时木聚糖酶、脂肪酶、葡萄糖氧化酶、转谷氨酰胺酶、脂肪氧化酶、植酸酶等可赋予谷物食品特殊的风味、良好的品质以及增加营养,因此复合型酶制剂是面粉改良剂首选。 真菌α-淀粉酶 真菌α-淀粉酶由米曲霉或黑曲酶产生,它能从淀粉分子内部切开α-1,4键生成各种寡糖,在长时间作用下,还可切开这些寡糖α-1,4键而生成麦芽糖,故又称麦芽糖生成酶。在面团发酵食品制作过程中,适量加入真菌α-淀粉酶,面粉中的淀粉被水解成麦芽糖,麦芽糖又在酵母本身分泌的麦芽糖酶作用下,水解成葡萄糖供酵母利用,从而为酵母的发酵提供足够的糖源作为营养物质,使面包变得柔软,增强伸展性和保持气体的能力,容积增大,出炉后制成触感良好面包。 木聚糖酶 木聚糖酶是一种戊聚糖酶,面粉中存在着非淀粉多糖戊聚糖,在面粉中添加木聚糖酶,能使水不溶性戊聚糖增溶,可提高面筋网络的弹性,增强面团稳定性,改善加工性能,改进面包瓤的结构,增大面包体积。因面粉中的水不溶性戊聚糖对面包的品质有消极影响,它使面包体积减小,面包瓤质构变差,面包品质恶化。而水溶性戊聚糖则对面包品质起到积极作用。戊聚糖酶对水不溶性戊聚糖的增溶作用,一定程度上减小了水不溶性戊聚糖的消极影响,改善了面团的操作性能及面团的稳定性,增大了成品体积,提高了成品的质量。 葡萄糖氧化酶 葡萄糖氧化酶在氧气的存在的条件下能将葡萄糖转化为葡萄糖酸,同时产生过氧化氢。过氧化氢是一种很强的氧化剂,能够将面筋分子中的巯基(-SH)氧化为二硫键(-S-S-),从而增强面筋的强度。提高面团延展性、增大面包体积,可取代对人体有致癌作用的溴酸钾KBrO4。在面条生产中,葡萄糖氧化酶有助面筋蛋白之间形成较好的蛋白质网络结构,增加面条的咬劲。 脂肪酶

SortaseA酶抑制剂的进展

提 要:Sortase A 酶是一种介导革兰氏阳性细菌细胞壁与表面蛋白共价结合的蛋白酶。近年来研究表明Sortase A 酶在变形链球菌黏附于牙面的过程中起到关键作用,而口腔变形链球菌是主要致龋菌之一,通过对Sortase A 酶的研究有望开辟新型抗菌药物的筛选途径和新的治疗方法。目前,有关用Sortase A 酶作为靶蛋白的研究主要集中在抑制剂的方面,尤其集中在对天然产物及其来源衍生物的研究,本文就该方面作一综述。 关键词:SrtA ;抑制剂;变形链球菌;天然产物;综述文献 中图分类号:R 780.2 文献标识码:A 文章编号:1005-4057(2012)02-0208-03DOI: 10.3969/j.issn.1005-4057.2012.02..037 Sortase A 酶抑制剂的研究进展 王敬雯(综述),陈 坤、姜 颖(审校) (广东医学院附属医院口腔科,广东湛江 524001) 基金项目:广东省自然科学基金博士启动项目 (No.9452402301002065) 收稿日期:2012-01-16;修订日期:2010-03-23作者简介:王敬雯(1985-),女,在读硕士研究生。 变形链球菌(Streptococcus mutans, S. mutans)是人类龋病肽,C 末端信号肽部分被称之为细胞壁锚定信号(cell wall 的主要致病菌之一,其在牙面黏附定植是致龋的首要条件。sorting signal, cwss),由35个氨基酸残基组成,包括一个保守在变形链球菌中,作为细菌黏结素的表面蛋白通过转肽酶的SrtA 酶识别序列,通常称为LPXTGX 基因序列区,为一段[1] Sortase A 酶(SrtA) 的羧基末端共价结合于细胞表面,因此疏水氨基酸区域和一个带正电荷的尾部。SrtA 酶催化的表[3]SrtA 酶在变形链球菌黏附、致龋中起重要作用。目前研究发面蛋白的锚定是通过以下几个步骤完成的:第一步,表面现,除分支杆菌属外所有革兰氏阳性细菌均有一个保守的转蛋白前体通过其氨基末端的信号肽进入细菌的分泌系统,肽酶SrtA 酶,SrtA 酶的编码基因srtA 基因的突变常常产生多C 末端的疏水区域和正电荷尾部使蛋白保留在胞膜内,这就种影响,包括细菌表面连接蛋白变化和细菌毒力改变。近年使得膜内的SrtA 酶可识别蛋白前体的LPXTG 结构域。第二来,关于用SrtA 酶作为靶蛋白的研究主要集中在天然产物中步:SrtA 酶催化LPXTG 区的苏氨酸和甘氨酸残基之间发生蛋抑制剂的研究,本文就这方面做一综述。白水解反应,释放C 末端的疏水区域和正电荷尾部,同时,SrtA 酶中保守的半胱氨酸与LPXT 基序的苏氨酸形成硫醚连1 SrtA 酶与变形链球菌的关系及致龋的作用机制 接。第三步苏氨酸的羟基端与细胞壁前体(脂质Ⅱ)交联桥结[1] 口腔变形链球菌是龋病重要的致病菌之一,Igarashi 等 构上的甘氨酸基团形成酰胺连接。第四步:脂质Ⅱ与蛋白前首先发现变形链球菌中的SrtA 酶并对其编码基因srtA 的序列体连接后,经过转糖基反应和转肽反应形成成熟的肽聚糖,进行测定。在这项研究中,确定srtA 基因存在于变形链球菌细胞壁达到成熟,表面蛋白即被共价连接到细胞壁上。 细胞壁中,同时完成了其完整的核苷酸序列测序。结果发SrtA 酶在变形链球菌致龋作用中起重要作用。近年研究现,变形链球菌的srtA 基因由741 bp 组成,该基因编码分子表明,无论是在有无唾液与蔗糖的环境下,SrtA 酶在牙面生[4] [5]量为27 489,由246个氨基酸组成的转肽酶蛋白,即SrtA 酶,物膜的形成中均起到关键性的作用。Lee 等通过动物实验它可以介导细菌表面蛋白的锚定。SrtA 酶的三维结构显示其发现,变形链球菌SrtA 酶的基因突变株的致龋性要明显低于由8条β-折叠、1条α-螺旋卷曲形成,其中有2条带有3个转亲代株,这提示srtA 基因与变形链球菌的致龋性密切相关。角的螺旋连接到β-折叠上,Cys184、Arg197和His120为2 以SrtA 酶作为靶点的抑制剂研究 SrtA 酶活性中心。此后,他们发现SrtA 中含有一种Cbz-近年来随着抗生素的大量滥用,细菌越来越易产生耐药LPAT 的氨基酸序列,其中Cbz 是一种苄氧羰基的保护组,性,传统的微生物来源的抗生素或其衍生物逐渐失效,而植T 部分是一种苏氨酸衍生物,可以替换羰基群-CH2-SH ,该物来源以及天然产物来源的抗生素越来越被医药界所接受,酶通过T 部分形成一种双硫键连接于活性位点Cys184的硫醇因此天然产物药物将成为抗菌药物的重要来源。由于SrtA 酶基,形成一种共价的SrtA ΔN59-LPAT 复合物,即苏氨酸介导[2] 在革兰氏阳性菌感染中有着至关重要的作用,因此对以产生催化作用的结构模型。 SrtA 酶作为靶点的抑制剂研究也被广泛关注。 变形链球菌表面蛋白A 的N 末端和C 末端都含有特征信号[6] 汉城国立大学的Kim 等最先在80种植物中筛选出SrtA 酶的抑制剂。SrtA 酶在pH 7.5条件下活性最强,在20~45℃时活性最稳定。在此pH 值与温度下测试80种植物对SrtA 酶裂解抑制活性,其中木防己、漆树、阔叶麦冬和黄花贝母,尤其是这些植物的根茎提取物乙酸乙酯,显示出较好的抑制活 208 第 30 卷第 2 期2012 年 4 月广东医学院学报 JOURNAL OF GUANGDONG MEDICAL COLLEGE V ol. 30 No. 2Apr. 2012

相关文档
最新文档