微生物驱油技术综述

微生物驱油技术综述
微生物驱油技术综述

摘要相对于常规提高采收率技术, 微生物采油有 2 个优点, 即微生物不会消耗大量能源且其使用与油价无关。微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。微生物还可以堵塞油层的高渗透通道。微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以受控地在分子和孔隙微观水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂,驱替石油。日本和中国用优选的微生物菌种注入油藏进行矿场试验, 结果提高采收率15 %~23 % 。但是微生物采油也有一些局限性, 所以应该加强目前进行的微生物驱油模拟研究, 确定最好的菌种、营养物、代谢和生理特征, 使微生物驱油开采技术获得较高成功率。

一、微生物采油原理

为了让微生物快速繁殖和生长, 研究人员用各种方法往油藏里注入营养物, 激活这些微生物。有些微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。

微生物还可用于堵塞油层的高渗透通道。在多年注水开发后, 注入水会绕过渗流阻力高的含油部位, 沿渗流阻力最小通道流动。微生物数量在这个通道中也很多, 可以在注入水中添加营养物激活微生物。微生物的繁殖造成其数量猛增, 封堵无效循环的水路, 扩大波及体积, 提高注水效率。

大多数微生物具有天然依附于岩石表面的倾向, 不在液体中自由浮动。油藏里, 微生物吸附在岩石表面并繁殖, 产生胞外多糖, 促进了菌体在岩石表面的吸附作用, 形成生物膜, 起到对菌体保护的作用, 并加快细菌更好地利用营养物等资源。随注入水进入油藏的细菌将在原来的生物膜上流过, 有时微生物也会从生物膜中分离出去并与注入水一起渗流, 或者到油藏深部。

从物理化学原理方面看, 促使微生物增长并释放原油的机理与常规EOR 技术基本是一样的。尽管泄油机理相似, 但其他方面却有很大差异。常规的非微生物提高采收率技术是通过井口大量注水, 而微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以在受到控制的情况下在分子和孔隙微现水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂。这些生物生成物都有已知的泄油机制, 对石油具有化学和物理作用。

二、微生物驱技术分类

微生物可以在油藏中也可以在地面增长。地面培养时, 可以分离和收集微生物的代谢产物, 经过加工和处理再注入到油藏里驱油。

从专业角度来看, 微生物驱油有些类似于地下生物改造作用。注入的营养物与本源或外源微生物一起促进地下微生物的增长和代谢产物, 使更多原油流动, 通过油藏降压作用、界面张力/ 油相降粘以及选择性堵塞高渗区来提高剩余油流动性。另外, 经发酵后的活微生物再注入油藏也能达到增采的效果。

微生物在地下不但要生成原油流动所必需的化学物, 而且要在油藏环境下繁殖增长。在微生物驱油过程中, 要经常注入营养物保持微生物代谢作用, 有时还往油藏注入可发酵的碳水化合物作为碳源。有的油藏还需要无机营养物作为细胞生长的基液或者作为有氧呼吸的另一种电子受体。

三、油藏特征与效果

在注微生物前, 必须确定油藏的特征, 如矿化度、p H 值、温度、压力和营养物情况。岩石性质也很重要。天然裂缝可能改变微生物有效进入油藏的方式。泥质的存在可能会吸收生物聚合物和生物表面活性剂, 影响作用的发挥。碳酸盐会迅速与酸反应, 产生更大量的有利气体, 例如二氧化碳。

只有细菌是微生物驱油的希望之星。由于菌类的原因, 霉菌、酵母、藻类和原生动物等无法在油藏条件下增长。许多油藏的NaCl浓度高, 这就要求使用能够适应这种环境的细菌。在

NaCl浓度高达8%的条件下生成的生物表面活性剂和聚合物能够得以生长并选择性地堵塞砂岩, 造成封塞, 就可以采出更多原油。

没有哪一种微生物驱油方法能适用所有的油藏。有一种成功地利用碳源并适应高温、高压和高矿化度的嗜热微生物驱油法, 所选择的微生物在70~90℃、13.6~17MPa 和矿化度1.3 %~2.5 % 条件下在原油上增长。能在80~110℃条件下生长的极端嗜热厌氧菌已经分离培养出来。

用一维模型对微生物驱油过程进行了模拟。该模型有5个组成部分(原油、细菌、水、营养物和微生物快速繁殖, 代谢产物), 且具备吸附、扩散、趋药性、细菌生长、分解、营养物消耗、渗透率下降和孔隙度降低作用。通过试验与模拟结果比较,证实模拟结果有效并确定其准确程度(平均绝对相对误差8.323%)。结果发现,原油采收率随注人微生物浓度、微生物培养段塞尺寸、培育时间及残余油饱和度而发生变化。

定量模拟微生物在油藏里的生物反应综合了微生物和油藏工程专业知识。应用反应率公式可以了解微生物发挥作用的程度。微生物活跃地区是具有某个半径的生物反应区, 流体在生物反应区的停留时间必须大于反应时间才能发挥作用。要想准确地使用这些模型, 还需要从现场试验中获得更多资料来进一步解释。

微生物驱油过程中会产生不同类型的发酵产物, 比如从原油、烃和各种非烃基液产出二氧化碳、甲烷、氢、生物表面活性剂和多糖。在微生物驱现场试验中经常使用的生物胶是一种微生物聚合物, 是用水溶性基质的聚芳基酰胺作共聚物。生物胶是一种胞外多糖, 分子由许多不同的糖组成, 成分极其复杂, 钻井中用它润滑钻柱、清除井筒岩屑, 而在微生物驱油中, 生物胶用于补偿地层压力下降, 有利于原油生产。

微生物驱油中生物的聚合物性质包括在油藏环境下剪切稳定性、高溶液黏度、与油层水配伍性、不同p H 值下黏度稳定、温度、压力和对生物降解的抵抗力。细菌发酵产生的有机酸会溶解碳酸盐, 大大提高灰岩油藏渗透率。有机溶剂和溶解的二氧化碳可以降低原油黏度, 发酵气体能够恢复油井压力和产生气驱条件, 提高轻质和常规原油的驱替效果和产量。

当油藏渗透性很好而且微生物和生物聚合物封堵了水淹区的时候, 可采出剩余油。把微生物和营养物一起注入油藏、关井, 便于微生物增长、堵塞渗透性高的区域, 然后注水(水驱), 驱动出被捕集在低渗透率部位的原油进入油井。

用微观透明模型模拟富含营养物条件下的生物堵塞作用, 结果表明, 随着微生物流过多孔介质, 在营养物与菌种界面处产生一个生物段塞。营养液浓度高、p H 值高, 会促进段塞形成。以注入营养物为基础在地层生长的微生物有选择性地堵塞油藏高渗透层, 开采水驱不到的残余油。

微生物在油藏里繁殖后的堵塞作用要远远大于其刚刚注入地层在岩石表面累积时的作用。从技术上看, 这个过程比较简单, 并且也很稳定。随着水进入油藏,微生物快速繁殖,转向下一个渗透层流动,从而促进更多的微生物增长。通过营养物的调节可以控制这一过程。

注人的或者在地层中产生的生物表面活性剂有助于原油乳化以及油膜从岩石表面剥离。

日本和中国用优选的微生物菌种注入油藏进行了矿场试验, 结果提高采收率达15 %~23 % 。检测表明, 长链脂肪族烃发生降解, 但是芳香族环形结构没有明显降解。80 年代初微生物驱油技术从实验室起步, 90 年代在中国、美国、澳大利亚、秘鲁、罗马尼亚和俄罗斯开展现场试验, 大部分获得成功。据报道, 这些微生物驱油项目提高采收率各不相同, 从零到13 % 、19 % 、36 % 、50 % ~65 % , 甚至204 % 。除了增加原油产量外, 有的还降低含水率、提高油气比和改善注入能力。虽然微生物驱油潜力巨大, 但现场应用依然有限。这方面, 巴西国家石油公司走在最前面。

仅在美国就已经开展了400 多次微生物驱油现场试验, 多数是单井措施。据不完全统计, 单井日产量可从1.4bbl 增至2.8bbl , 并保持2~6个月。秘鲁最近一次试验显示每桶增加成本

$1.3~7.92 。

四、微生物驱油的局限

微生物采油也有一些局限性, 尤其在现场应用中涉及包括培养基效果、油藏流体毒性和造成的堵塞。另外采出石油后, 必须分离出微生物生成的物质以及微生物本身, 防止发生进一步生物作用。大部分微生物酶在细胞内, 所以不得不通过相对不渗透的细胞膜才能吸附原油。大分子的烃类不能渗透到细胞膜内, 这就大大减少了微生物降解烃类的范围。另外, 有研究指出油藏微生物增长和菌聚集形成胶团的倾向性, 大大地降低了渗透率, 因而降低了原油产量。

微生物驱油过程可能改变油藏周围环境, 同样对生产设施或地层造成不良影响。如, 某些硫酸盐还原菌能产生H2 S , 腐蚀管线和其他采油设备。这一点从注入富含硫酸盐的水时已经得到普遍证实。在本源脱氮菌群中加入硝酸盐和亚硝酸盐可以抑制这种作用。

尽管有许多微生物驱油现场试验取得了较好的效果, 但其驱油过程仍然有很多不确定方面。如果确定具体目标, 会增加成功几率。微生物井筒处理技术比较简单, 成功率较高。利用微生物就地生成对提高采收率有益的物质, 以及激活这些物质在油藏深部发挥作用是非常复杂的过程。

有效地调控微生物生长和繁殖的环境条件对于其增长很重要, 但控制油藏中的微生物的活动很困难, 此外, 油藏条件不同, 适合各自油藏条件的微生物驱油技术也不同。

五、目前研究区域

微生物增采和作用原油的过程非常复杂, 一般有多种生物化学过程相互作用。微生物或生物聚合物在油藏中的作用有: 堵塞高渗透层并改变水驱方向; 生成表面活性剂, 增加残余油流动力; 产生CO2 或甲烷, 增加气体压力; 消化大分子, 降低原油黏度等。

现在正在进行利用生物技术把煤、页岩油和残余油转化成工业级储量甲烷的研究。油藏微生物转化成甲烷的潜力导致可能在几天内(而不是几百万年内) 大量天然气即可生成。

研究人员一直致力于石油微生物菌种的开发, 使细菌能适应油藏恶劣环境并能够发酵, 发挥微生物提高采收率作用。依靠基因工程开发菌种, 不但能在高温下存活, 而且能依靠低廉的营养物保持其代谢或合成驱油的化学成分, 如表面活性剂等。已有研究人员正在开发依靠廉价的农业生产废物生长菌种的技术。

下面是微生物驱油技术进一步研究的区域:

◇油藏条件下生物表面活性剂与人工合成表面活性剂动态效果对比

◇油藏内原油生物乳化技术

◇油藏内微生物运移、增长和代谢参数

◇引入微生物对油藏环境的影响

其他方面也很重要, 例如增加油藏内生物聚合物对盐和热的忍耐力, 也应研究如何削弱生物聚合物的极强生物降解力。

六、结论

微生物驱油技术对环境有利, 减少甚至消除了化学物的需求。随着基因工程的发展, 将会开发出更多能够以廉价但丰富的营养物为基础生长的菌种, 由此微生物驱油技术将更加经济可行。相对传统的化学方法, 微生物驱油是更好的三次采油方式。

与地下生物改造一样, 无法控制的环境因素影响着微生物驱油作用。在地面最佳条件下, 能够生产降低原油黏度的微生物产品并注入地下将具有更为良好的效益。应当研究开发可以广泛应用的微生物产品。

要继续加强微生物驱油模拟研究, 确定最好的菌种、营养物、代谢和生理特征, 以达到在使用微生物驱油开采技术中获得较高成功率的目的。

采油微生物代谢产物分析

第!"卷第#期油田化学$%&’!"(%’# #))#年*月#+日,-&.-/&012/3-4567#+89:/, ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #))#文章编号:!)));<)"#(#))#))#;)!==;)+ 采油微生物代谢产物分析" 包木太!,#,牟伯中>,王修林! (!’青岛海洋大学化学化工学院,青岛#**))>;#’中国石化胜利油田公司采油工艺研究所,东营#+?))); >’华东理工大学化学系,上海#))#>?) 摘要:简述了以烃为碳源的采油微生物在模拟油藏条件下的主要代谢产物类型和对油藏的作用,着重介绍了这些代谢产物的定性和定量分析方法(包括样品前处理):短链有机酸分析(衍生化法,等速电泳法,各种直接分析方法);生物表面活性剂样品的提取和分析方法(轴对称液滴分析法,快速液滴破裂实验法,直接薄层色谱法,比色法,超声波振荡法);生物气分析简介;有机物(醇、醛、酮等)分析简介。指出了代谢产物分析对微生物采油机理研究和技术应用的意义。 关键词:采油微生物;代谢产物;分析方法;综述 中图分类号:@A>+?’":B">"’""文献标识码:C 微生物提高原油采收率技术(3-D6%E-F& /:2F:D/0%-&6/D%G/67,H A,I)利用微生物在油藏中的有益活动,微生物的代谢作用及代谢产物对原油/岩石/水界面性质的作用,改善原油的流动性质,提高采收率。它是目前国内外发展迅速的一项提高原油采收率技术,也是#!世纪一项高新生物技术。 H A,I具有适用范围广、工艺简单、经济效益好、无污染等特点,已经越来越受到人们的重视。该项技术的关键就是注入的微生物菌种能否在地层条件下生长繁殖及微生物的代谢作用和代谢产物能否有效地改善原油的流动性质和液固界面性质等。 采油微生物代谢产物及其分析是研究微生物采油机理研究的重要理论基础,它制约H A,I室内实验和矿场应用的开展以及微生物采油技术的推广和最终产业化的进程。 !采油微生物主要代谢产物 采油微生物代谢产物(3/5F E%&-5/)的分析研究,主要针对以烃类为碳源的采油微生物在模拟油藏环境条件下产生的酸、生物气、生物表面活性剂、有机溶剂及生物聚合物等。这些研究皆与阐明微生物采油机理相关[!!>]。采油微生物代谢产物的类型很多,但与采油机理密切相关的主要是酸、生物表面活性剂、气体等代谢产物。 采油微生物代谢产酸主要是指产低分子量的短链有机脂肪酸如乙酸、丙酸、丁酸等。这些有机酸可有效地溶解储油岩层孔隙中沉积的碳酸盐,增大油层的孔隙度和渗透率,改善原油的流动环境。酸与碳酸盐岩反应产生的1, # 等气体可增加油层压力,部分气体溶于原油中使其膨胀,降低原油粘度,改善其流动性,从而提高原油的采收率[>]。 采油微生物代谢产生表面活性剂是其共有的生物学特性。生物表面活性剂是一种集亲水基和亲油基(憎水基)于一身的两亲化合物。亲油基一般是长链脂肪酸或";烷基,#;羟基脂肪酸;而亲水基团则有多种形式,可以由糖、磷酸、氨基酸、环肽或醇等构成。生物表面活性剂能形成较强的乳状液,改变岩石表面的润湿性,显著降低水/原油/岩石体系的界 "收稿日期:#))!;!#;)>;修改日期:#))#;)+;#!。 作者简介:包木太(!"?!J),男,#))!年?月毕业于青岛海洋大学海洋化学专业,获博士学位,研究方向为微生物驱油理论,现为青岛海洋大学与胜利油田合作培养博士后,研究方向为内源微生物采油技术,联系电话:()+<*)=++?#>=,通讯地址:#+?)))山东省 东营市西三路!==号胜利油田采油工艺研究院微生物研究中心,A;3F-&:E35E&K$3F-&’4&%.’D%3,E35E&K$!*>’D%3。 基金项目:国家自然科学基金(+""?<)!<)“采油微生物代谢作用及产物对采收率影响的研究”,中国石油中青年科技创新基金(中国石油科技字[!"""]第>号(!+))“微生物代谢产物对提高采收率的影响”。 万方数据

微生物采油可行性研究报告

微生物采油可行性研究报告 1.概述 1.1 石油开采 石油是一种复杂的烃类混合物,这些烃类可能以气态、液态或者沥青质的固态存在,它一般在地下的沉积岩层中存在,液态烃俗称为原油,它存在于储油岩层的孔隙中,孔隙的大小不同,因而开采时的难易程度也有所不同。在没有外压的情况下,孔隙中的原油很难溢出。 常规的一次采油是油井建成之后,靠地层压力将原油压至地面,能开采出原油量的30% 左右;二次采油需加压、注水、注汽等,靠水或气体的流动将油从油井驱至地面,能获得总储量的10% ~20 %,剩余在油藏中的石油由于吸附在岩石空隙间难以开采,因此需要用新的方法将其开采出来,这就需要三次开采油。 三次采油的主要机理是降低原油黏度,或增加注入水的黏度,缩小油水之间的黏度差,控制水的流动性,提高驱油面积,从而提高原油的采收率。常规的三次采油方法有:热驱,蒸汽驱油,化学驱油(包括表面活性剂驱油和聚合物驱油)以及微生物采油。 常规的化学驱动费用都比较昂贵,而微生物采油随着生物技术的发展,已经向着经济开采原油的目标迈出第一步。利用微生物开采枯渴的油层是目前最经济的方法,应用这种方法不仅可以开采出流动的原油,而且可以开采出不动的石油,并能使枯渴井延长寿命。多年以来的研究证明:微生物采油是一种最有前途的强采方法。 1.2 微生物采油技术概述 微生物采油技术,即微生物提高原油采收率技术( microbial enhanced oil recoverg MEOR ),是通过将筛选的微生物注入油藏,利用微生物在油藏中的有益活动,微生物的代谢产物与油藏中液相和固相的互相作用,对原油/岩油/水界面性质的特性作用等,改变原油 的某些物理化学特征,改善原油的流动性质,从而提高原油采收率的综合性技术。采油微生物代谢

微生物驱油技术研究现状与发展趋势

油藏工程新进展论文 班级:油工08-5 学号:080201140513 姓名:梁立宝

微生物驱油技术研究现状与发展趋势 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 有资料表明我国原油开采采出率仅有30%左右,远低于发达国家50%-70%的采出率,高粘、高凝和高含腊的胶质沥青油藏为原油的开采带来诸多困难,而新型微生物采油系列产品对“三高”油藏的开发具有较强的针对性,能使采出率大幅度提高。 (一)微生物驱油技术定义 利用特定的微生物或菌种作用于地下油藏,通过其生长、繁殖以及产生的各种具有驱油作用的带下产物,改变储油层的渗流特征或使油水间的物化性质发生改变,从而提高原油采收率的方法称之为微生物驱油技术。 微生物采油是技术含量较高的一种提高采收率技术 ,不但包括微生物在油层中的生长、繁殖和代谢等生物化学过程 ,而且包括微生物菌体、微生物营养液、微生物代谢产物在油层中的运移 ,以及与岩石、油、气、水的相互作用引起的岩石、油、气、水物性的改变。 (二)微生物驱油技术机理 采油微生物种类较多,各种微生物特性和作用机理不尽相同,但从效果上概括起来主要是对原油起到清蜡降粘的作用,在微生物代谢的同时伴有产热、产气和产生表面活性物质等。 微生物通过在岩石表面上的生长繁殖,粘附在岩石表面,占据孔隙空间,在油膜下生长,最后把油膜推开,使油释放出来。微生物所产生的表面活性剂会降低油水界面张力,减少水驱毛管张力,提高驱替毛管数。同时生物表面活性剂会改变油藏岩石的润湿性,从亲油变成亲水,使吸附在岩石表面上的油膜脱落,油藏剩余油饱和的降低,从而提高采收率。微生物在油藏高渗区生长繁殖及产生聚合物,能够有选择的堵塞大孔道,增大扫油系数和降低水油比。在水驱中增加水的粘度,降低水相的流动性,减少指进和过早的水淹,提高波及系数,增大扫油效率。在地层中产生生物聚合物,能在高渗透地带控制流度比,调整注水油层的吸水剖面,增大扫油面积,提高采收率。 (三)微生物驱油技术细菌功能分类 1、产气(包括CH4、H 2、CO2、N2等气体) 2、降解烃类 3、堵塞岩石孔道 4、产生有机酸和溶剂

微生物驱油技术综述

摘要相对于常规提高采收率技术, 微生物采油有 2 个优点, 即微生物不会消耗大量能源且其使用与油价无关。微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。微生物还可以堵塞油层的高渗透通道。微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以受控地在分子和孔隙微观水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂,驱替石油。日本和中国用优选的微生物菌种注入油藏进行矿场试验, 结果提高采收率15 %~23 % 。但是微生物采油也有一些局限性, 所以应该加强目前进行的微生物驱油模拟研究, 确定最好的菌种、营养物、代谢和生理特征, 使微生物驱油开采技术获得较高成功率。 一、微生物采油原理 为了让微生物快速繁殖和生长, 研究人员用各种方法往油藏里注入营养物, 激活这些微生物。有些微生物能以油藏里的物质为营养代谢, 在发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。 微生物还可用于堵塞油层的高渗透通道。在多年注水开发后, 注入水会绕过渗流阻力高的含油部位, 沿渗流阻力最小通道流动。微生物数量在这个通道中也很多, 可以在注入水中添加营养物激活微生物。微生物的繁殖造成其数量猛增, 封堵无效循环的水路, 扩大波及体积, 提高注水效率。 大多数微生物具有天然依附于岩石表面的倾向, 不在液体中自由浮动。油藏里, 微生物吸附在岩石表面并繁殖, 产生胞外多糖, 促进了菌体在岩石表面的吸附作用, 形成生物膜, 起到对菌体保护的作用, 并加快细菌更好地利用营养物等资源。随注入水进入油藏的细菌将在原来的生物膜上流过, 有时微生物也会从生物膜中分离出去并与注入水一起渗流, 或者到油藏深部。 从物理化学原理方面看, 促使微生物增长并释放原油的机理与常规EOR 技术基本是一样的。尽管泄油机理相似, 但其他方面却有很大差异。常规的非微生物提高采收率技术是通过井口大量注水, 而微生物在油藏整个水相里都发挥作用, 包括水与岩石界面和油水界面, 并可以在受到控制的情况下在分子和孔隙微现水平上连续产出气体、溶剂、表面活性剂以及其他生物化学剂。这些生物生成物都有已知的泄油机制, 对石油具有化学和物理作用。 二、微生物驱技术分类 微生物可以在油藏中也可以在地面增长。地面培养时, 可以分离和收集微生物的代谢产物, 经过加工和处理再注入到油藏里驱油。 从专业角度来看, 微生物驱油有些类似于地下生物改造作用。注入的营养物与本源或外源微生物一起促进地下微生物的增长和代谢产物, 使更多原油流动, 通过油藏降压作用、界面张力/ 油相降粘以及选择性堵塞高渗区来提高剩余油流动性。另外, 经发酵后的活微生物再注入油藏也能达到增采的效果。 微生物在地下不但要生成原油流动所必需的化学物, 而且要在油藏环境下繁殖增长。在微生物驱油过程中, 要经常注入营养物保持微生物代谢作用, 有时还往油藏注入可发酵的碳水化合物作为碳源。有的油藏还需要无机营养物作为细胞生长的基液或者作为有氧呼吸的另一种电子受体。 三、油藏特征与效果 在注微生物前, 必须确定油藏的特征, 如矿化度、p H 值、温度、压力和营养物情况。岩石性质也很重要。天然裂缝可能改变微生物有效进入油藏的方式。泥质的存在可能会吸收生物聚合物和生物表面活性剂, 影响作用的发挥。碳酸盐会迅速与酸反应, 产生更大量的有利气体, 例如二氧化碳。 只有细菌是微生物驱油的希望之星。由于菌类的原因, 霉菌、酵母、藻类和原生动物等无法在油藏条件下增长。许多油藏的NaCl浓度高, 这就要求使用能够适应这种环境的细菌。在

微生物采油技术简介

微生物采油技术简介 大庆石油学院 2006年3月

一、概述 微生物采油技术在我国发展很快,近年来各油田采用与大学、研究院所合作以及从国外公司引进技术等方式,进行了大量的室内研究,取得了一定的成果,并进行了一定数量的现场试验。但在以烃类为营养物的厌养菌或兼性厌养菌的筛选、评价和应用等方面的研究还很少。我们在此方面进行了大量的实验,已经筛选出能够在油藏环境生长、繁殖、代谢的菌种。室内研究取得了突破性的进展,在大庆油田的不同区块进行了油井解堵、水井降压以及提高采收率矿场试验,效果非常明显,经济效益好。 二、研究依据 经过几十年的研究,通过微生物地下发酵提高原油采收率,已经提出了以下几个方面的机理: 1、细菌降粘,减少原油的渗流阻力; 2、产生气体,形成气驱和原油降粘; 3、产生表面活性剂,降低油水界面张力,提高洗油效率; 4、产生聚合物,封堵高渗透层,调整吸水剖面; 5、脱硫或脱硫菌,食原油组分中的硫、氮、降解沥青和胶质,降低原油粘 度; 6、产生有机酸,溶解岩石,提高油层的孔隙度和渗透率; 7、产生醇、醛、酮等有机溶剂,降低原油的粘度; 8、利用微生物产生的代谢物质,使储层岩石表面的湿性反转,以利于水驱 提高采收率。 以上的微生物采油机理,主要是以细菌在地下代谢碳水化合物(如糖蜜)为基础提出来的。我国的糖蜜资源有限,不可能将大量的糖蜜注入地层。但是,在油层中却存在着大量未被采出的残余油。如果能够找到以油层原油为碳源生长繁殖的细菌,通过产生大量代谢产物或使原油降粘来增加原油的产量,那么将是一条非常经济的MEOR途径。 三、菌种的筛选 对于所筛选解堵或提高原油采收率的菌种,必须满足以下的条件才有可能取得较好的效果。 1、厌氧条件下能以原油为唯一碳源生长繁殖; 2、营养要求简单,补充氮、磷、钾元素,即能满足厌氧代谢原油的要求; 3、以原油为碳源时,厌氧生长速度较快; 4、细胞较大; 5、适合油藏条件(如温度、PH值、矿化度等); 6、地面扩大发酵较为简单。 按照上述要求,最终确定了几株菌供矿场试验。所选育的菌种是来自大庆油田油井产出的油水混合物。此种细菌产物主要为生物表面活性剂。并且能以原油为唯一碳源进行长繁殖。细胞大小为0.5~1×3~100微米,形成1微米左右的孢子。对于不同的油层条件将以此菌为基础,进行不同工艺的培养及配伍应用。在提高原油采收率方面效果很显著。

稠油微生物开采技术现状及进展

第23卷第3期油 田 化 学Vol.23 No.3 2006年9月25日Oilfield Chemistry25Sept,2006 文章编号:100024092(2006)0320289204 稠油微生物开采技术现状及进展Ξ 邓 勇1,2,易绍金1,2 (1.油气资源与勘探技术教育部重点实验室(长江大学);2.长江大学化学与环境工程学院,湖北荆州434023) 摘要:综述了用微生物方法开采稠油的技术现状与进展,论题如下。①概述。②基本方法:异源微生物采油,包括微生物吞吐和微生物驱;本源微生物采油及大港孔店油田的实例。③主要机理,包括产表面活性剂,降解稠油中重质组分及其他。④技术研究,包括机理性、可行性及经济效益研究,列举了国内外6个实例。⑤现场应用,包括国外1个、国内6个实例。⑥该技术的优势及问题。参22。 关键词:稠油油藏;开采方法;微生物采油;菌种筛选;现场试验;进展;综述 中图分类号:TE357.9:TE345 文献标识码:A 稠油是一种高黏度、高密度的原油,国外将其称为重质原油。稠油在世界油气资源中占有较大的比例。据统计,世界稠油、超稠油和天然沥青的储量约为1000×108t,稠油年产量高达1.27×108t以上。加拿大的重质油储量最为丰富,其次还有委内瑞拉、美国、前苏联、中国等国家[1]。我国稠油资源分布广泛,已在12个盆地发现了70多个重质油田,预计我国重质油和沥青资源量达300×108t以上[2],具有很大的开采潜力。 目前,常用的稠油开采技术主要是热力采油法和化学采油法,这些方法均具有一定的实用性,但随着油田开发技术的发展,技术经济和环保等方面的问题日益明显[3,4],开发经济、有效的稠油开采技术势在必行。稠油微生物开采技术是一种稠油开采的新技术,已越来越受到油田的重视。 1 稠油微生物开采技术概述 微生物采油技术已经有70多年的历史,早在上世纪20年代,美国Beckman就指出细菌有利于开采石油[5]。稠油微生物开采技术是微生物采油技术的延伸,也是人们对稠油开采的一种新的尝试。美国、加拿大等欧美国家早在上世纪60~70年代就开始应用这种方法开采稠油,我国起步相对较晚。上世纪末辽河油田率先在国内开展稠油微生物开采技术的室内研究和现场试验,取得一定成果。随后大庆、胜利、新疆、大港、青海等油田相继开始稠油微生物开采技术的研究和应用。从整体上讲,目前该技术在国内外还处于试验研究阶段,真正实现工业化的项目还不多。近年来,随着稠油微生物开采技术研究的不断深入及其在稠油开采领域良好潜力的展现,该技术在国内许多油田开始受到重视[6~8]。 2 稠油微生物开采基本方法 目前,稠油微生物开采技术的基本方法主要是将含有氮、磷盐的培养液及具有降黏作用的微生物注入油层,使微生物与油层发生作用,从而提高稠油采收率,即异源微生物采油法。异源微生物开采稠油又分微生物吞吐和微生物驱两种。 微生物吞吐开采稠油的方法不动管柱,利用地面设备(水泥车、水罐车)从采油井油套环形空间挤入微生物稀释液,挤注结束后关井一段时间,使微生物作用于井筒及近井地层,然后开井采油。该法具有施工简单、不伤害储层的特点,是国内外油田主要采用的方法。 Ξ收稿日期:2006207221。 基金项目:油气资源与勘探技术教育部重点实验室(长江大学)开放基金资助项目“稠油降粘菌作用机理研究”(项目编号k200610)。 作者简介:邓勇(1982-),男,长江大学环境工程专业学士(2005)、化学与环境工程学院在读硕士研究生(2005-),主要研究方向为油气田应用化学,通讯地址:434023湖北省荆州市南环路1号长江大学化学与环境工程学院,E2mail:dengyong228@https://www.360docs.net/doc/074651779.html,。

微生物采油机理及应用

微生物采油机理及应用、 随着世界经济的飞速发展,能源的生产与供求矛盾越发突出,石油作为工业发展的命脉,由于其储量的有限性,使得人们对它的研究和关注程度远胜于其它能源。寻找有效而廉价的采油新技术一直是专家们不断探索的问题。 有资料表明我国原油开采采出率仅有30%左右,远低于发达国家50%-70%的采出率,高粘、高凝和高含腊的胶质沥青油藏为原油的开采带来诸多困难,而新型微生物采油系列产品对“三高”油藏的开发具有较强的针对性,能使采出率大幅度提高。 定义 微生物采油技术是一项利用微生物在油藏中的有益活动来提高石油产来提高石油产量的三次采油技术。将地面分离培养的微生物菌液和营养液注入油层,或单独注入营养液激活油层内微生物,使其在油层内生长繁殖,产生有利于提高采收率的代谢产物,以提高油田采收率的方法。微生物采油是技术含量较高的一种提高采收率技术,不但包括微生物在油层中的生长、繁殖和代谢等生物化学过程,而且包括微生物菌体、微生物营养液、微生物代谢产物在油层中的运移,以及与岩石、油、气、水的相互作用引起的岩石、油、气、水物性的改变【7】。同时,微生物在油层中生长代谢产生的气体,生物表面活性物质,有机酸,聚合物等物质,这些微生物的代谢产物通过降低原油表面张力和粘度,可提高岩石孔隙介质中原油的流速,增强洗油和驱油效果,提高原油采收率。来提高原油采收率的一种方法[2]。 机理 微生物的采油机理是什么?在大量研究的基础上, 一般认为可能的机理有下几点: (1)微生物生长代谢能降解原油的重组分变成轻组分, 产生的CO2、H2、 N2、CH4 等气体增加油层压力, 并降低原油的黏度, 使其流动性变好。 (2)微生物生长代谢产生能促使油释放的代谢产物, 如低分子量的醇、有机 物、生物表面活性剂等, 使油水界面张力降低, 从而使原油从岩石中释放 出来; (3)微生物代谢产生的生物聚合物可控制液体流动, 或者形成选择性封堵:

聚合物溶液的粘弹性行为在提高聚合物 驱油效率中的机理分析与运用讲解

聚合物溶液的粘弹性行为在提高聚合物 驱油效率中的机理分析与运用 Mojdeh Delshad, Do Hoon Kim, Oluwaseun A. Magbagbeola, Chun Huh, Gary A. Pope, Farhad Tarahhom编(石油工程师协会,美国德克萨斯大学奥斯汀分校) 摘要 越来越多的室内实验和矿场试验都证实了聚合物溶液的粘弹特性有助于提高聚合物驱油效率。对高分子量部分水解的聚丙烯酰胺聚合物进行大量的流变测量和岩心驱替实验后,表明了聚合物溶液的粘弹性行为在聚合物驱提高原油采收率中起着作用。在使用UTCHEM模拟器对提高油层波及系数进行定量评价后,将不同聚合物溶液的弹性作用模拟成在多孔介质中聚合物溶液的表观粘度。 随着高浓度和高分子量聚合物的使用,使聚合物驱的应用范围延伸至对更高粘度原油的开采。对聚合物在多孔介质中流变性机理的了解及其精确的数值模拟是聚合物驱矿场试验成功的关键。 对不同的剪切速率(与在岩心中流动速度和渗透率)、聚合物浓度和分子量进行振荡和剪切粘度的测定和聚合物岩心流动实验。聚合物的剪切增稠特性与通过它的分子松弛时间的Deborah数有关,它反过来又决定于流变数据。表观粘度模型是根据聚合物在多孔介质中的剪切稀释和剪切增稠来符合实验数据而发展起来的。这种模拟器被应用于组分化学驱模拟器中和成功历史拟合所开发的岩心驱替原油开采试验中。 系统的流变性测定和岩心驱替,以及使用表观粘度模拟器都证实了不同的聚合物弹性作用有助于提高聚合物的驱油效率。尤其对聚合物溶液的剪切增稠性进行描述时,是根据大量的流变测定而得到的分子松弛时间来决定的。

微生物采油现场注入工艺探索

微生物采油现场注入工艺探索 【摘要】微生物采油技术研究中包括三大技术:菌种筛选及性能评价技术、菌种放大培养 技术、现场注入工艺技术。其中现场注入工艺技术是决定微生物采油技术能否工业化推广应 用的关键技术。吉林油田微生物采油技术经过十多年研究,菌种及菌种放大培养技术已成熟,现场注入工艺技术一直不能满足工业化推广应用的需求,本文从吉林油田微生物采油现场注 入工艺的发展及存在问题着手,探索适应吉林油田工业化推广应用微生物采油技术的现场注 入工艺。 【关键词】微生物采油现场注入工艺 截止到2009年末,吉林油田已开发油气田21个,动用石油地质储量8亿吨,动用天然气地 质储量186亿方。在已开发的油气田中,以扶余、红岗等为代表的老油田目前含水已接近90%,处于注水开发后期,含水上升速度较快,注入水低效无效循环问题突出;而以新立、 乾安等为代表的低渗透油藏由于渗透率低,注水开发难度越来越大,同时随着勘探工作的逐 年深入,新增增量的品位逐年下降,在目前的经济技术条件下新增储量的动用难度越大越大,迫切需要切实可行的接替技术保障老油田的稳产,新增储量的有效动用。 随着生物工程技术的蓬勃发展,微生物采油及其多样化的驱油机理,近年来越来越受到石油 行业的青睐。通过十多年的研究,吉林油田现已形成了以CJF-002菌为目的菌的一系列微生 物采油配套技术,掌握了菌液及营养基生产、运输、注入、监测评价等相关工艺技术。但是 研究中发现,微生物现场注入工艺技术是决定微生物采油技术能否工业化推广应用的关键技术:菌种经过发大培养后,在输送和注入过程中,既要保证目的菌种不被空气、注入设备等 介质中的杂菌污染,又要保证目的菌的活性不被破坏,同时菌种所需的营养基也必须采用合 适的注入方式,才能保证目的菌在地层中得到更好的繁殖代谢。 1油井吞吐试验 吉林油田到目前为止共进行了五个阶段的微生物现场试验,注入工艺由经历了井口注入、管 线注入、配水间管线注入逐渐演化过程。微生物现场试验初期,主要进行油井吞吐试验,其 目的主要是验证外源微生物在地层条件下能否存活,其代谢产物在地层中是否具备堵塞大孔 道的能力。现场注入工艺主要采用井口注入工艺:即菌种在微生物培养站放大发酵后,按照 菌液:营养基=1:10的配比在培养站配液,利用罐车将配好菌液运送到注入井井口,再利 用泵车注入油井,每口井注入300方,注入速度30方/小时,注入过程中每4小时取样一次,分析目的菌浓度、杂菌浓度。注后关井20天开抽,同时取样分析目的菌浓度、杂菌浓度、 杂菌种类变化。以CJF-002菌为目的菌的微生物吞吐试验,共注入6口井,检测结果表明:CJF-002菌和其所需的营养基采用井口注入,只要罐车灭菌彻底,注入时间低于10小时,在 注入过程中不滋生杂菌,且CJF-002菌能够在地层中很好的繁殖,其代谢产物具备堵塞大孔 道的能力。 2微生物连续注入试验 油井吞吐仅仅可以作为一项增油措施,而不能实现微生物驱油。所以2000年设计微生物管 线注入工艺:从微生物培养站向试验区(东24~26区块)铺设了一条4000米的管线,菌种 在微生物培养站放大培养后,同样是按照菌液:营养基=1:10的比例配液,再通过管线输 送到注入现场配水间,再由配水间通过分别输送到2口注水井井口,配水间到2口注水井的 距离约200米(见图1)。 . 图1 微生物连续注入工艺流程图

微生物采油技术

微生物采油技术 石油是一种非再生能源,经过一次采油和二次采油后,地层中仍有约60%~70%原油无法开采出来,提高原油采收率一直是世界采油业广泛关注的科学问题。目前广泛采用物理、化学方法如由碱-表面活性剂-聚合物组成的三元复合驱油体系等开采原油。在地球表层和缺氧深层生存着约占地球生物种类60%的微生物,其代谢产生的生物酶和中间产物能降解原油中的高分子物质如蜡、沥青、胶质等,从而降低原油的黏度、改善增加原油的流动性,从而可以大幅度提高原油的采收率。1926年,美国人Beckman最早提出了用微生物提高原油产量的想法?,在美国石油研究所工作的Zobell于20世纪40年代初期首次进行了微生物提高采收率的研究工作,于1943年首先申请“把细菌直接注入地下,提高油层原油采收率。1954年,美国率先成功地进行了矿场试验,随后在20世纪50年代末期到70年代,前苏联和东欧一些国家、加拿大、澳大利亚及中国也开展了微生物采油研究,并进行了一系列现场试验。在当今世界能源危机的背景下,许多国家都将缓解能源供需矛盾列为头等大事,非常规采油技术受到格外重视。在20世纪90年代伊拉克战争期间,大多数的美国石油公司建立起了自己的研究机构,资助研发一些新技术,其中微生物采油是潜力最大的新技术。其美国估计原油储量6490亿桶,准备采用微生物技术开采约3750亿桶,约占总量的58%。20世纪90年代以后随着生命科学的迅猛发展,分子生物和基因工程的新技术、新成果不断涌现,为微生物采油提供了新的理念和技术,经过几十年的发展,该技术取得了长足的进展。本文综述微生物油田的生物学机理以及应用研究进展,旨在为提高能源利用率、节约能源、降低采油成本提供参考。 1微生物采油的优点 微生物采油技术是一项费用低廉、无环境污染、科技含量高、发展迅猛的新技术,是现代生物技术在采油工程领域中创新性的应用,对于高含水和接近枯竭的老油田更显示出其强大的生命力。与其他提高采收率的方法相比,微生物采油技术具有明显的优点:①成本低,微生物的主要营养源之一是用通常手段难以采出的石油,微生物的繁殖能力和适应性强,作用效果持续时间长,这尤其对边际油田吸引力大;②微生物采油技术工序简单,利用常规注人设备即可实施,不必增添井场设备,比其他EOR技术实用且操作方便;③应用范围广,不仅可开采轻油、中质原油,更适于开采重油;④注入的微生物和培养基原料来源广,容易制取,且可根据具体油藏特点,灵活调整微生物的配方;⑤易于控制,通过停止注入营养液,即可终止微生物的活动;⑥微生物细胞小且运动性强,能进入其他驱油工艺的盲区如死油区或裂缝;⑦微生物只在有油的地方繁殖并产生代谢产物,避免了表面活性剂注入或降黏剂段塞的盲目性;⑧微生物采油产物均可生物降解,不损害地层,不会造成环境污染,且可以在同一井中重复使用多次;⑨长效性:微生物能自我复制,生活史比高等生物短,注入到油藏中的细菌不断地繁殖,长时间发挥作用;⑩生产成本低廉:微生物培养设备和成本低;灵活度高:可以针对具体的油藏灵活注入具体的微生物菌种和注入量;微生物体积小,能进

微生物采油技术

微生物采油技术二○○四年四月

前言 70年代初期世界石油危机,世界各国都加强了对微生物提高石油采收率的研究,国内微生物采油在二十世纪90年代中期引起各油田重视,并在国内各油田部署微生物采油工作,吉林油田主要进行注入营养物的微生物方法研究,辽河油田进行微生物单井吞吐矿场试验,大港油田进行微生物驱油先导试验,胜利油田进行微生物菌种筛选研究工作,大庆油田进行基础理论研究工作。上述各油田的工作均取得一定的进展。 目前,大庆油田开发进入中后期,采出液含水大幅增加,而可采储量的半成以上仍被圈闭在地下,如何进一步提高采收率对大庆油田具有重要的历史意义。实践证明,微生物采油不仅可以改变油井原有的产量递减趋势,提高原油产量,延长了油井的生命期,而且对同一口井可以反复使用。与其它化学采油方法比较,微生物采油具有不污染油藏和水资源、施工简单、成本低、高回报率、生物环保、可反复应用等优点,它克服了其它化学方法无法避免的高成本、高污染等缺点,显示出强大的生命力,具有广阔的发展前景,对大庆油田的后续开发有着重要意义。 一、微生物菌液性能 驱油采用的微生物是一种兼性厌氧,在无氧的油层环境下能依靠原油中长链烷烃(石蜡)为食源而生存、繁殖。大约每4个小时可增加体积一倍。该微生物的体积直径一般在0.1—0.3μm。适应的油层条件为,温度120℃以下,含水率10%以上,矿化度30万ppm以下,

原油中饱和烷烃或含蜡量3%以上。 二、微生物采油机理 采油微生物种类较多,各种微生物特性和作用机理不尽相同,但从效果上概括起来主要是对原油起到清蜡降粘的作用,在微生物代谢的同时伴有产热、产气和产生表面活性物质等。具体如下: 1、采油微生物在生物代谢过程中以石蜡为养分,石蜡裂解后生成轻组分烃类,使石油中原有的重组分烃类向轻组分发生转移,从而降低了原油的粘度和凝固点,增强了原油的流动性。 2、微生物在地下代谢过程中产生CH4、H2、CO2、N2等气体,这些气体能够增加油层压力,部分溶于原油,改善原油流动性。 3、微生物在代谢过程中产生多种化学物质,如生物活性剂、有机酸和醇、酯等有机溶剂。其中生物活性剂能降低油田水界面张力,产生水包油的乳化作用,使油和水的相容性增强,改善水驱效果;有机酸对碳酸岩层起到酸化地层和井筒周围近井解堵的作用:醇和有机酯等有机溶剂可以改变岩石表面性质和原油物理性质,使吸附在空隙岩石表面的原油释放出来。 4、微生物在代谢过程中产生生物聚合物,能够在高渗透层控制流度比,调整注水油层的吸水剖面,增大波及体积。 三、微生物采油现场技术 微生物采油现场试验方式主要有:单井吞吐、微生物水驱、微生物循环驱、微生物水压裂以及微生物与共它采油措施,如聚合物驱、三元复合驱、且面活性剂等复配。 1、微生物单井吞吐:

综述(1)-聚苯乙烯

聚苯乙烯的功能聚合物的制备方法及应用 综述 摘要 作为聚合物之一的聚苯乙烯的应用范围很广,其衍生物种类繁多,聚苯乙烯可用于合成不同的功能聚合物,不同的功能聚合物具有不同的合成方法和不同的功能应用,本综述就聚苯乙烯的不同功能聚合物的普遍制备方法和应用前景和意义作简要概述。 关键词 聚苯乙烯衍生物制备方法应用概述 (一)侧链带8-羟基喹啉的聚苯乙烯 1.侧链带8-羟基喹啉的聚苯乙烯的制备方法 以邻苯二甲酰亚胺钾盐为亲核取代试剂,通过盖布瑞尔反应(Gabrielaction),将氯甲基聚苯乙烯(CMPS)转变为氨甲基聚苯乙烯。 首先研究了采用相转移化体系并通过亲核取代反应,制备氨甲基聚苯乙烯的前驱体—苯二甲酰亚胺基甲基聚苯乙烯的过程。相转移催化剂将邻苯二甲酰亚胺负离子从水相中转移至油相,与氯甲基聚苯乙烯亲核取代,顺利地将氯甲基聚苯乙烯大分子链上的氯甲基转变成了甲基化的邻苯二甲酰亚胺基,生成了邻苯二甲酰亚胺基甲基聚苯乙烯(PIPS)。 在通过相转移催化制备PIPS的基础上,采用胶束催化体系,在酸性条件下,进行了PIPS的水解反应,将苯二甲酰亚胺基甲基聚苯乙烯转变为氨甲基聚苯乙烯(AMPS)。

最后以N,N-二甲基甲酰胺为溶剂,使氨甲基聚苯乙烯与5-氯甲基-8-羟基喹啉进行均相反应,成功地制备了侧链带8-羟基喹啉的聚苯乙烯(PS8q),AMPS转化率达78%,即实现了8-羟基喹啉的高分子化。 2 侧链带8-羟基喹啉的聚苯乙烯的研究背景及意义 在所有7种羟基喹啉中,8-羟基喹啉是唯一可与金属离子生成螯合物的物质[1],长期以来,它在医药工业、农业以及分析测试等方面获得了广泛的应用[2],如在分析化学领域,作为一种性能优异的螯合剂、萃取剂和金属离子指示剂,可用于溶剂萃取、吸光度分析[3]、荧光分析等[4]。基于8-羟基喹啉出色的螯合性能、尤其是其对过渡金属离子和重金属离子所具有的特殊优越的螯合性能,促使人们付出巨大的努力去研究它的高分子化方法以便更好的利用其螯合性能。8-羟基喹啉高分子化产物在有机电致发光,螯合树脂等众多科技领域都具有广阔的应用前景。 (二)遇水崩解型聚苯乙烯 1 遇水崩解型聚苯乙烯的制备方法 采用反相乳液聚合法合成了一系列不同吸水倍率的聚丙烯酸钠吸水树脂和以丙烯酸钠为主的多元共聚吸水树脂。将制备的吸水树脂与苯乙烯、表面活性剂(Span-80)组成聚合体系,用过氧化苯甲酞引发进行原位共混聚合,制得遇水崩解型聚苯乙烯。同时,采用“两步法”发泡工艺,制取崩解型聚苯乙烯的泡沫制品。 对于聚苯乙烯/聚丙烯酸钠共混物而言,随着分散剂Span-80含

微生物与石油

微生物在石油形成、勘探、开采、环境治理上的作用 石油常存在于地下的地质沉积岩层中,是一种复杂的烃类混合物。这些烃类可能以气态、液态或沥青质固态存在。气态烃常伴随液态烃存在。气态烃一般是从甲烷到丁烷的小分子饱和烃混合物。液态烃俗称原油,含有上千种化合物。原油和天然气存在于地下沉积岩层中,形成贮油岩层。人们通过多种方法发现油田,开采油田,为人类提供重要的能源。在发现开采油田的过程中,微生物越来越起着重要的作用。 (一)微生物在石油开采中的作用 1、微生物参与石油的形成 石油等许多燃料是在多种微生物长期直接作用下形成的。没有众多微生物的改造、分解作用,古代的生物遗体不可能变成今天巨量的化石能源。 2、微生物用于勘探石油 常规石油勘探是采取地球物理法和地球化学法等方法进行。由于地球地层结构的复杂性常常对石油勘探的结果产生质疑。为了提高勘探的准确性,在传统方法的基础上,引入了微生物勘探石油的新技术,日益受到人们的重视,并取得良好的效果。人们发现油区底土中的重烃含量与季节变化有很大的联系,而季节变化的起因与微生物活动密切相关。在底土中存在着能利用气态烃为碳源的微生物,这些微生物在土壤中的含量和在底土中的烃浓度存在某种对应的关系,因此可用这些微生物作为勘探地下油气田的指标菌。随着微生物培养技术和测定方法的不断改进,微生物勘探石油技术得到迅速发展,准确率不断提高,在实践中得到很好应用。目前它已成为石油勘探中一项重要的技术。用于石油勘探指标微生物主要是以气态烃为唯一碳源和能源的微生物,如甲基单胞菌属、甲基细菌属和分枝杆菌属的菌种。 3、微生物用于二次采油 靠地层压力将原油运到地面,称为一次采油。由于地层压力下降,一次采油所得的油量一般只占油田总储量的1/3左右,因而要进行二次采油才能获得更多的石油。通常采用强化注水法,可提高采油量,从30%提高到40% —50% 。在二次采油中,利用微生物采油也是一项重要的技术。微生物在油层中生长繁殖,发酵代谢,产生大量酸性物质和H2,CO2,CH4等气体。产生的气体可增加地层压力,产生的酸性物质溶于原油,降低原油的黏度,可能产生的表面活性剂可降低油水表面张力,把高分子烃类分解成短链化合物,使之更加容易流动,避免堵住油井输油管道,由此而提高石油的开采量。梭状芽孢杆菌属和磺弧菌属中的许多种可用于二次采油,效果明显。 4、微生物用于三次采油 经过二次采油后,油气田中仍有30%—40% 的油田需要进一步开采,即第三次采油。在三次采油中,主要选育产气量大的菌种或利用分子生物学技术构建基因工程菌,连同营养培养液一起注入油层中,通过代谢,产酸产气,分泌表面活性剂,增加地层压力,降低表面张力,消除地层堵塞,从而提高采油量,延长油井的寿命。乳酸杆菌属、肠膜明串珠菌和黄胞杆菌属常用于三次采油中,提高石油开采率。 (二)微生物采油的优点 和其他采油方法相比,微生物采油具有以下优点: 1、施工成本低 微生物采油所需设备少,可方便地利用其他采油方法中的常规设备。 2、施工简单 微生物采油的施工工序简单,操作方便,工程易于上马。 3、适于低产油

杨成玉综述低渗透油藏化学驱研究现状

低渗透油藏化学驱研究现状 —文献调研 摘要:针对低渗透油藏可探明储量增加,开发难度大,压裂酸化、注水和注气等手段已经不能满足现阶段的低渗透油藏开发,化学驱在低渗油藏中的应用不断受到重视。本文综述了低渗透油藏的特点、开发现状以及化学驱在其中的应用和渗流机理。综合分析表明:由于缔合聚合物经过强烈剪切后恢复能力强,合理的聚合物分子质量在渗透率为(40×10-3μm2-50×10-3μm2)时能够有效的提高低渗透层的原油产出程度。而表面活性剂能降低渗透油层的渗流启动压力梯度,很好地降低低渗透层界面张力和毛管自吸势能。ASP驱结合了三者的优点,能够一定程度上增加低渗透层的产量。化学驱在低渗透油藏开发中仍有很大的潜力。 关键词低渗透油藏化学驱渗流机理研究现状 1引言 随着我国国民经济的迅速发展,油气资源的消耗不断在增大,2007年我国进口原油1.59亿吨,预计2020年我国对原油的需求至少达到4-4.3亿吨,而我国的石油产量只能增至2亿吨左右[1],因此对于不可再生的石油资源的开采程度要求不断提高。我国也加大了国内外的勘探力度,正在不断挤入世界油气勘探开发领域。然而挖掘现有油田潜力,保持稳产,提高采收率也势在必行,尤其是低渗透油藏开发。因为低渗透油藏已成为我国近几年油藏开发的主战场。从国土资源部获悉,截止2010年底我国石油累计探明地质储量为312.8亿吨,其中低渗透油藏总量200多亿吨,可探明储量为140多亿吨,占总地质储量的50%多,新增油藏储量中低渗透油藏储量占70%以上。由于低渗透油藏具有天然裂缝发育,基块渗透性差,非均质严重,孔喉细小、毛细管现象突出、油气流动阻力大,黏土矿物含量高等特点。国外一般采用压裂酸化、注水和注气开采。但水驱受到注入压力高,含水上升快,水驱动用程度较低,采收率低等因素的制约。气驱受到气源和经济的限制。而微生物采油受到温度、矿化度、PH、压力等一系列因素的制约,使得开展困难。由于化学驱的不断完善和发展已经不断的成为油田开采过程中的主导力量,但在低渗透油藏下还不够成熟,对这方面的研究还比较少。还存在着一些问题。但却有着很大的发展空间。

聚合物驱油技术机理及应用的综述

聚合物驱油技术机理及应用文献综述 目录 聚合物溶液种类及性质 (2) 聚合物驱油机理 (3) 聚合物驱提高采收率的影响因素 (4) 油层条件对提高采收率的影响因素1 (4) 聚合物条件对提高采收率的影响4 (5) 国内油田形成的聚合物驱主要技术 (7) 一类油层聚合物驱油技术 (7) 二类油层聚合物驱技术 (9) 聚合物驱油技术应用效果 (10) 大庆油田北一区断西聚合物驱油工业性矿场试验效果 (10) 胜坨油田高温高盐油藏有机交联聚合物驱试注试验12 (12) 大港油田港西五区一断块聚合物驱油试验效果 (13) 参考文献 (15)

聚合物溶液种类及性质 驱油用的聚合物有下面几种,黄胞胶(天然),聚丙烯酰胺(PAM),梳形抗盐聚合物,疏水缔合聚合物等等1。 黄胞胶是一种由假黄单胞菌属发酵产生的单胞多糖,具有良好的增粘性、假塑性、颗粒稳定性。由于其凝胶强度较弱,不耐长期冲刷,以及弹性差、残余阻力系数小,现场试验驱油效果不好,还容易发生生物降解作用,因此调剖和三次采油现在不怎么样用,有待于进一步改善。 聚丙烯酰胺是丙烯酰胺(AM)及其衍生物的均聚和共聚物的统称。产品有三种形式,水溶液胶体、粉状及胶乳,并可以有阴离子、阳离子和非离子等类型(油田一般用粉状阴离子型产品,再者是非离子,阳离子正在发展)。具有双键和酰胺基官能团,具有烯烃的聚合性能以及酰胺结构的性能。具有水解、霍夫曼降解、交联等反应属性。聚合物溶液应用过程中会发生氧化降解、自发水解、铁离子促进降解等化学反应,以及机械剪切降解和生物降解作用。经试验证明,粘度对聚合物相对分子质量、水解度、浓度、温度、水质矿化度、流速有很多依赖性,基本上相对分子质量越高,水解度越小,浓度越大,温度越低,水质矿化度越小,流速越小,其粘度就越大。聚合物溶液在孔隙介质中流动特性有絮凝、粘弹等特性。聚丙烯酰胺的絮凝作用具有电荷中和和吸附絮凝两大因素,能降低聚合物在水中的有效浓度和粘度。通过稳态剪切流动和稳态剪切流动实验,证明了聚合物具有粘弹性,一定条件下随流速增加而发展,粘弹效应是聚合物溶液提高微观驱油效率重要机理。另外聚合物溶液的注入性差会导致注入压力上升,严重时将引起地层破坏,致使聚合物驱油失败。 普通聚丙烯酰胺耐温、抗盐性能差,为此有关专家研制出梳形抗盐聚合物,经过试验,其粘度、黏温性、增稠性、热稳定性都得到大大的提高,此类产品现已经成为普通聚合物的替代品。另外研制出一种疏水缔合聚合物,增粘及抗温、抗盐、抗剪切性能提高,但是其溶

最新微生物驱油技术综述

摘要相对于常规提高采收率技术, 微生物采油有2 个优点, 即微生物不会1 消耗大量能源且其使用与油价无关。微生物能以油藏里的物质为营养代谢, 在2 发酵过程中排出生物气, 占据部分储层空间, 或形成人工气顶。微生物还可以3 堵塞油层的高渗透通道。微生物在油藏整个水相里都发挥作用, 包括水与岩石4 界面和油水界面, 并可以受控地在分子和孔隙微观水平上连续产出气体、溶剂、5 表面活性剂以及其他生物化学剂,驱替石油。日本和中国用优选的微生物菌种6 注入油藏进行矿场试验, 结果提高采收率15 %~23 % 。但是微生物采油也有一7 些局限性, 所以应该加强目前进行的微生物驱油模拟研究, 确定最好的菌种、8 营养物、代谢和生理特征, 使微生物驱油开采技术获得较高成功率。 9 一、微生物采油原理 10 为了让微生物快速繁殖和生长, 研究人员用各种方法往油藏里注入营养物, 11 激活这些微生物。有些微生物能以油藏里的物质为营养代谢, 在发酵过程中排12 出生物气, 占据部分储层空间, 或形成人工气顶。 13 微生物还可用于堵塞油层的高渗透通道。在多年注水开发后, 注入水会绕过14 渗流阻力高的含油部位, 沿渗流阻力最小通道流动。微生物数量在这个通道中15 也很多, 可以在注入水中添加营养物激活微生物。微生物的繁殖造成其数量猛16 增, 封堵无效循环的水路, 扩大波及体积, 提高注水效率。 17 大多数微生物具有天然依附于岩石表面的倾向, 不在液体中自由浮动。油藏18 里, 微生物吸附在岩石表面并繁殖, 产生胞外多糖, 促进了菌体在岩石表面的19 吸附作用, 形成生物膜, 起到对菌体保护的作用, 并加快细菌更好地利用营养20 物等资源。随注入水进入油藏的细菌将在原来的生物膜上流过, 有时微生物也21 会从生物膜中分离出去并与注入水一起渗流, 或者到油藏深部。 22 从物理化学原理方面看, 促使微生物增长并释放原油的机理与常规EOR 技术23 基本是一样的。尽管泄油机理相似, 但其他方面却有很大差异。常规的非微生24

相关文档
最新文档