人工智能芯片的分类

人工智能芯片的分类
人工智能芯片的分类

人工智能芯片的分类

近年来人工智能芯片领域的科学家们进行了富有成果的广泛研究,主要集中在AI芯片目前的两种发展方向。一个方向是继续延续经典的冯·诺依曼计算架构,以加速计算能力为发展目标,主要分为并行加速计算的GPU(图形处理单元)、半定制化的FPGA(现场可编程门阵列)、全定制化的ASIC(专用集成电路)。另一个方向就是颠覆传统的冯·诺依曼计算架构,采用基于类脑神经结构的神经拟态芯片来解决算力问题。

一、按架构分类

(1)图形处理单元(graphics processing unit,GPU)。GPU是相对较早的加速计算处理器,具有速度快、芯片编程灵活简单等特点。由于传统CPU的计算指令遵循串行执行方式,不能发挥出芯片的全部潜力,而GPU具有

高并行结构,在处理图形数据和复杂算法方面拥有比CPU更高的效率。在结构上,CPU主要由控制器和寄存器组成,而GPU则拥有更多的逻辑运算单元(arithmetic logic unit,ALU)用于数据处理,这样的结构更适合对密集型数据进行并行处理,程序在GPU系统上的运行速度相较于单核CPU往往提升几十倍乃至上千倍。同时,GPU 拥有了更加强大的浮点运算能力,可以缓解深度学习算法的训练难题,释放人工智能的潜能。但是GPU也有一定的局限性。深度学习算法分为训练和推断两部分,GPU平台在算法训练上非常高效。但在推断中对于单项输入进行处理的时候,并行计算的优势不能完全发挥出来。

(2)现场可编程门阵列(field programmable gate array,FPGA)。FPGA是在PAL、GAL、CPLD等可编程器件基础上进一步发展的产物。其基本原理是在FPGA芯片内集成大量的基本门电路以及存储器,用户可以通过更新FPGA配置文件(即烧入)来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,因此,它既解决了定制电路灵活性的不足,又克服了原有可编程器件门电路数有限的缺点。与GPU不同,FPGA同时拥有进行数据并行和任务并行计算的能力,适用于以硬件流水线方式处理一条数据,且整数运算性能更高,因此常用于深度学习算法中的推断阶段。不过FPGA通过硬件的配置实现软件算法,

因此在实现复杂算法方面有一定的难度。

将FPGA和CPU对比可以发现两个特点,一是FPGA没有内存和控制所带来的存储和读取部分,速度更快,二是FPGA 没有读取指令操作,所以功耗更低。劣势是价格比较高,编程复杂,整体运算能力不是很高。功耗方面,从体系结构而言,FPGA也具有天生的优势。传统的冯氏结构中,执行单元(如CPU核)执行任意指令,都需要有指令存储器、译码器、各种指令的运算器及分支跳转处理逻辑参与运行,而FPGA每个逻辑单元的功能在重编程(即烧入)时就已经确定,不需要指令,无需共享内存,从而可以极大地降低单位执行的功耗,提高整体的能耗比。FPGA最值得注意的例子可能是CNP,它进一步改进并重命名为NeuFlow,后来改编为nn-X。这些设计可以实现10~100 KM/s操作(GOPS),功率仅为10W以下。

(3)专用集成电路(application-specific integrated circuit,ASIC)。目前以深度学习为代表的人工智能计算需求,主要采用GPU、FPGA等已有的适合并行计算的通用芯片来实现加速。在产业应用没有大规模兴起之时,使用这类GPU、FPGA已有的通用芯片可以避免专门研发定制芯片(ASIC)的高投入和高风险。但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而天然存在性能、功耗等方面的局限性。随着人工智能应用规模的扩大,这类

问题日益突显。

GPU作为图像处理器,设计初衷是为了应对图像处理中的大规模并行计算。因此,在应用于深度学习算法时无法充分发挥并行计算优势。深度学习包含训练和推断两个计算环节,GPU在深度学习算法训练上非常高效,但对于单一输入进行推断的场合,并行度的优势不能完全发挥。其次,GPU采用SIMT计算模式,硬件结构相对固定,无法灵活配置硬件结构。此外,运行深度学习算法能效低于FPGA。

虽然FPGA倍受看好,但其毕竟不是专门为了适用深度学习算法而研发,实际应用中为了实现可重构特性,FPGA内部有大量极细粒度的基本单元,但是每个单元的计算能力都远低于CPU和GPU中的ALU模块;其次,为实现可重构特性,FPGA内部大量资源被用于可配置的片上路由与连线,因此计算资源占比相对较低;再者,速度和功耗相对专用定制芯片(ASIC)仍然存在不小差距;而且FPGA价格较为昂贵,在规模放量的情况下单块FPGA的成本要远高于专用定制芯片。

因此,随着人工智能算法和应用技术的日益发展,以及人工智能专用芯片ASIC产业环境的逐渐成熟,全定制化人工智能ASIC也逐步体现出自身的优势。ASIC是专用定制芯片,定制的特性有助于提高ASIC的性能功耗比,缺点

是电路设计需要定制,相对开发周期长,功能难以扩展。但在功耗、可靠性、集成度等方面都有优势,尤其在要求高性能、低功耗的移动应用端体现明显。比如谷歌的TPU、寒武纪的GPU,地平线的BPU都属于ASIC芯片。

(4)神经拟态芯片(类脑芯片)。在人工智能芯片中,传统的冯·诺依曼架构存在着“冯·诺依曼瓶颈”,它降低了系统的整体效率和性能[19]。为了从根本上克服这个问题,神经形态计算近年来已成为基于冯·诺依曼系统的这些传统计算架构的最有吸引力的替代方案。术语“神经形态计算”首先由Mead[20]在1990年提出,它是一种受大脑认知功能启发的新计算范式。与传统的CPU/GPU不同,生物脑(例如哺乳动物的大脑)能够以高效率和低功耗在小区域中并行处理大量信息。因此,神经形态计算的最终目标是开发神经形态硬件加速器,模拟高效生物信息处理,以弥合网络和真实大脑之间的效率差距[21],这被认为是下一代人工智能的主要驱动力。

神经拟态芯片不采用经典的冯·诺依曼架构,而是基于神经形态架构设计,是模拟生物神经网络的计算机制,如果将神经元和突触权重视为大脑的“处理器”和“记忆”,它们会分布在整个神经皮层[22]。神经拟态计算从结构层面去逼近大脑,其研究工作可分为两个层次,一是神经网络层面,与之相应的是神经拟态架构和

处理器,以IBM Truenorth为代表,这种芯片把定制化的数字处理内核当作神经元,把内存作为突触。

其逻辑结构与传统冯·诺依曼结构不同:内存、CPU和通信部件完全集成在一起,因此信息的处理在本地进行,克服了传统计算机内存与CPU之间的速度瓶颈问题。同时神经元之间可以方便快捷地相互沟通,只要接收到其他神经元发过来的脉冲(动作电位),这些神经元就会同时做动作;二是神经元与神经突触层面,与之相应的是元器件层面的创新。如IBM苏黎世研究中心宣布制造出世界上首个人造纳米尺度的随机相变神经元,可实现高速无监督学习。

当前,最先进的神经拟态芯片仍然远离人类大脑的规模(1010个神经元,每个神经元有103~104个突触),至多达到104倍,如表1所示。为了达到在人脑中规模,应将多个神经拟态芯片集成在电路板或背板上,以构成超大规模计算系统。神经拟态芯片的设计目的不再仅仅局限于加速深度学习算法,而是在芯片基本结构甚至器件层面上改变设计,希望能够开发出新的类脑计算机体系结构,比如采用忆阻器和ReRAM等新器件来提高存储密度。这类芯片技术尚未完全成熟,离大规模应用还有很长的距离,但是长期来看类脑芯片有可能会带来计算机体系结构的革命。

二、按功能分类

根据机器学习算法步骤,可分为训练(training)和推断(inference)两个环节。训练环节通常需要通过大量的数据输入,训练出一个复杂的深度神经网络模型。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,运算量巨大,需要庞大的计算规模,对于处理器的计算能力、精度、可扩展性等性能要求很高。目前市场上通常使用英伟达的GPU集群来完成,Google的TPU2.0/3.0也支持训练环节的深度网络加速。

推断环节是指利用训练好的模型,使用新的数据去“推断”出各种结论。这个环节的计算量相对训练环节少很多,但仍然会涉及到大量的矩阵运算。在推断环节中,除了使用CPU或GPU进行运算外,FPGA以及ASIC均能发挥重大作用。表2是4种技术架构的芯片在人工智能系统开发上的对比。

三、按应用场景分类

主要分为用于服务器端(云端)和用于移动端(终端)两大类。

(1)服务器端:在深度学习的训练阶段,由于数据量及运算量巨大,单一处理器几乎不可能独立完成1个模型的训练过程,因此,负责AI算法的芯片采用的是高性能计算的技术路线,一方面要支持尽可能多的网络结构以保证算法的正确率和泛化能力;另一方面必须支持浮点数运算;而且为了能够提升性能必须支持阵列式结构(即可以把多块芯片组成一个计算阵列以加速运算)。在推断阶段,由于训练出来的深度神经网络模型仍非常复杂,推断过程仍然属于计算密集型和存储密集型,可以选择部署在服务器端。

(2)移动端(手机、智能家居、无人车等):移动端AI芯片在设计思路上与服务器端AI芯片有着本质的区别。首先,必须保证很高的计算能效;其次,在高级辅助驾驶ADAS等设备对实时性要求很高的场合,推断过程必须在设备本身完成,因此要求移

动端设备具备足够的推断能力。而某些场合还会有低功耗、低延迟、低成本的要求,从而导致移动端的AI芯片多种多样。

2019年版人工智能行业市场调研分析报告

2019年版人工智能行业市场调研分析报告(部分内容) China's Industrial Market Research and Prospect Forecast Analysis Report(2019-2025) (专业、精准、高效,助力企业决策)

2015-2017年机器人产业发展综况 一、全球机器人行业规模分析 当前,全球机器人市场规模持续扩大,工业、特种机器人市场增速稳定,服务机器人增速突出。技术创新围绕仿生结构、人工智能和人机协作不断深入,产品在教育陪护、医疗康复、危险环境等领域的应用持续拓展,企业前瞻布局和投资并购异常活跃,全球机器人产业正迎来新一轮增长。 全球市场规模 根据调研的数据,2017年,全球机器人市场规模达到232亿美元,2012-2017年的平均增长率接近17%。其中,工业机器人147亿美元,服务机器人29亿美元,特种机器人56亿美元。 图1:2017年全球机器人规模占比 (一)工业机器人:销量稳步增长,亚洲市场依然最具潜力 目前,工业机器人在汽车、金属制品、电子、橡胶及塑料等行业已经得到了广泛的应用。随着性能的不断提升,以及各种应用场景的不断明晰,2012年以来,工业机器人的市场正以年均15.2%的速度快速增长。据IFR统计显示,2016年全球工业机器人销售额首次突破132亿美元,其中亚洲销售额76亿美元,欧洲销售额26.4亿美元,北美地区销售额达到17.9亿美元。中国、韩国、日本、美国和德国等主要国家销售额总计占到了全球销量的3/4,这些国家对工业自动化改造的需求激

活了工业机器人市场,也使全球工业机器人使用密度大幅提升,目前在全球制造业领域,工业机器人使用密度已经超过了70台/万人。2017年,工业机器人将进一步普及,销售额有望突破147亿美元,其中亚洲仍将是最大的销售市场。 图2:2012-2020年全球工业机器人销售额及增长率 (二)服务机器人:人工智能兴起,行业迎来高速发展新机遇 随着信息技术快速发展和互联网快速普及,以2006年深度学习模型的提出为标志,人工智能迎来第三次高速发展。与此同时,依托人工智能技术,智能公共服务机器人应用场景和服务模式正不断拓展,带动服务机器人市场规模高速增长。2017年,全球服务机器人市场达29亿美元。2020年将快速增长至69亿美元,2016-2020年的平均增速高达27.9%。2017年,全球医疗服务机器人、家用服务机器人和专用服务机器人市场规模分别为16.2亿美元、7.8亿美元和5亿美元,其中医疗服务机器人市场规模占比最高达55.9%,高于家用服务机器人29个百分点,其中智能服务机器人的比例快速提升。

人工智能芯片项目可行性报告

人工智能芯片项目可行性报告 规划设计/投资分析/产业运营

摘要 2018年全球正处于“后摩尔定律时代”,万物互联和万物智能得以实现,伴随着大数据的发展、计算能力的提升,全球人工智能近年迎来了新 一轮的爆发。2018年几乎每个月,全球主流科技公司推出的定制人工智能 芯片项目数量都会较上个月有所增加。与全球主流科技公司相比,我国人 工智能芯片厂商也相继发布新版、升级版AI芯片,并且新版本芯片都取得 了突破性发展。从全球人工智能芯片竞争格局来看,云端训练芯片方面英 伟达一家独大,推断芯片百花齐放。其中全球安防人工智能芯片市场竞争 格局稳定,现有厂商凭借与下游客户长期的合作,有望继续受益于安防智 能化的升级,属于新进入者的市场空间有限。 该人工智能芯片项目计划总投资21775.70万元,其中:固定资产 投资15290.38万元,占项目总投资的70.22%;流动资金6485.32万元,占项目总投资的29.78%。 本期项目达产年营业收入45161.00万元,总成本费用35900.08 万元,税金及附加382.55万元,利润总额9260.92万元,利税总额10920.84万元,税后净利润6945.69万元,达产年纳税总额3975.15 万元;达产年投资利润率42.53%,投资利税率50.15%,投资回报率31.90%,全部投资回收期4.64年,提供就业职位841个。

人工智能芯片项目可行性报告目录 第一章概况 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

人工智能芯片的分类

人工智能芯片的分类 近年来人工智能芯片领域的科学家们进行了富有成果的广泛研究,主要集中在AI芯片目前的两种发展方向。一个方向是继续延续经典的冯·诺依曼计算架构,以加速计算能力为发展目标,主要分为并行加速计算的GPU(图形处理单元)、半定制化的FPGA(现场可编程门阵列)、全定制化的ASIC(专用集成电路)。另一个方向就是颠覆传统的冯·诺依曼计算架构,采用基于类脑神经结构的神经拟态芯片来解决算力问题。 一、按架构分类 (1)图形处理单元(graphics processing unit,GPU)。GPU是相对较早的加速计算处理器,具有速度快、芯片编程灵活简单等特点。由于传统CPU的计算指令遵循串行执行方式,不能发挥出芯片的全部潜力,而GPU具有

高并行结构,在处理图形数据和复杂算法方面拥有比CPU更高的效率。在结构上,CPU主要由控制器和寄存器组成,而GPU则拥有更多的逻辑运算单元(arithmetic logic unit,ALU)用于数据处理,这样的结构更适合对密集型数据进行并行处理,程序在GPU系统上的运行速度相较于单核CPU往往提升几十倍乃至上千倍。同时,GPU 拥有了更加强大的浮点运算能力,可以缓解深度学习算法的训练难题,释放人工智能的潜能。但是GPU也有一定的局限性。深度学习算法分为训练和推断两部分,GPU平台在算法训练上非常高效。但在推断中对于单项输入进行处理的时候,并行计算的优势不能完全发挥出来。 (2)现场可编程门阵列(field programmable gate array,FPGA)。FPGA是在PAL、GAL、CPLD等可编程器件基础上进一步发展的产物。其基本原理是在FPGA芯片内集成大量的基本门电路以及存储器,用户可以通过更新FPGA配置文件(即烧入)来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,因此,它既解决了定制电路灵活性的不足,又克服了原有可编程器件门电路数有限的缺点。与GPU不同,FPGA同时拥有进行数据并行和任务并行计算的能力,适用于以硬件流水线方式处理一条数据,且整数运算性能更高,因此常用于深度学习算法中的推断阶段。不过FPGA通过硬件的配置实现软件算法,

人工智能市场调研分析报告

人工智能市场调研分析报告

目录 第一节人工智能与深度学习 (3) 一、人工智能:让机器像人一样思考 (3) 二、机器学习:使人工智能真实发生 (4) 三、人工神经网络:赋予机器学习以深度 (4) 四、深度学习:剔除神经网络之误差 (5) 第二节深度学习的实现 (5) 一、突破局限的学习算法 (6) 二、骤然爆发的数据洪流 (6) 三、难以满足的硬件需求 (7) 第三节现有市场——通用芯片GPU (8) 一、GPU是什么? (8) 二、GPU和CPU的设计区别 (8) 三、GPU和CPU的性能差异 (9) 四、GPU行业的佼佼者:Nvidia (10) 五、Nvidia的市场定位:人工智能计算公司 (11) 六、Nvidia的核心产品:Pascal家族 (12) 七、Nvidia的应用布局:自动驾驶 (13) 八、Nvidia的产业优势:完善的生态系统 (14) 第四节未来市场:半定制芯片FPGA (14) 一、FPGA是什么? (14) 二、FPGA和GPU的性能差异 (15) 三、FPGA市场前景 (16) 四、FPGA现有市场 (17) 五、FPGA行业的开拓者:Intel (17) 六、Intel的产品布局 (17) 七、Intel的痛点:生态不完善 (18) 八、Intel的优势 (19) 第五节投资前景 (20)

第一节人工智能与深度学习 2016年,AlphaGo与李世石九段的围棋对决无疑掀起了全世界对人工智能领域的新一轮关注。在与李世石对战的5个月之前,AlphaGo因击败欧洲围棋冠军樊麾二段,围棋等级分上升至3168分,而当时排名世界第二的李世石是3532分。按照这个等级分数对弈,AlphaGo每盘的胜算只有约11%,而结果是3个月之后它在与李世石对战中以4比1大胜。AlphaGo的学习能力之快,让人惶恐。 一、人工智能:让机器像人一样思考 自AlphaGo之后,“人工智能”成为2016年的热词,但早在1956年,几个计算机科学家就在达特茅斯会议上首次提出了此概念。他们梦想着用当时刚刚出现的计算机来构造复杂的、拥有与人类智慧同样本质特性的机器,也就是我们今日所说的“强人工智能”。这个无所不能的机器,它有着我们所有的感知、所有的理性,甚至可以像我们一样思考。 人们在电影里也总是看到这样的机器:友好的,像星球大战中的C-3PO;邪恶的,如终结者。强人工智能目前还只存在于电影和科幻小说中,原因不难理解,我们还没法实现它们,至少目前还不行。 我们目前能实现的,一般被称为“弱人工智能”。弱人工智能是能够与人一样,甚至比人更好地执行特定任务的技术。例如,Pinterest上的图像分类,或者Facebook的

人工智能芯片技术趋势研究分析报告

人工智能芯片技术趋势研究分析报告 2010 年以来,由于大数据产业的发展,数据量呈现爆炸性增长态势,而传统的计算架构又无法支撑深度学习的大规模并行计算需求,于是研究界对AI 芯片进行了新一轮的技术研发与应用研究。AI 芯片是人工智能时代的技术核心之一,决定了平台的基础架构和发展生态。 AI芯片基本知识及现状从广义上讲只要能够运行人工智能算法的芯片都叫作AI 芯片。但是通常意义上的AI 芯片指的是针对人工智能算法做了特殊加速设计的芯片,现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。人工智能与深度学习的关系如图所示。 人工智能与深度学习深度学习算法,通常是基于接收到的连续数值,通过学习处理,并输出连续数值的过程,实质上并不能完全模仿生物大脑的运作机制。基于这一现实,研究界还提出了SNN(Spiking Neural Network,脉冲神经网络)模型。作为第三代神经网络模型,SNN 更贴近生物神经网络——除了神经元和突触模型更贴近生物神经元与突触之外,SNN 还将时域信息引入了计算模型。目前基于SNN 的AI 芯片主要以IBM 的TrueNorth、Intel 的Loihi 以及国内的清华大学天机芯为代表。 1、AI 芯片发展历程从图灵的论文《计算机器与智能》和图灵测试,到最初级的神经元模拟单元——感知机,再到现在多达上百层的深度神经网络,人类对人工智能的探索从来就没有停止过。上世纪八十年代,多层神经网络和反向传播算法的出现给人工智能行业点燃了新的火花。 反向传播的主要创新在于能将信息输出和目标输出之间的误差通过多层网络往前一级迭代反馈,将最终的输出收敛到某一个目标范围之内。1989 年贝尔实验室成功利用反向传播算法,在多层神经网络开发了一个手写邮编识别器。

人工智能芯片项目申报材料

人工智能芯片项目申报材料 规划设计/投资方案/产业运营

报告说明— 该人工智能芯片项目计划总投资21266.68万元,其中:固定资产投资16354.87万元,占项目总投资的76.90%;流动资金4911.81万元,占项目总投资的23.10%。 达产年营业收入36306.00万元,总成本费用28621.56万元,税金及附加352.90万元,利润总额7684.44万元,利税总额9097.26万元,税后净利润5763.33万元,达产年纳税总额3333.93万元;达产年投资利润率36.13%,投资利税率42.78%,投资回报率27.10%,全部投资回收期5.19年,提供就业职位532个。 2018年全球正处于“后摩尔定律时代”,万物互联和万物智能得以实现,伴随着大数据的发展、计算能力的提升,全球人工智能近年迎来了新一轮的爆发。2018年几乎每个月,全球主流科技公司推出的定制人工智能芯片项目数量都会较上个月有所增加。与全球主流科技公司相比,我国人工智能芯片厂商也相继发布新版、升级版AI芯片,并且新版本芯片都取得了突破性发展。从全球人工智能芯片竞争格局来看,云端训练芯片方面英伟达一家独大,推断芯片百花齐放。其中全球安防人工智能芯片市场竞争格局稳定,现有厂商凭借与下游客户长期的合作,有望继续受益于安防智能化的升级,属于新进入者的市场空间有限。

第一章总论 一、项目概况 (一)项目名称及背景 人工智能芯片项目 (二)项目选址 某产业基地 对各种设施用地进行统筹安排,提高土地综合利用效率,同时,采用先进的工艺技术和设备,达到“节约能源、节约土地资源”的目的。项目建设区域以城市总体规划为依据,布局相对独立,便于集中开展科研、生产经营和管理活动,并且统筹考虑用地与城市发展的关系,与项目建设地的建成区有较方便的联系。undefined (三)项目用地规模 项目总用地面积56428.20平方米(折合约84.60亩)。 (四)项目用地控制指标 该工程规划建筑系数79.69%,建筑容积率1.52,建设区域绿化覆盖率5.64%,固定资产投资强度193.32万元/亩。 (五)土建工程指标

人工智能行业发展前景展望及市场规模预测

一、人工智能的内涵及分类 (一)人工智能的内涵 人工智能(Artificial Intelligence,简称AI)是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。人工智能是计算机学科的一个分支,既被称为20世纪世界三大尖端科技之一(空间技术、能源技术、人工智能),也被认为是21世纪三大尖端技术之一(基因工程、纳米科学、人工智能)。人工智能被发达国家视为人类的最后科学尖端,科研领域皇冠上的明珠。 (二)人工智能的分类 人工智能的概念很宽泛,按照人工智能的实力可分为三大类: 1、弱人工智能:在特定领域等同或者超过人类智能或效率的机器智能。 2、强人工智能:各方面都能和人类比肩的人工智能。 3、超人工智能:在包括科学创新、通识和社交技能等各个领域都超越人类的人工智能。 人工智能的革命就是从弱人工智能,通过强人工智能,最终达到超人工智能的过程。目前人类已经掌握弱人工智能,生活中弱人工智能无处不在,比如Siri、垃圾邮件过滤器、谷歌翻译、电商网站上的商品推送、谷歌无人驾驶汽车等等。 人脑与电脑的最大差别在于,一些我们认为困难的事情,如微积分、金融市场策略、翻译等,对于电脑来说都十分容易;但一些人类认为容易的事情,如视觉、动态、移动、直觉,对于电脑来说却是十分困难。而要达到人类级别的智能,电脑必须要理解更高深的东西,比如微小的脸部表情变化,以为为什么喜欢这个而不喜欢那个,要达到这样的水平首先在硬件方便要增加电脑处理速度,其次在软件方面要让电脑变得智能。 美国发明家、未来学家Kurzweil估算出人脑的运算能力是10^16 cps(calculations per second,每秒计算次数,描述运算能力的单位),即1亿亿次计算每秒。现在世界上最快的超级计算机,中国的天河二号,运行能力已达到3.4亿亿次,已经超过人脑,但由于其成本高、规模大、功耗高,使其并不能够被商业及广泛运用。Kurzweil认为考虑电脑发展程度的标杆是看1000美元能买到多少cps,当1000美元能买到人脑级别的1亿亿运算能力的时候,强人工智能就成为生活的一部分。而目前1000美元能买到10万亿cps(人脑的千分之一),根据加速回报定律,科技的进步将呈指数型增长,按照这个速度,到2025年1000美元就可以买到和人脑运算速度抗衡的电脑了。 二、人工智能的产业链分析 从发展路径及阶段上看,实现人工智能需经历三个阶段:计算智能(能存会算)、感知智能(能听会说、能看会认)和认知智能(能理解会思考)。

人工智能芯片项目可行性报告 (3)

人工智能芯片项目可行性报告 xxx有限公司

摘要 近年来,各类势力均在发力AI芯片,参与者包括传统芯片设计、 IT厂商、技术公司、互联网以及初创企业等,产品覆盖了CPU、GPU、FPGA、ASIC等。在市场调研机构CompassIntelligence2018年发布的AIChipsetIndexTOP24榜单中,前十依然是欧美韩日企业,国内芯片企业如华为海思、联发科、Imagination(2017年被中国资本收购)、寒武纪、地平线机器人等企业进入该榜单,其中华为海思排12位,寒武纪 排23位,地平线机器人排24位。 按厂商来看,Intel作为全球第二大半导体企业,在数据处理类芯 片市场中拥有三成左右的份额。而与数据处理相关的DRAM/NAND存储 芯片厂商合计市场份额达37%,三星、SK海力士、镁光均进入竞争。Nvidia/AMD/Xilinx虽绝对收入占比仍然较低,但将受益于“CPU+xPU”异构计算方式的普及,享受市场需求高速增长带来的红利。 城市AI技术的创新在一定程度上也代表着这个城市的AI芯片的 发展水平以及发展潜力。城市是承载AI技术创新融合应用的综合性载体,也是人类与AI技术产生全面感知的集中体验地。过去几年,全球 各地的主要城市都在AI技术的发展中发挥了差异化作用,构建了各自

的生态体系,并在赋能产业应用、助力区域经济发展方面实现初步效果,掀起了人类对新一轮产业革命的思考、认知和行动。 随着AI应用纷纷落地于城市层面,城市逐渐成为AI创新融合应 用的主战场。虽然全球各地AI技术的关键成功要素各有差异,但总体 而言都构建了有利于技术与城市融合的生态发展体系。通过对超过50 个AI技术细分应用行业、100多个AI技术相关的大学及研究机构、 200多家头部企业、500多个投资机构、7000家AI企业、10万名AI 领域核心人才的持续跟踪观察,总结了以城市为主体的AI技术及产业 生态体系的特点、框架及发展路径。 计算芯片(如CPU、GPU、FPGA、ASIC)在数据处理类芯片中占比最高,其中GPU拥有27%左右的份额,CPU和ASIC市占率不相上下,分 别为17%/15%。FPGA灵活度强但普及度低,在开发早期和小规模应用 时优势比较明显。 该人工智能芯片项目计划总投资20648.88万元,其中:固定资产 投资14195.56万元,占项目总投资的68.75%;流动资金6453.32万元,占项目总投资的31.25%。 达产年营业收入46583.00万元,总成本费用35848.43万元,税 金及附加383.86万元,利润总额10734.57万元,利税总额12599.06

人工智能芯片行业实施方案

人工智能芯片行业实施方案 —— 2018年全球正处于“后摩尔定律时代”,万物互联和万物智能得 以实现,伴随着大数据的发展、计算能力的提升,全球人工智能近年 迎来了新一轮的爆发。2018年几乎每个月,全球主流科技公司推出的 定制人工智能芯片项目数量都会较上个月有所增加。与全球主流科技 公司相比,我国人工智能芯片厂商也相继发布新版、升级版AI芯片, 并且新版本芯片都取得了突破性发展。从全球人工智能芯片竞争格局 来看,云端训练芯片方面英伟达一家独大,推断芯片百花齐放。其中 全球安防人工智能芯片市场竞争格局稳定,现有厂商凭借与下游客户 长期的合作,有望继续受益于安防智能化的升级,属于新进入者的市 场空间有限。 当前时期是我国以科学发展观为指导,实施新的国民经济和社会 发展规划的重要时期,也是我国经济结束WTO过渡期,加快融入国际 经济的关键时期。在这个时期,产业发展既要符合国家总体规划,满 足全面建设小康社会的要求,也要适应全球化过程中更为严峻的国际 竞争环境,不断提高竞争力,实现更快更好地发展。新的形势和任务,将对我国产业产生重要影响。

为推动区域产业转型升级、持续健康发展,制定本规划方案,请 结合实际认真贯彻执行。 第一部分指导思路 产业的发展,要以核心领域为切入点,结合自身资源条件,重点 积累关键技术,构建衔接有序的产业链条,以此推进行业的有效聚集 发展,增强可持续发展动力,并成为服务区域建设的重要节点产业。 第二部分指导原则 1、创新驱动,增强发展动力。将技术创新作为产业革命的驱动力量。改善创新科研体制机制,加强科技人才培养,鼓励企业科技创新,加快科技成果向现实生产力转化。 2、机制创新,部门协同。创新管理体制和运营监管机制,强化部 门协同,持续推进产业发展,实现可持续发展。 3、区域协同,部门联动。深入推进区域产业发展协同发展,在更 大区域范围内打造产业发展链条,形成错位发展、共同发展格局;加 强部门间的统筹协调,建立联动机制,形成合力。 第三部分背景分析 2018年全球正处于“后摩尔定律时代”,万物互联和万物智能得 以实现,伴随着大数据的发展、计算能力的提升,全球人工智能近年

AI芯片什么是AI芯片的架构、分类及关键技术概述

AI芯片什么是AI芯片的架构、分类及关键技术概述 人工智能芯片目前有两种发展路径:一种是延续传统计算架构,加速硬件计算能力,主要以3 种类型的芯片为代表,即 GPU、FPGA、ASIC,但CPU依旧发挥着不可替代的作用;另一种是颠覆经典的冯·诺依曼计算架构,采用类脑神经结构来提升计算能力,以IBM TrueNorth 芯片为代表。 传统CPU 计算机工业从1960年代早期开始使用CPU这个术语。迄今为止,CPU从形态、设计到实现都已发生了巨大的变化,但是其基本工作原理却一直没有大的改变。通常CPU 由控制器和运算器这两个主要部件组成。传统的CPU 内部结构图如图所示: 传统CPU内部结构图(ALU计算模块) 从图中我们可以看到:实质上仅单独的ALU模块(逻辑运算单元)是用来完成数据计算的,其他各个模块的存在都是为了保证指令能够一条接一条的有序执行。这种通用性结构对于传统的编程计算模式非常适合,同时可以通过提升CPU主频(提升单位时间内执行指令的条数)来提升计算速度。但对于深度学习中的并不需要太多的程序指令、却需要海量数据运算的计算需求,这种结构就显得有些力不从心。尤其是在功耗限制下,无法通过无限制的提升CPU 和内存的工作频率来加快指令执行速度,这种情况导致CPU 系统的发展遇到不可逾越的瓶颈。 并行加速计算的GPU GPU 作为最早从事并行加速计算的处理器,相比CPU 速度快,同时比其他加速器芯片编程灵活简单。 传统的CPU 之所以不适合人工智能算法的执行,主要原因在于其计算指令遵循串行执行的方式,没能发挥出芯片的全部潜力。与之不同的是,GPU 具有高并行结构,在处理图形数据和复杂算法方面拥有比CPU 更高的效率。对比GPU 和CPU 在结构上的差异,CPU大部分面积为控制器和寄存器,而GPU 拥有更ALU(逻辑运算单元)用于数据处理,

2017年AI芯片行业深度研究报告

2017年AI芯片行业深度研究报告

投资要点: ?AI应用爆发,底层芯片架构亟待革新:科技巨头的大力投入及政策 扶持正推动AI下游应用的迅猛增长,AI正在安防、无人驾驶、医疗等市场快速落地。而AI应用的发展离不开底层芯片架构的革新。传统芯片架构在处理神经网络算法时功耗较高,速度无法满足需求,因此催生了AI芯片的诞生,例如Google的TPU、寒武纪的NPU 等均是专门为AI应用度身定做的专有芯片,未来AI芯片将成为无论是移动端还是云端的标配,将成为下一阶段AI产业竞争的关键所在。 ?AI产业链中,最为看好上游AI芯片环节:目前时间点,AI产业链 上游的芯片企业的成长性最为确定,盈利模式最为清晰,AI芯片市场是率先受益于AI产业高速发展的环节,无论下游哪个应用领域率先落地,AI芯片市场都将迎来数倍的高速增长。根据智研咨询统计,2016 年人工智能芯片市场规模达到6亿美元,预计到2021年将达到52 亿美元,年复合增长率达到53%。仅测算安防前端智能摄像头市场,目前国内安防芯片市场规模约30亿人民币左右,预计未来三年,搭载人工智能模块的安防芯片市场存在三倍以上的成长空间,可达百亿级。 ?看好低成本高性能的ASIC发展路线,国内厂商或将弯道超车:目 前AI芯片技术主流路径为GPU、FPGA、ASIC等,场景方面分为云端、终端两大类,其中云端环境条件较为宽松,GPU暂时满足需求,未来AI ASIC芯片有望成为重要组成部分。终端受制于能耗,体积约束,同时应用场景相对明晰,对ASIC芯片需求强烈,我们看好ASIC路径发展前景。NVIDEA、INTEL、AMD等传统芯片巨头在GPU及FPGA领域具有不可撼动的优势,而国内中小芯片设计公司的优势在于细分场景下的ASIC芯片。随着AI芯片市场的快速发展,国内AI芯片设计公司在ASIC路线存在弯道超车的良好机遇。 ?行业评级及投资策略维持计算机行业“中性评级”,给予人工智能 板块买入评级,AI应用普及,AI芯片市场需求迅速上升,我们看好国内公司在ASIC芯片方面存在弯道超车的机遇,未来三年迎来爆发式成长,建议积极关注行业投资机会,短期重点推荐智能安防芯片市场。 ?重点推荐个股1、富瀚微:安防芯片A股龙头,受益安防人工智能 化发展;2、中科创达:芯片嵌入式解决方案A股龙头,麒麟970采用公司方案。建议关注:1、东软集团:无人驾驶芯片技术储备丰富,发展潜力较大;2、四维图新:无人驾驶芯片技术储备丰富,发展潜力较大;3、中科曙光:云端人工智能服务器潜力巨大;4、浪潮信息:与IBM建立合资企业研发人工智能服务器,前景远大。 ?风险提示:1)相关公司业绩不达预期的风险;2)行业政策变动风 险;3)市场系统性风险。

2019年度人工智能与健康考试答案95分

2019 年度人工智能与健康考试答案 1.据清华原副校长施一公教授研究,中国每年有 265 万人死于(),占死亡人数的28% 。( 2.0 分) A.癌症 B.心脑血管疾病 C.神经退行性疾病 D.交通事故 我的答案: A √答对 2.在 2017 年国务院印发的()中规定了我国到2030 年人工智能发展三步走的部署和设想。( 2.0 分) A.《中华人民共和国国民经济和社会发展第十三个五年规划纲要》 B.《关于积极推进“互联网 + ”行动的指导意见》 C.《“互联网 + ”人工智能三年行动实施方案》 D.《新一代人工智能发展规划》 我的答案: D √答对 3.在国际评判健康的标准中,空腹血糖值低于()才是健康的。( 2.0 分) A.90mg/dl B.95mg/dl C.100mg/dl

D.110mg/dl 我的答案: C √答对 4.生物特征识别技术不包括()。( 2.0 分) A.体感交互 B.指纹识别 C.人脸识别 D.虹膜识别 我的答案: A √答对 5.下列选项中,不属于生物特征识别技术的是()。( 2.0 分) A.步态识别 B.声纹识别 C.文本识别 D.虹膜识别 我的答案: C √答对 6.关于中国人工智能产业技术创新日益活跃,下列说法不正确的是()。(2.0 分) A.语音识别、视觉识别技术达到世界领先水平 B.在脑科学等基础研究领域取得显著进展 C.人工智能领域的国际科技论文发表量和发明专利授权量已居世界第一位 D.人工智能领域的国际科技论文引用量达到世界第一位 我的答案: C √答对

7.在大数据隐私保护生命周期模型中,大数据使用的风险是()。( 2.0 分) A.被第三方偷窥或篡改 B.如何确保合适的数据及属性在合适的时间地点给合适的用户访问 C.匿名处理后经过数据挖掘仍可被分析出隐私 D.如何在发布时去掉用户隐私并保证数据 可用我的答案: B √答对 8.如果一个人体检时发现乳腺癌 1 号基因发生突变,可以推断出()。( 2.0 分) A.这个人患乳腺癌的概率增加了 B.这个人已经患了乳腺癌 C.这个人一定会患乳腺癌 D.这个人很快会被检查出乳腺 癌我的答案: A √答对 9.最经典的西方健康研究——佛雷明翰研究开始于()。( 2.0 分) A.1948 年 B.1971 年 C.1989 年 D.2000 年 我的答案: A √答对 10.据 2005 年美国一份癌症统计报告表明,在男性的所有死亡原因中,排在第 二位的是()。( 2.0 分)

人工智能芯片项目可行性报告 (1)

人工智能芯片项目可行性报告 xxx科技发展公司

摘要 人工智能产业规模高速增长,全球市场调研机构IHSMarkit发布 数据显示,到2025年AI应用市场规模将从2019年的428亿美元激增 到1289亿美元。 回顾2019年,AI机器人群聊、管控道路桥梁积水、写作、智能客服……人工智能做了许多原本人类才会做的事情。数不尽的纷繁应用 背后离不开AI芯片的基础支撑。 日前,AI芯片新老牌厂商“混战”国际消费类电子产品展览会, 全面覆盖当前人工智能六大核心落地场景,包括云端训练、云端推理、智能手机、AIoT视觉推理、AIoT语音推理、自动驾驶等,国内AI芯 片进入落地阶段。 根据中国人工智能产业发展联盟(以下简称联盟)提供的数据, 2019年以来国内外芯片厂商共发布AI芯片近30款。 AI芯片怎样支撑多姿多彩的人工智能应用落地?评测标准进展如何?今年的亮点、看点又在哪?科技日报记者采访了相关专家。 回顾2019年,AI机器人群聊、管控道路桥梁积水、写作、智能客服……人工智能做了许多原本人类才会做的事情。数不尽的纷繁应用 背后离不开AI芯片的基础支撑,它是如何驱动AI“作业”的呢?

目前消费类智能产品大量应用人工智能、大数据等技术,芯片作 为硬件载体,承担了“让智能产品发挥作用”的功能。鲲云科技创始 人兼CEO牛昕宇介绍,人工智能行业有三个核心驱动力:算法、算力 和数据。人工智能芯片作为人工智能应用的底层硬件,为其提供算力 支撑。“通过技术创新,不断提升人工智能计算的性能、降低其成本 和功耗,从而支持越来越复杂的人工智能应用。” 如果把运行各种人工智能技术集合比作一个人的话,人工智能芯 片就是它的大脑实体,而各种聊天、视频制作、自动驾驶应用就是它 根据自己所能接触到的数据,学习到的经验知识进行的操作。一方面,随着数据经验的积累,它们运行的人工智能应用会越来越精确,另一 方面,它的学习受限于大脑的容量(芯片计算能力)、培养成本(芯片成本)以及大脑运算消耗的热量(芯片功耗)。 AI芯片的发展,离不开人工智能技术的发展。人工智能从1956年诞生至今,共经历过三次大的浪潮。进入21世纪,随着计算机性能的 提升和海量数据的产生,机器学习和CNN网络(卷积神经网络)获得突破,算法、算力和数据满足了人工智能的商业化落地需求,人工智能 迎来了高速发展的阶段。

人工智能芯片项目申请报告

人工智能芯片项目申请报告 一、建设背景 2018年全球正处于“后摩尔定律时代”,万物互联和万物智能得以实现,伴随着大数据的发展、计算能力的提升,全球人工智能近年迎来了新一轮的爆发。2018年几乎每个月,全球主流科技公司推出的定制人工智能芯片项目数量都会较上个月有所增加。与全球主流科技公司相比,我国人工智能芯片厂商也相继发布新版、升级版AI芯片,并且新版本芯片都取得了突破性发展。 从全球人工智能芯片竞争格局来看,云端训练芯片方面英伟达一家独大,推断芯片百花齐放。其中全球安防人工智能芯片市场竞争格局稳定,现有厂商凭借与下游客户长期的合作,有望继续受益于安防智能化的升级,属于新进入者的市场空间有限。 群雄逐鹿人工智能芯片,英伟达稳居第一 当前全球正处于“后摩尔定律时代”,万物互联和万物智能得以实现,核心推动力量来自半导体产业,数百亿智能设备连接网络,用于数据采集的物联网芯片和高性能人工智能芯片需求剧增,因万物互

联采集海量数据,经数据中心构造的云端对数据进行处理,从而带动整个半导体发展。 伴随着大数据的发展、计算能力的提升,全球人工智能近年迎来了新一轮的爆发。谷歌、脸书、亚马逊等国外各大科技巨头公司纷纷推出了自己的人工智能芯片,预计2020年有望突破百亿大关,发展空间巨大。2018年几乎每个月,全球主流科技公司推出的定制人工智能芯片项目数量都会较上个月有所增加。 与全球主流科技公司相比,我国人工智能芯片厂商也相继发布新版、升级版AI芯片,并且新版本芯片也取得了突破性发展。以华为的昇腾910为例,这款芯片是目前单芯片计算密度最大的芯片,计算力远超谷歌以及英伟达。除此之外,百度、阿里巴巴等互联网公司也相继进入人工智能芯片领域,推出或计划推出相应产品。 人工智能芯片作为人工智能的上游产业,走在行业发展的前沿。近年来,互联网和芯片行业巨头纷纷布局人工智能芯片领域。2018年全球人工智能芯片公司榜单中,英伟达凭借长期的技术积累和应用优势稳坐头把交椅,英特尔、IBM、谷歌和苹果位居2至5位。华为排名第12,成为中国大陆地区排名最高的人工智能芯片制造厂商。 云端训练英伟达一家独大,推断芯片百花齐放

人工智能芯片项目投资计划书 (2)

人工智能芯片项目 投资计划书 规划设计 / 投资分析

人工智能芯片项目投资计划书说明 芯片设计企业依然是当前AI芯片市场的主要力量,包括英伟达、英特尔、AMD、高通、三星、恩智浦、博通、华为海思、联发科、Marvell(美满)、赛灵思等,另外,还包括不直接参与芯片设计,只做芯片IP授权的ARM公司。其中,英伟达、英特尔竞争力最为强劲。 市场根据AI芯片功能及部署场景将AI芯片分为:训练/推断、云端/终端两个维度进行划分。训练端由于需要对大量原始数据进行运算处理,因此对于硬件的算力、计算精度,以及数据存储和带宽等都有较高要求,此外在云端的训练芯片应该有较好的通用性和可编程能力。推理端对于硬件性能要求没有推断端高,实证证明一定范围的低精度运算可达到同等推理效果,但同时这要求模型训练精度要达到较高水平。 根据IDC数据显示,2017年,全球整体AI芯片市场规模达到40亿美元,到2022年,全球整体AI芯片市场规模将会达到352亿美元,CAGR大于55%。 自从50多年前集成电路被发明之后,芯片产业一直按照摩尔定律的规律高速发展,逐渐形成了寡头垄断的局面。新中国成立之初,由于多年的内战,以及抗美援朝战争,没有能够抓住芯片产业刚刚兴起的契机。而改革开放之后,为了快速发展经济,在世界站稳脚跟,中国各界也没有对芯

片这类投资风险高的产业给予足够的重视和支持,导致与国外的差距越拉 越大,更加难以打破巨头的垄断。以至于到现在,国人用的芯片还基本都 是进口芯片,几乎看不见国产芯片的身影。 近年来,虽然我国在核心芯片集成能力上大幅提升,但由于核心芯片 关键技术缺失,因此在实际设计和生产中仍需要大量引进发达国家和地区 的技术和产品。另外,从产业链来看,AI芯片可分为设计、制造和封装3 个主要环节,其中设计环节需要EDA和逻辑电路设计验证等软硬件平台的 支撑,芯片制造和封装环节需要相关材料和技术的支撑。 随着我国政府不断加大对于人工智能和芯片领域的投入,接下来几年 将是我国AI芯片技术和市场成熟的重要阶段,未来产业竞争格局将取决于 这几年各企业的技术和市场发展情况。在这种情况下,我国应抓住这一时 间窗口,坚持集成创新的思路,通过引人成熟技术,实现AI芯片产业的 “弯道超车”。 目前,我国AI芯片企业主要聚集在北京市、上海市、江浙一带以及广 东省地区。这四个地区凭借各自的优势培养或者吸引了一大批AI芯片企业。如北京市是AI人才和企业集聚地,科技创新、平台服务等全国领先,这就 为AI芯片设计或者制造企业创造了良好的发展条件,也为AI芯片企业提 供了丰富的人才资源;而广东省自改革开放以来就一直是中国制造业企业的 集聚地,产业链完善,为AI芯片企业的成长提供了先天优势。

人工智能行业分析

人工智能行业分析 人工智能行业可谓是现在科技的前端,高科技的行业,那么关于人工智能行业的分析有哪些知识呢?下面是为你整理的人工智能行业分析,供大家阅览! 人工智能行业简要分析 一、机遇 在2017政府工作报告中提到:“2017年将加快培育壮大新兴产业。全面实施战略性新兴产业发展规划,加快新材料、人工智能、集成电路、生物制药、第五代移动通信等技术研发和转化,做大做强产业集群。”这是“人工智能”首次被列入政府工作报告。 3月11日,科技部部长万钢在“全国人大会议新闻中心记者会”上表示,正在起草促进中国人工智能(AI)创新发展的规划,并估计两会后将很快出台。 二、行业简介 人工智能英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的重要分支,它的研究目标是了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括智能语音技术、图像识别技术、自然语言理解、专家系统和机器人等。

人工智能可分为基础层、技术层和应用层。基础层为算力支撑(AI 芯片、云计算),技术层为算法平台,应用层是AI向各传统行业的渗透应用。 AI 产业链中,芯片产业率先引来爆发。PC GPU 巨头NVIDIA 已经将业务重点转向AI 领域,应用在人工智能领域的可进行通用计算的GPU市场基本被NVIDIA垄断。但是芯片巨头英特尔明显对人工智能市场虎视眈眈,至强处理器Xeon+FPGA也将在2017年下半年量产,预计英特尔有很大的机会在2017年四季度迎来人工智能的第一波红利。 云计算方面,亚马逊、微软云计算业务爆发,其中亚马逊的AWS 云服务平台表现尤为靓丽。(先前我写的文章《网宿科技为什么大跌?》也有所涉及)。 技术层方面,Google、IBM 专注于人工智能(AI)技术层,研发更高级AI 算法,积累AI 底层技术。国内百度在这方面也有相当的投入并取得较大的进展。 应用层方面各显神通,Facebook、苹果在AI 应用层的布局集中在语音识别、图像识别、智能助理等领域;IBM 加速向医疗领域渗透,盈利前景已开始显现。 国内的话,目前主要还是在应用层耕耘较多,基础层和技术层方面与外国的差距较大。 三、部分上市公司 科大讯飞作为中国智能语音及人工智能产业的领导者,以“从能

人工智能芯片现状

人工智能芯片研究与产业现状2010 年以来,由于大数据产业的发展,数据量呈现爆炸性增长态势,而传统的计算架构又无法支撑深度学习的大规模并行计算需求,于是研究界对AI 芯片进行了新一轮的技术研发与应用研究[1]。AI 芯片是人工智能时代的技术核心之一,决定了平台的基础架构和发展生态。 AI芯片基本知识及现状 从广义上讲只要能够运行人工智能算法的芯片都叫作AI 芯片。但是通常意义上的AI 芯片指的是针对人工智能算法做了特殊加速设计的芯片[2],现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。 ▲人工智能与深度学习 深度学习算法,通常是基于接收到的连续数值,通过学习处理,并输出连续数值的过程,实质上并不能完全模仿生物大脑的运作机制。基于这一现实,研究界还提出了SNN(Spiking Neural Network,脉冲神经网络)模型。作为第三代神经网络模型,SNN 更贴近生物神经网络——除了神经元和突触模型更贴近生物神经元与突触之外,SNN 还将时域信息引入了计算模型。目前基于SNN 的AI 芯片主要以IBM 的TrueNorth、Intel 的Loihi 以及国内的清华大学天机芯[3]为代表。 1、AI 芯片发展历程 从图灵的论文《计算机器与智能》和图灵测试,到最初级的神经元模拟单元——感知机,再到现在多达上百层的深度神经网络,人类对人工智能的探索从来就没有停止过[4]。上世纪八十年代,多层神经网络和反向传播算法的

出现给人工智能行业点燃了新的火花。反向传播的主要创新在于能将信息输出和目标输出之间的误差通过多层网络往前一级迭代反馈,将最终的输出收敛到某一个目标范围之内。1989 年贝尔实验室成功利用反向传播算法,在多层神经网络开发了一个手写邮编识别器。1998 年Yann LeCun 和Yoshua Bengio 发表了手写识别神经网络和反向传播优化相关的论文《Gradient-based learning applied to documentrecognition》,开创了卷积神经网络的时代。 此后,人工智能陷入了长时间的发展沉寂阶段,直到1997年IBM的深蓝战胜国际象棋大师和2011年IBM的沃森智能系统在Jeopardy节目中胜出,人工智能才又一次为人们所关注。2016 年Alpha Go 击败韩国围棋九段职业选手,则标志着人工智能的又一波高潮。从基础算法、底层硬件、工具框架到实际应用场景,现阶段的人工智能领域已经全面开花。 作为人工智能核心的底层硬件AI 芯片,也同样经历了多次的起伏和波折,总体看来,AI 芯片的发展前后经历了四次大的变化。 ▲AI 芯片发展历程 (1)2007 年以前,AI 芯片产业一直没有发展成为成熟的产业;同时由于当时算法、数据量等因素,这个阶段AI 芯片并没有特别强烈的市场需求,通用的CPU 芯片即可满足应用需要。 (2)随着高清视频、VR、AR游戏等行业的发展,GPU产品取得快速的突破;同时人们发现GPU 的并行计算特性恰好适应人工智能算法及大数据并行计算的需求,如GPU 比之前传统的CPU在深度学习算法的运算上可以提高几十倍的效率,因此开始尝试使用GPU进行人工智能计算。

2017-2021年企业加快人工智能芯片市场布局

2017-2021 年企业加快人工智能芯片市场布局 互联网公司布局A 互联网巨头纷纷布局人工智能芯片,未来计算能力将得到更大提升。Google 研发出人工智能专用芯片TPU(Tensor Processing Unit),计算速度是当前常用GPU 的10 倍;高通发布了移动设备在深度学习领域的芯片技术Zeroth Platform,可在芯片上运行神经网络;IBM 研发出类人脑芯片--巨型神经网络芯片SyNAPSE,拥有100 万个神经元芯片、2.56 亿个突触、4096 个 核心以及54 亿个晶体管和63 毫瓦的超低功耗;MIT 研发名为Eyeriss 的168 核人工智能芯片;硅谷的芯片制造商Movidius 推出USB 版深度学习芯片。BAT 加快人工智能芯片研发百度发布DuerOS 智慧芯片,AI 产业化方向 靠算法+芯片。2017 年3 月30 日,百度联合ARM、紫光展锐和汉枫电 子发布DuerOS 智慧芯片,这也是百度度秘事业部2017 年独立以来,发布的 首个重要产品。据百度度秘事业部首席技术官朱凯华介绍,DuerOS 智慧芯片 拥有低成本芯片和模组,将自带DureOS,可以放在任何硬件中。DuerOS 智 慧芯片的推出,可窥探出百度在利用算法+芯片的组合实现人工智能产业化落地。华为AI 技术的开发分为三个阶段,分别是:Enable Me(自我赋能)、Know Me(自我了解)与Be Me(自我实现)。显然,目前我们在AI 领 域还处于Know Me 阶段。此间,我们可以增加一个称为Chip Me(自产芯片)的阶段,并将其与Know Me 阶段并行推进。该芯片可能会在将在华为2017 Connect 大会上正式亮相。除百度和华为外,腾讯和阿里也加入战局,近期均推出了FPGA 云解决方案。可以预见,未来人工智能的硬件 计算能力将进一步提升。相关报告:

相关文档
最新文档